CN113088680A - 一种煤矿伴生金属的浸出方法 - Google Patents

一种煤矿伴生金属的浸出方法 Download PDF

Info

Publication number
CN113088680A
CN113088680A CN202110357099.0A CN202110357099A CN113088680A CN 113088680 A CN113088680 A CN 113088680A CN 202110357099 A CN202110357099 A CN 202110357099A CN 113088680 A CN113088680 A CN 113088680A
Authority
CN
China
Prior art keywords
coal mine
leaching method
precipitate
leaching
calcining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110357099.0A
Other languages
English (en)
Other versions
CN113088680B (zh
Inventor
赵存良
左贵彬
王志勇
孟志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Engineering
Original Assignee
Hebei University of Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Engineering filed Critical Hebei University of Engineering
Priority to CN202110357099.0A priority Critical patent/CN113088680B/zh
Publication of CN113088680A publication Critical patent/CN113088680A/zh
Application granted granted Critical
Publication of CN113088680B publication Critical patent/CN113088680B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/065Nitric acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B41/00Obtaining germanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0221Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching
    • C22B60/0226Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors
    • C22B60/023Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors halogenated ion as active agent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0221Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching
    • C22B60/0226Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors
    • C22B60/0234Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors sulfurated ion as active agent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0221Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching
    • C22B60/0226Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors
    • C22B60/0239Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors nitric acid containing ion as active agent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0252Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries
    • C22B60/0278Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0291Obtaining thorium, uranium, or other actinides obtaining thorium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明属于冶金技术领域,具体公开一种煤矿伴生金属的浸出方法,整个工艺流程设计先通过煅烧与浮选的结合,将煤矿伴生矿中伴生金属元素高效提取并转化为金属氧化物,后采用强酸将所有伴生金属转化为离子态,利用伴生金属与Co离子、Ce离子和Se离子之间的共沉淀作用的特性,使各伴生金属离子从离子态转化为固态分子而沉淀,实现了多种伴生金属元素的高效浸提,步骤简单易于操作,并且浸取原料价廉易得,绿色环保,具有较高的实用性。

Description

一种煤矿伴生金属的浸出方法
技术领域
本发明属于矿产开采技术领域,尤其涉及一种煤矿伴生金属的浸出方法。
背景技术
煤炭是地球上蕴藏最为丰富的燃料资源,长期以来一直占据着世界一次能源生产和消费领域的重要位置。我国的煤系底层分布广、厚度大,多数煤系地层不仅赋存着大量的煤炭资源,还共伴生有丰富的非金属矿产和一些有益元素,其中以稀有分散剂放射性元素较常见,如锗、镓、铀、钍等,这些共伴生矿产储量大,品位高,具有较高的开采价值。目前,许多国家在煤炭的综合利用方面都已投入相当的人力、物力和财力。随着科学技术的进步和现代工业的迅速发展,非金属矿产资源在国民经济建设中的作用和地位日益重要,而且矿物加工的深度和精度也日新月异,因此开发利用煤系中的伴生金属矿产资源显得尤为重要。但是现有技术中多采用酸浸或煅烧的方式提取煤矿伴生矿中的稀有金属,具有很强的指向性,单次仅能提取伴生矿中单一元素,多次提取工艺复杂且对环境污染严重,整体的浸取率仅能维持在60%左右,实用性较差。
发明内容
针对现有技术中煤矿伴生矿中的金属提取方法工艺复杂、提取效率慢、回收率低的技术问题,本发明提供一中煤矿伴生金属的浸出方法,可同时浸取多种伴生金属,并且工艺简单环保,具有很高的实用性。
为达到上述发明目的,本发明实施例采用了如下的技术方案:
一种煤矿伴生金属的浸出方法,具体包括以下步骤:
S1:将煤矿伴生矿粉碎成矿石粉末后煅烧得煅烧产物A;
S2:向所述煅烧产物A中添加重悬浮液进行浮选,得到下层沉淀物B;
S3:将所述沉淀物B烘干后进行研磨,加入分散剂后混合均匀,得分散溶液C;
S4:向所述分散溶液C中加入强酸进行反应,得反应产物D;
S5:向所述反应产物D中加入沉淀剂后调节溶液pH至碱性,过滤得混合物沉淀E,所述沉淀剂为氯化钴、氯化铯、氯化硒中的一种。
与现有技术相比,本申请先将细化后的伴生矿粉末煅烧,使矿石中的伴生金属转化成金属氧化物,再利用重悬浮液的重力浮选原理使碳上浮,金属氧化物沉淀,从而将煅烧产物中的金属氧化物与碳分离。整个工艺流程设计先通过煅烧与浮选的结合实现了煤矿伴生矿中伴生金属元素的高效提取,后用强酸将所有伴生金属转化为离子态,Ga离子、Ge离子、U离子和Th离子在碱性环境中与Co离子、Ce离子或Se离子可发生共沉淀作用,使各离子从离子态转化为固态分子而沉淀,实现了煤矿伴生矿中Ga、Ge、U、Th等多种伴生金属元素的同时提取,提高了煤矿伴生矿中金属的浸出率和浸出效率,并且浸取原料价格低廉易得,绿色环保,具有较高的实用性。
优选地,S1中所述矿石粉末的细度为100~120目。
优选的矿石粉末细度在保证矿粉的煅烧效率和燃烧效果的同时,避免了矿粉随气流排出造成损失,为后期的浮选过程提供优质的原料,提高浸出效率,又不增加浮选过程中的扩散阻力。
优选地,S1中所述煅烧的过程在管式加热炉中进行,煅烧温度为180~220℃,煅烧时间6~8h。
优选的煅烧工艺,可以保证煅烧过程中矿石粉末受热均匀,基本保证矿石粉末得到充分煅烧成煅烧产物,又能避免煅烧过程中煅烧产物发生二次反应导致变质。
优选地,所述重悬浮液为磁铁矿粉与水组成的重悬浮液,所述重悬浮液的加入量与所述煅烧产物A的质量比为2~4:1。
优选地,S3中所述分散剂为乙二醇,所述乙二醇的加入量与所述沉淀物B的体积比为4~6:1。
优选地,S4中所述强酸为盐酸、硝酸、硫酸中的一种,所述盐酸的质量浓度≥35%,硝酸和硫酸的质量浓度≥70%,强酸的加入量与沉淀物B的质量比为1:2~4,加入强酸后的反应在加热、搅拌的状态下进行,加热温度为60~80℃,搅拌速度为80~100r/min。
优选的强酸与金属氧化物反应的能力更强,配合特定的反应条件,能将沉淀物B中的伴生金属元素转化为离子态,反应时间快且转化率高。
优选地,S5中所述沉淀剂的加入量与沉淀物B的质量比为0.8~1.2:1,添加沉淀剂后调节溶液pH至10~14。
优选地,所述浸出方法还包括将所述混合物沉淀E烘干。
优选地,所述烘干时间为24~36h,烘干温度为60~70℃。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
一种煤矿伴生金属的浸出方法,具体包括如下步骤:
S1:将煤矿伴生矿粉碎后过100目筛,将所得矿石粉末置于管式加热炉中,在180℃的状态下煅烧7h,得煅烧产物A;
S2:向所述煅烧产物A中添加磁铁矿粉与水组成的重悬浮液进行浮选,得到下层沉淀物B,重悬浮液的加入量与煅烧产物A的质量比为3:1;
S3:将所述沉淀物B烘干后进行研磨,向研磨产物中加入乙二醇分散剂后混合均匀,得分散溶液C,乙二醇分散剂的加入量与沉淀物B的质量比为5:1;
S4:向所述分散溶液C中加入质量浓度为40%的盐酸,加热至60℃后在90r/min的搅拌状态下进行反应,得反应产物D,盐酸的加入量与沉淀物B的质量比为1:3;
S5:向所述反应产物D中加入与沉淀物B等质量的氯化钴后,加入氢氧化钠溶液调节溶液pH至12,过滤得混合物沉淀E;
S6:将所述混合物沉淀E在60℃的环境下烘干24H,收集后即得浸出后的伴生金属F。
实施例2
一种煤矿伴生金属的浸出方法,具体包括如下步骤:
S1:将煤矿伴生矿粉碎后过120目筛,将所得矿石粉末置于管式加热炉中,在200℃的状态下煅烧6h,得煅烧产物A;
S2:向所述煅烧产物A中添加磁铁矿粉与水组成的重悬浮液进行浮选,得到下层沉淀物B,重悬浮液的加入量与煅烧产物A的质量比为2:1;
S3:将所述沉淀物B烘干后进行研磨,向研磨产物中加入乙二醇分散剂后混合均匀,得分散溶液C,乙二醇分散剂的加入量与沉淀物B的质量比为6:1;
S4:向所述分散溶液C中加入质量浓度为75%的硝酸,加热至60℃后在90r/min的搅拌状态下进行反应,得反应产物D,盐酸的加入量与沉淀物B的质量比为1:2;
S5:向所述反应产物D中加入与沉淀物B等质量的氯化铯后,加入氢氧化钠溶液调节溶液pH=13,过滤得混合物沉淀E;
S6:将所述混合物沉淀E在70℃的环境下烘干30H,收集后即得浸出后的伴生金属F。
实施例3
一种煤矿伴生金属的浸出方法,具体包括如下步骤:
S1:将煤矿伴生矿粉碎后过120目筛,将所得矿石粉末置于管式加热炉中,在220℃的状态下煅烧8h,得煅烧产物A;
S2:向所述煅烧产物A中添加磁铁矿粉与水组成的重悬浮液进行浮选,得到下层沉淀物B,重悬浮液的加入量与煅烧产物A的质量比为4:1;
S3:将所述沉淀物B烘干后进行研磨,向研磨产物中加入乙二醇分散剂后混合均匀,得分散溶液C,乙二醇分散剂的加入量与沉淀物B的质量比为4:1;
S4:向所述分散溶液C中加入质量浓度为75%的硫酸,加热至60℃后在90r/min的搅拌状态下进行反应,得反应产物D,盐酸的加入量与沉淀物B的质量比为1:4;
S5:向所述反应产物D中加入与沉淀物B等质量的氯化铯后,加入氢氧化钠溶液调节溶液pH=10,过滤得混合物沉淀E;
S6:将所述混合物沉淀E在80℃的环境下烘干36H,收集后即得浸出后的伴生金属F。
检测例:
对实施1~3中S6所得的伴生金属F进行称重,并分析伴生金属F中Ga、Ge、U、和Th元素的质量百分含量。伴生金属F中Ga、Ge、U、和Th元素的质量百分含量,结果如表1所示,计算上述四种伴生金属实际浸出量和浸出率,结果如表2所示:
表1伴生金属F中各元素的质量百分含量
Figure BDA0003004219580000051
表2伴生金属浸出率
Figure BDA0003004219580000052
由表1和表2中的检测数据可知:本发明所提供的煤矿伴生金属浸出方法所获得的煤矿伴生金属的整体浸出率达70%~80%,能够同时提取出煤矿伴生矿中的多种伴生金属,提取率高,具有很高的实用性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种煤矿伴生金属的浸出方法,其特征在于,具体包括以下步骤:
S1:将煤矿伴生矿粉碎成矿石粉末后煅烧得煅烧产物A;
S2:向所述煅烧产物A中添加重悬浮液进行浮选,得到下层沉淀物B;
S3:将所述沉淀物B烘干后进行研磨,加入分散剂后混合均匀,得分散溶液C;
S4:向所述分散溶液C中加入强酸进行反应,得反应产物D;
S5:向所述反应产物D中加入沉淀剂后调节溶液pH至碱性,过滤得混合物沉淀E,所述沉淀剂为氯化钴、氯化铯、氯化硒中的一种。
2.根据权利要求1所述的煤矿伴生金属的浸出方法,其特征在于,S1中所述矿石粉末的细度为100~120目。
3.根据权利要求1所述的煤矿伴生金属的浸出方法,其特征在于,S1中所述煅烧的过程在管式加热炉中进行,煅烧温度180~220℃,煅烧时间6~8h。
4.根据权利要求1所述的煤矿伴生金属的浸出方法,其特征在于,S2中所述重悬浮液为磁铁矿粉与水组成的重悬浮液,所述重悬浮液的加入量与所述煅烧产物A的质量比为2~4:1。
5.根据权利要求1所述的煤矿伴生金属的浸出方法,其特征在于,S3中所述分散剂为乙二醇,所述乙二醇与所述沉淀物B的体积比为4~6:1。
6.根据权利要求1所述的煤矿伴生金属的浸出方法,其特征在于,S4中所述强酸为盐酸、硝酸或硫酸,且所述盐酸的质量浓度≥35%,硝酸和硫酸的质量浓度≥70%。
7.根据权利要求6所述的煤矿伴生金属的浸出方法,其特征在于,S4加入强酸后的反应在加热、搅拌的状态下进行,加热温度为60~80℃,搅拌速度为80~100r/min。
8.根据权利要求1所述的煤矿伴生金属的浸出方法,其特征在于,S5中所述沉淀剂的加入量与沉淀物B的质量比为0.8~1.2:1,添加沉淀剂后调节溶液pH至10~14。
9.根据权利要求1~8任一项所述的煤矿伴生金属的浸出方法,其特征在于,所述浸出方法还包括将所述混合物沉淀E烘干。
10.根据权利要求9所述的煤矿伴生金属的浸出方法,其特征在于,所述烘干时间为24~36h,烘干温度为60~70℃。
CN202110357099.0A 2021-04-01 2021-04-01 一种煤矿伴生金属的浸出方法 Active CN113088680B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110357099.0A CN113088680B (zh) 2021-04-01 2021-04-01 一种煤矿伴生金属的浸出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110357099.0A CN113088680B (zh) 2021-04-01 2021-04-01 一种煤矿伴生金属的浸出方法

Publications (2)

Publication Number Publication Date
CN113088680A true CN113088680A (zh) 2021-07-09
CN113088680B CN113088680B (zh) 2022-09-13

Family

ID=76672915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110357099.0A Active CN113088680B (zh) 2021-04-01 2021-04-01 一种煤矿伴生金属的浸出方法

Country Status (1)

Country Link
CN (1) CN113088680B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE666718A (zh) * 1964-07-11 1965-11-03
CN103290242A (zh) * 2012-11-30 2013-09-11 重庆地质矿产研究院 一种煤系地层共伴生稀有金属元素镓的浸出方法
CN105385849A (zh) * 2015-11-23 2016-03-09 杨道印 石煤钒矿富集u3o8

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE666718A (zh) * 1964-07-11 1965-11-03
CN103290242A (zh) * 2012-11-30 2013-09-11 重庆地质矿产研究院 一种煤系地层共伴生稀有金属元素镓的浸出方法
CN105385849A (zh) * 2015-11-23 2016-03-09 杨道印 石煤钒矿富集u3o8

Also Published As

Publication number Publication date
CN113088680B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
CN108480037A (zh) 一种从伴生多金属矿物的铁尾矿中回收铁、稀土、萤石和铌的选矿方法
CN111905918B (zh) 一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法
CN104087753B (zh) 一种红土镍矿自催化还原生产高镍品位镍铁粉的方法
CN103757200B (zh) 一种红土镍矿分离富集镍铁的方法
CN101879479A (zh) 一种榴辉岩型金红石矿的选矿方法
CN108034805B (zh) 一种含多种有价元素的硫精砂的综合利用方法
CN102357424A (zh) 铜冶炼转炉渣中铜的提取方法
CN105772216A (zh) 一种用复杂难选铁矿石生产铁精矿的新方法
CN102094127B (zh) 一种从高镁型低品位硫化镍矿中回收镍和镁元素的方法
CN101565768A (zh) 用转底炉快速还原钛砂矿球团生产铁粉及联产钛渣的方法
CN102728457A (zh) 一种硅质含镍氧化铁矿石生产镍铁精矿的方法
CN109701737B (zh) 一种从氰化尾渣中综合回收磁铁矿的选矿方法
CN103386358A (zh) 一种低品位稀土矿的选矿方法
CN104826728A (zh) 一种适于难选微细粒磁铁矿石分选的选矿新方法
CN100371471C (zh) 一种氧化镍矿的处理方法
CN107267776A (zh) 一种红土镍矿直接还原‑选矿富集生产镍铁的方法
CN101792865B (zh) 一种红土镍矿的干燥预还原方法
Li The Chinese iron ore deposits and ore production
CN102560109A (zh) 一种低成本从铜钴矿中提取铜、镍、钴中间产品的方法
CN109647616A (zh) 从铜炉渣浮选尾矿中综合回收磁铁矿和铜矿物的方法
CN104131156A (zh) 微细晶粒赤铁矿的磁化焙烧-磁选选矿方法
CN102703682A (zh) 一种稀有金属矿综合回收的方法
CN110465410A (zh) 一种铅锌矿的浮选工艺
CN113088680B (zh) 一种煤矿伴生金属的浸出方法
CN103555930A (zh) 高镁质贫镍红土矿还原焙烧方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant