CN113081691A - Rehabilitation training device and wheelchair based on bionic ankle joint - Google Patents

Rehabilitation training device and wheelchair based on bionic ankle joint Download PDF

Info

Publication number
CN113081691A
CN113081691A CN202110491082.4A CN202110491082A CN113081691A CN 113081691 A CN113081691 A CN 113081691A CN 202110491082 A CN202110491082 A CN 202110491082A CN 113081691 A CN113081691 A CN 113081691A
Authority
CN
China
Prior art keywords
block
pedal
rehabilitation training
fibula
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110491082.4A
Other languages
Chinese (zh)
Inventor
任梦阳
王彤
康荣杰
项忠霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TIANJIN GOLDEN WHEEL BICYCLE GROUP CO Ltd
Tianjin University
Original Assignee
TIANJIN GOLDEN WHEEL BICYCLE GROUP CO Ltd
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TIANJIN GOLDEN WHEEL BICYCLE GROUP CO Ltd, Tianjin University filed Critical TIANJIN GOLDEN WHEEL BICYCLE GROUP CO Ltd
Priority to CN202110491082.4A priority Critical patent/CN113081691A/en
Publication of CN113081691A publication Critical patent/CN113081691A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/0266Foot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • A61G5/12Rests specially adapted therefor, e.g. for the head or the feet
    • A61G5/128Rests specially adapted therefor, e.g. for the head or the feet for feet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0119Support for the device
    • A61H2201/0138Support for the device incorporated in furniture
    • A61H2201/0149Seat or chair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/164Feet or leg, e.g. pedal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/12Feet

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Rehabilitation Tools (AREA)

Abstract

The invention relates to a rehabilitation training device and a wheelchair based on a bionic ankle joint, wherein the rehabilitation training device comprises a pedal, a supporting structure and a movement mechanism, wherein the supporting structure is used for supporting the pedal and comprises a supporting main body and a rotating shaft connected to the bottom of the pedal; one end of the flexible cable is fixed at the front part of the pedal plate, the pulley, the sleeve and the other pulley are sequentially wound, and the other end of the flexible cable is fixed at the rear part of the pedal plate; the lower part of the similar-distancing bone block is connected with the pedal or the supporting main body, and the shapes of the contact surfaces of the similar-fibula block and the similar-distancing bone block are mutually matched; the fibula-like block, the first fixed pulley, the second fixed pulley and the sleeve are covered in the motion structure shell. The rehabilitation training device and the wheelchair have the advantages of safety and effectiveness.

Description

Rehabilitation training device and wheelchair based on bionic ankle joint
Technical Field
The invention relates to a medical device, in particular to a rehabilitation training wheelchair simulating ankle joints. Through the physiological structure of bionical ankle joint, let the user carry out better recovery in the use under safer training condition, accord with ergonomic, and can realize the function combination that wheelchair and medical treatment are recovered, and low in manufacturing cost, a series of advantages such as security height should progressively be applied to in the passive control of recovered motion, joint continuation passive motion is a new biological concept, mainly through simulating human natural motion, arouse people's natural recovery ability, performance tissue compensation effect.
Background
The ankle joint is composed of the joint surface of the lower ends of the tibia and the fibula and the talus pulley, so that the ankle joint is also called as a talus calf joint, when plantarflexion, for example, when walking down a slope, the narrower rear part of the pulley enters the fossa, and the ankle joint is loosened and can move laterally. In daily life, people mainly rely on dorsiflexion and plantar flexion of ankle joints to walk and jump, the ankle joints play important roles in sensing ground states in the whole human body and further adjusting balance and buffering ground counter-force, and with the increase of age, muscle atrophy gradually generated, inflammation pain caused by joint diseases, muscle contracture generated by stroke and the like enable the ankle joints to directly influence normal walking. When the joints are restored to a certain degree, some proper recovery training is required to promote the rehabilitation of the ankle joints.
However, the prior joint rehabilitation therapy in China still has many defects:
1. the aging of the population is aggravated, and nursing staff is in short supply. At present, the population of China is aging, and people needing rehabilitation training in China are huge, but the shortage of nursing staff is far from meeting the requirements of rehabilitation training of patients, the time and the strength of the rehabilitation training of the patients cannot be guaranteed, the rehabilitation training is expensive, and great economic pressure is brought to the patients and the national health care system.
2. The existing rehabilitation products are in shortage, the machine cost is high, and the household is not facilitated. The equipment used by the hospital is expensive, the function is single, different instruments are needed to be used for physical therapy in different rehabilitation stages, and the hospital and the individual patient are subjected to large economic burden.
3. Safety of ankle joint rehabilitation machines. Most rehabilitation robots are driven by rod pieces, harmful impact is easy to generate in the process of assisting patients to do rehabilitation training, discomfort and uneasiness of the patients are caused, and therefore the safety of the driving mode is very important. The flexible cable drive has a series of advantages of simple structure, light weight, large working space, small inertia, low manufacturing cost, easy structural change and the like, and is being gradually applied to passive control of rehabilitation exercises. In addition, an elastic element may be added to the actuator to achieve lower output impedance and higher force control fidelity.
Disclosure of Invention
The invention aims to provide a device for ankle joint rehabilitation training and a wheelchair adopting the device. Supplementary patient is sitting when standing, drives ankle joint through the rehabilitation apparatus of the pedal department of wheelchair and carries out the rehabilitation training to imitate human ligament, adopt the flexible cable rather than the rigid structure, the design is guaranteed safe, effective at the recovered in-process of patient, avoids the secondary injury that causes the patient simultaneously. The technical scheme of the invention is as follows:
a rehabilitation training device based on a bionic ankle joint comprises a pedal 7, a supporting structure 14 for supporting the pedal 7 and a movement mechanism, wherein the supporting structure 14 comprises a supporting main body and a rotating shaft 20 connected to the bottom of the pedal 7,
the motion mechanism is a bionic ankle joint and comprises a fibula-like bone block 8, a calcar-like bone block 10, a motion structure shell 11, a flexible cable 12, a first fixed pulley, a second fixed pulley, a sleeve 16 and a motor rotating shaft 17, wherein the sleeve 16 is fixedly connected to the outer part of the motor rotating shaft 17; one end of the flexible cable 12 is fixed at the front part of the pedal 7, and is wound around the first fixed pulley, the sleeve 16 and the second fixed pulley in sequence, while the other end is fixed at the rear part of the pedal 7, and the front part and the rear part are respectively positioned at two sides of the rotating shaft 20; the lower part of the taloid block 10 is connected with the pedal 7 or the support body, and the contact surface shapes of the fibula-like block 8 and the taloid block 10 are matched with each other; a fibula-like mass 8, a talus-like mass 10, a first fixed pulley, a second fixed pulley and a sleeve 16 are enclosed within the sports structure housing 11.
Further, the supporting structure 14 further includes a slide rail 23, a moving block 19 and two springs 18, the moving block 19 can slide along the slide rail 23, the slide rail 23 is disposed on the supporting main body, the moving block 19 is fixedly connected between the two springs 18, the other ends of the two springs 18 are respectively and fixedly connected to two ends of the supporting main body, and the moving block 19 is fixedly connected to the rotating shaft 20.
Furthermore, the two fixed pulleys are fixed on different parts of the fibula-like block 8, and the upper part of the fibula-like block 8 is fixedly connected with the sports structure shell 11.
Further, a servo motor for driving the motor shaft 17 to rotate is fixed in the moving structure housing 11.
The invention also provides a bionic ankle joint based rehabilitation training wheelchair adopting the device, which comprises a wheelchair and an ankle joint rehabilitation training device, wherein the wheelchair comprises a wheelchair bracket 6, the bottom of which is provided with wheels 9; the ankle joint rehabilitation training device comprises a pedal 7, a supporting structure 14 for supporting the pedal 7, a movement mechanism and a movement mechanism supporting component, wherein the supporting structure 14 comprises a supporting main body and a rotating shaft 20 connected to the bottom of the pedal 7,
the motion mechanism is a bionic ankle joint and comprises a fibula-like bone block 8, a calcar-like bone block 10, a motion structure shell 11, a flexible cable 12, a first fixed pulley, a second fixed pulley, a sleeve 16 and a motor rotating shaft 17, wherein the sleeve 16 is fixedly connected to the outer part of the motor rotating shaft 17; one end of the flexible cable 12 is fixed at the front part of the pedal 7, and is wound around the first fixed pulley, the sleeve 16 and the second fixed pulley in sequence, while the other end is fixed at the rear part of the pedal 7, and the front part and the rear part are respectively positioned at two sides of the rotating shaft 20; the lower part of the taloid block 10 is connected with the pedal 7 or the support body, and the contact surface shapes of the fibula-like block 8 and the taloid block 10 are matched with each other; a fibula-like mass 8, a talus-like mass 10, a first fixed pulley, a second fixed pulley and a sleeve 16 are enclosed within the sports structure housing 11.
Further, the supporting structure 14 further includes a slide rail 23, a moving block 19 and two springs 18, the moving block 19 can slide along the slide rail 23, the slide rail 23 is disposed on the supporting main body, the moving block 19 is fixedly connected between the two springs 18, the other ends of the two springs 18 are respectively and fixedly connected to two ends of the supporting main body, and the moving block 19 is fixedly connected to the rotating shaft 20.
Further, the upper portion of the fibular-like block 8 and the motion structure housing 11 are connected to the motion mechanism support member.
Further, the motion mechanism supporting part is a supporting rod 21 connected with the bottom of the wheelchair.
Further, the two fixed pulleys are fixed on different parts of the fibula-like block 8.
Further, a servo motor for driving the motor shaft 17 to rotate is fixed in the moving structure housing 11.
Compared with the prior art, the technical scheme of the invention has the advantages that:
1. the safety of the ankle joint rehabilitation training mechanism is ensured, most rehabilitation robots are driven by the rod pieces, harmful impact is easy to generate in the process of assisting a patient to do rehabilitation training, discomfort and uneasiness of the patient are caused, and the flexible cable drive has a series of advantages of simple structure, light weight, large working space, small inertia, low manufacturing cost, easiness in structural change and the like, and is gradually applied to passive control of rehabilitation movement.
2. The ankle joint rehabilitation training mechanism can realize the actions of plantarflexion and dorsiflexion of the ankle joint, can perform early-stage rehabilitation training for patients with different rehabilitation requirements, and is suitable for wide crowds.
Drawings
Fig. 1 is an overall structure diagram of a bionic ankle rehabilitation training wheelchair.
Fig. 2 is a specific schematic diagram of a rehabilitation training structure of a bionic ankle rehabilitation training wheelchair.
Fig. 3 is a detailed view of the movement structure of the bionic ankle joint rehabilitation training wheelchair.
Fig. 4 is a schematic diagram of a driving element of the bionic ankle joint rehabilitation training wheelchair.
Fig. 5 is a schematic view of a support structure of the bionic ankle joint rehabilitation training wheelchair.
Fig. 6 is a schematic view of the back stretching function of the bionic ankle joint rehabilitation training wheelchair.
Fig. 7 is a schematic diagram of the plantarflexion function of the bionic ankle joint rehabilitation training wheelchair.
The reference numbers in the figures illustrate: 1-a push rod; 2-backrest; 3-a handrail; 4-cushion; 5-seat support; 6-wheelchair frame; 7-a foot pedal; 8-fibular-like bone block; 9-vehicle wheels; 10-talus-like mass; 11-a moving structure housing; 12-a flexible cable; 13-a load-bearing bar; 14-a support structure; 15-a fixed pulley; 16-a sleeve; 17-a servo motor; 18-a spring; 19-a moving block; 20-a rotating shaft; 21-a support bar; 22-a screw; 23-a slide rail; 24-servo motor.
Detailed Description
The invention is described in detail below with reference to the figures and examples.
The invention provides a bionic ankle joint rehabilitation training wheelchair which can be used as a common wheelchair at ordinary times and can be used for ankle joint rehabilitation training as required.
As shown in fig. 1, 2, 3 and 4, the invention discloses a bionic ankle joint rehabilitation training wheelchair, which comprises: a wheelchair, an ankle joint rehabilitation training mechanism and a supporting mechanism. The bottom of the wheelchair bracket 6 is provided with four wheels 9 for moving the wheelchair; the push rod 1, the backrest 2, the armrests 3, the seat cushion 4 and the seat support 5 all meet the basic requirements of wheelchair sitting and moving;
the ankle joint rehabilitation mechanism mainly comprises a motion mechanism and a support mechanism, and specifically comprises a pedal 7, a fibula-like block 8, a fibula-like block 10, a motion structure shell 11, a flexible cable 12, a bearing rod 13, a support structure 14, a fixed pulley 15, a sleeve 16, a servo motor rotating shaft 17, a spring 18, a moving block 19, a rotating shaft 20, a support rod 21, a screw 22, a sliding rail 23 and a servo motor 24.
The motion mechanism is a bionic ankle joint and comprises a fibula-like bone block 8, a calcar-like bone block 10, a motion structure shell 11, a flexible cable 12, a first fixed pulley, a second fixed pulley, a sleeve 16 and a servo motor rotating shaft 17, wherein the sleeve 16 is fixedly connected to the outer part of the servo motor rotating shaft 17; one end of the flexible cable 12 is fixed at the front part of the pedal 7, and is wound around the first fixed pulley, the sleeve 16 and the second fixed pulley in sequence, while the other end is fixed at the rear part of the pedal 7, and the front part and the rear part are respectively positioned at two sides of the rotating shaft 20; the lower part of the taloid block 10 is connected with the pedal 7 or the support body, and the contact surface shapes of the fibula-like block 8 and the taloid block 10 are matched with each other; a fibula-like mass 8, a talus-like mass 10, a first fixed pulley, a second fixed pulley and a sleeve 16 are enclosed within the sports structure housing 11.
The fibula-like block 8 is fixedly connected with the support rod 21, the support rod 21 bears the weight of the fibula-like block 8, and the motion structure shell 11 is also fixedly connected with the support rod 21; the pedal 7 is fixedly connected with the talus-like block 10, the two ends of the pedal 7 and the flexible cable 12 are fixedly connected on the pedal 7, the bearing rod 13 is fixedly connected with the supporting structure 14, the bearing rod 13 is fixedly connected with the wheelchair support 6 for bearing, and the pedal 7 is connected with the supporting structure 14 through the rotating shaft 20.
The sleeve 16 is fixedly connected with the fibula-like block 8, the servo motor rotating shaft 17 is placed in the sleeve 16 and fixedly connected with the sleeve 16, the fixed pulley 15 is connected with the fibula-like block 8 through a screw 22, the flexible cable 12 bypasses the fixed pulley 15 and the sleeve 16 to move under the driving of the servo motor rotating shaft 17 and the servo motor 24, the flexible cable 12 is fixedly connected with the pedal plate 7, and the fibula-like block 8, the moving structure shell 11, the flexible cable 12, the fixed pulley 15, the sleeve 16 and the servo motor 24 are mainly supported by the supporting rod 21.
As shown in fig. 5, two springs 18 are respectively fixedly connected to the inner wall of the supporting structure 14 and two sides of the moving block 19, the rotating shaft 20 is fixedly connected to the moving block 19, the rotating shaft 20 is connected to the pedal 7, and the moving block 19 is connected to the supporting structure 14, so that the moving block 19 can move in the side slide rails 23 of the supporting structure 14 to meet the trace sliding requirement, and when rehabilitation exercise is performed, the pedal 7 is loaded and trace movement of the pedal 7 is realized.
The fibula-like block 8 and the talus-like block 10 move in a matched manner, the point of matched contact is the axis of the ankle joint plantar flexion and dorsal extension movement, and due to the fact that the sleeve 16 is matched with the servo motor rotating shaft 17, when the servo motor 24 moves, the servo motor rotating shaft 17 is driven to move, the sleeve 16 is driven, the flexible cable 12 and the pedal plate 7 move, the ankle joint plantar flexion and dorsal extension movement is achieved, and possible micro movement is achieved through the supporting structure 14.
The motion mechanism of the invention comprises the motion of plantar flexion and dorsal extension of the ankle joint. The calf-like bone block and the calf-like bone block are coupled to perform rotary motion, the calf-like bone block is fixedly connected with the pedal, the ankle joint motion structure is fixed in the calf-like bone block, the fixed pulley block, the sleeve and the servo motor form a triangle, the fixed pulley positions are kept parallel, the sleeve and the deceleration fixed connection are positioned in the fixed pulley block, the sleeve and the pedal are fixedly connected through the flexible cable, the servo motor starts to work to drive the flexible cable to move, and the ankle joint motion mechanism can enable the pedal to rotate for [ -60 degrees and 30 degrees ] under the action of the servo motor and the fixed pulley block. Realize the passive plantar flexion and dorsal extension of the ankle joint.
The support mechanism mainly comprises a spring, a moving block, a support rod, a rotating shaft and the like, wherein the support rod is fixedly connected with the support structure and is used for bearing the weight of feet and keeping the ankle joint to be safely carried out in the rehabilitation training process; a rotating shaft in the supporting structure is connected with the pedal, the rotating shaft is connected with a moving block, the rotating shaft moves along with the rotation of the pedal, the moving block moves in a sliding rail in the supporting structure, and meanwhile, the requirements of rotation and movement of the pedal during plantarflexion and dorsiflexion movement are met.
As shown in fig. 6, the ankle joint is stretched out and moved by sitting on the wheelchair.
As shown in fig. 7, the ankle joint performs a plantarflexion action by sitting on the wheelchair.

Claims (10)

1. A rehabilitation training device based on a bionic ankle joint comprises a pedal, a supporting structure and a movement mechanism, wherein the supporting structure is used for supporting the pedal and comprises a supporting main body and a rotating shaft connected to the bottom of the pedal,
the motion mechanism is a bionic ankle joint and comprises a fibula-like bone block, a calcar-like bone block, a motion structure shell, a flexible cable, a first fixed pulley, a second fixed pulley, a sleeve and a motor rotating shaft, wherein the sleeve is fixedly connected to the outer part of the motor rotating shaft; one end of the flexible cable is fixed at the front part of the pedal plate, and is sequentially wound around the first fixed pulley, the sleeve and the second fixed pulley, while the other end is fixed at the rear part of the pedal plate, and the front part and the rear part are respectively positioned at two sides of the rotating shaft; the lower part of the fibula-like block is connected with the pedal or the support main body, and the shapes of the contact surfaces of the fibula-like block and the fibula-like block are matched with each other; the fibula-like block, the first fixed pulley, the second fixed pulley and the sleeve are covered in the motion structure shell.
2. The rehabilitation training device of claim 1, wherein the supporting structure further comprises a sliding rail, a moving block capable of sliding along the sliding rail, and two springs, the sliding rail is disposed on the supporting body, the moving block is fixedly connected between the two springs, the other ends of the two springs are respectively and fixedly connected to two ends of the supporting body, and the moving block is fixedly connected to the rotating shaft.
3. The rehabilitation training device of claim 1, wherein the two fixed pulleys are fixed on different parts of the fibula-like block, and the upper part of the fibula-like block is fixedly connected with the motion structure shell.
4. The rehabilitation training device of claim 1, wherein a servo motor for driving the motor shaft to rotate is fixed in the moving structure housing.
5. A rehabilitation training wheelchair based on bionic ankle joints comprises a wheelchair and an ankle joint rehabilitation training device, wherein the wheelchair comprises a wheelchair bracket, the bottom of which is provided with wheels; the ankle joint rehabilitation training device comprises a pedal, a supporting structure for supporting the pedal, a movement mechanism and a movement mechanism supporting part, wherein the supporting structure comprises a supporting main body and a rotating shaft connected to the bottom of the pedal,
the motion mechanism is a bionic ankle joint and comprises a fibula-like bone block, a calcar-like bone block, a motion structure shell, a flexible cable, a first fixed pulley, a second fixed pulley, a sleeve and a motor rotating shaft, wherein the sleeve is fixedly connected to the outer part of the motor rotating shaft; one end of the flexible cable is fixed at the front part of the pedal plate, and is sequentially wound around the first fixed pulley, the sleeve and the second fixed pulley, while the other end is fixed at the rear part of the pedal plate, and the front part and the rear part are respectively positioned at two sides of the rotating shaft; the lower part of the fibula-like block is connected with the pedal or the support main body, and the shapes of the contact surfaces of the fibula-like block and the fibula-like block are matched with each other; the fibula-like block, the first fixed pulley, the second fixed pulley and the sleeve are covered in the motion structure shell.
6. The wheelchair as claimed in claim 5, wherein the support structure further comprises a slide rail, a movable block and two springs, the slide rail is disposed on the support body, the movable block is fixedly connected between the two springs, the other ends of the two springs are respectively fixedly connected to two ends of the support body, and the movable block is fixedly connected to the rotating shaft.
7. The rehabilitation training wheelchair of claim 5, wherein the upper portion of the fibular block and the exercise mechanism housing are connected to the exercise mechanism support member.
8. The rehabilitation training wheelchair of claim 5, wherein the exercise mechanism support member is a support bar attached to the bottom of the wheelchair.
9. The rehabilitation training device of claim 5, wherein the two fixed pulleys are fixed to different portions of the fibular-like mass.
10. The rehabilitation training device of claim 5, wherein a servo motor for driving the motor shaft to rotate is fixed in the moving structure housing.
CN202110491082.4A 2021-05-06 2021-05-06 Rehabilitation training device and wheelchair based on bionic ankle joint Pending CN113081691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110491082.4A CN113081691A (en) 2021-05-06 2021-05-06 Rehabilitation training device and wheelchair based on bionic ankle joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110491082.4A CN113081691A (en) 2021-05-06 2021-05-06 Rehabilitation training device and wheelchair based on bionic ankle joint

Publications (1)

Publication Number Publication Date
CN113081691A true CN113081691A (en) 2021-07-09

Family

ID=76681532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110491082.4A Pending CN113081691A (en) 2021-05-06 2021-05-06 Rehabilitation training device and wheelchair based on bionic ankle joint

Country Status (1)

Country Link
CN (1) CN113081691A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115804704A (en) * 2022-12-09 2023-03-17 天津大学 Ankle joint rehabilitation device based on flexible cable driving

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669450A (en) * 1985-04-15 1987-06-02 Bill Kelly Heel cord stretching appliance and method
CN108420612A (en) * 2018-03-29 2018-08-21 合肥工业大学 A kind of lower limb rehabilitation device being mounted on wheelchair
CN209361157U (en) * 2018-05-04 2019-09-10 齐齐哈尔工程学院 A kind of internal medicine nursing swab
CN110960368A (en) * 2019-12-21 2020-04-07 马鞍山市翔宇机械自动化科技有限公司 Disabled old man nurses bed
CN210543144U (en) * 2019-06-17 2020-05-19 成都睿明医疗信息技术有限公司 Chronic disease home health exercise auxiliary device
CN210961916U (en) * 2019-06-21 2020-07-10 宁波明星科技发展有限公司 Wall-leaning type combined optometry table
CN212756386U (en) * 2020-04-10 2021-03-23 曲晓瑜 Medical care lifting frame
CN215021730U (en) * 2021-05-06 2021-12-07 天津大学 Rehabilitation training device and wheelchair based on bionic ankle joint

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669450A (en) * 1985-04-15 1987-06-02 Bill Kelly Heel cord stretching appliance and method
CN108420612A (en) * 2018-03-29 2018-08-21 合肥工业大学 A kind of lower limb rehabilitation device being mounted on wheelchair
CN209361157U (en) * 2018-05-04 2019-09-10 齐齐哈尔工程学院 A kind of internal medicine nursing swab
CN210543144U (en) * 2019-06-17 2020-05-19 成都睿明医疗信息技术有限公司 Chronic disease home health exercise auxiliary device
CN210961916U (en) * 2019-06-21 2020-07-10 宁波明星科技发展有限公司 Wall-leaning type combined optometry table
CN110960368A (en) * 2019-12-21 2020-04-07 马鞍山市翔宇机械自动化科技有限公司 Disabled old man nurses bed
CN212756386U (en) * 2020-04-10 2021-03-23 曲晓瑜 Medical care lifting frame
CN215021730U (en) * 2021-05-06 2021-12-07 天津大学 Rehabilitation training device and wheelchair based on bionic ankle joint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115804704A (en) * 2022-12-09 2023-03-17 天津大学 Ankle joint rehabilitation device based on flexible cable driving

Similar Documents

Publication Publication Date Title
CN103006416B (en) Mechanical lower-limb rehabilitation robot walker device
US11642271B2 (en) Modular and minimally constraining lower limb exoskeleton for enhanced mobility and balance augmentation
US6666831B1 (en) Method, apparatus and system for automation of body weight support training (bwst) of biped locomotion over a treadmill using a programmable stepper device (psd) operating like an exoskeleton drive system from a fixed base
CN106176142B (en) A kind of lower limb power-assisted and training device
Sale et al. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury
CN102327173B (en) Wearable exoskeleton lower limb rehabilitation robot
KR100942968B1 (en) A movement machine for rehabilitation medical cure
JP2012520699A (en) Robot motion rehabilitation device
CN103417356A (en) Gait rehabilitation training robot
JP2018518208A (en) A device that drives walking in an upright position and lower limbs of a person in a supine or partially lying position
CN105726264B (en) A kind of healthy image training robot
JP3420546B2 (en) Lower limb exercise device
Taherifar et al. Lokoiran-A novel robot for rehabilitation of spinal cord injury and stroke patients
CN215021730U (en) Rehabilitation training device and wheelchair based on bionic ankle joint
CN205698427U (en) A kind of healthy image training robot
CN113081691A (en) Rehabilitation training device and wheelchair based on bionic ankle joint
CN113069323A (en) Lying position lower limb rehabilitation robot
KR101477571B1 (en) The The complex device of upper limb rehabilitation exercise
RU2240851C1 (en) Exercising apparatus for recovery of leg motional activity
CN206443879U (en) A kind of Neurology recovery chair
RU109405U1 (en) APPARATUS FOR REHABILITATION AFTER INJURIES, HIP FRACTURES AND DISEASES OF THE HIP JOINT
Chen et al. Lower limb rehabilitation robot
Jiang et al. Research Advances on Passive Knee Joints Rehabilitation Device
CN215584750U (en) Lying position lower limb rehabilitation robot
CN215584749U (en) Sole supporting mechanism of rehabilitation equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination