CN113079495B - Low-power-consumption Bluetooth real-time frequency offset estimation compensation method and system - Google Patents

Low-power-consumption Bluetooth real-time frequency offset estimation compensation method and system Download PDF

Info

Publication number
CN113079495B
CN113079495B CN202110353391.5A CN202110353391A CN113079495B CN 113079495 B CN113079495 B CN 113079495B CN 202110353391 A CN202110353391 A CN 202110353391A CN 113079495 B CN113079495 B CN 113079495B
Authority
CN
China
Prior art keywords
frequency offset
real
time
low
offset estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110353391.5A
Other languages
Chinese (zh)
Other versions
CN113079495A (en
Inventor
王存立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Zhaoxuan Microelectronics Co ltd
Original Assignee
Shanghai Zhaoxuan Microelectronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Zhaoxuan Microelectronics Co ltd filed Critical Shanghai Zhaoxuan Microelectronics Co ltd
Priority to CN202110353391.5A priority Critical patent/CN113079495B/en
Publication of CN113079495A publication Critical patent/CN113079495A/en
Application granted granted Critical
Publication of CN113079495B publication Critical patent/CN113079495B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • H04L27/144Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/16Frequency regulation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

The invention relates to a low-power-consumption Bluetooth real-time frequency offset estimation compensation method and system. The frequency offset estimation compensation method comprises the following steps: a coarse frequency offset compensation step; and a final compensation value determining step: taking the output of the average filter as the input of a low-pass filtering unit, and taking the output of the low-pass filtering unit as a final compensation value of coarse frequency offset when frame synchronization is successful; fine frequency offset estimation: after frame synchronization is completed, taking the differential phase of a BLE sampling signal as the input of a self-adaptive filtering unit, and taking the real-time output value of the self-adaptive filtering unit as a real-time fine frequency offset estimation value; and demodulating the phase of the BLE sampling signal by adopting the final compensation value of the coarse frequency offset and the real-time fine frequency offset estimation value. The invention has better real-time performance, and can track the drift of the frequency deviation in the receiving system, thereby improving the overall receiving performance of the system.

Description

Low-power-consumption Bluetooth real-time frequency offset estimation compensation method and system
Technical Field
The invention relates to a low-power-consumption Bluetooth real-time frequency offset estimation compensation method and system.
Background
The low-power Bluetooth is a wireless short-distance communication standard working in a 2.4G ISM frequency band, is mainly applied to low-speed close-distance data transmission, and has the characteristics of low cost, low power consumption and the like. In the GFSK modulation system, since there is a certain deviation between the local crystal oscillator frequency at the receiving end and the carrier modulation frequency at the transmitting end, there is a phase deviation in the modulated signal, and the accumulation of the phase deviation inevitably causes the degradation of the demodulation performance, thereby affecting the system performance of the receiver. Therefore, it is necessary to process the BLE signal at the receiving end to eliminate the adverse effect on performance caused by the above problems.
The prior art has the following problems: (1) in a conventional processing mode of BLE signals, usually, frequency offset estimation is performed by using data after phase demodulation, then, frequency offset compensation is performed on the data, and demodulation is performed by using the data after frequency offset compensation, which is only applicable to a scene with small frequency offset; however, in a large frequency offset scene, on one hand, a normal BLE signal is damaged after passing through a filter, so that the demodulation performance of a receiving end is rapidly deteriorated; on the other hand, in the extreme case, a large frequency offset (greater than 250 kHz) may cause demodulation errors, so that normal frequency offset estimation cannot be performed and subsequent demodulation cannot be performed (2) in the existing BLE frequency offset estimation algorithm, initial coarse frequency offset estimation often uses a Preamble field to perform coarse frequency offset estimation, although theoretically, the performance of the algorithm is optimal, on one hand, actually received signals are affected by AGC power adjustment, the calculation error of the phase of the Preamble first half section is large, on the other hand, due to the influence of noise, the mean square error of frequency offset estimation using a limited sampling point is large, so that the frequency offset estimation accuracy of the traditional BLE receiving end is poor, and frame synchronization and even system demodulation performance are greatly affected; (3) in some algorithms, because the frequency offset of the system needs to be calculated, a certain amount of differential phase data needs to be stored, so that the resource overhead is increased, and meanwhile, the real-time performance of the algorithms is poor; (4) some frequency offset estimation algorithms cannot perform real-time tracking compensation on system frequency offset, and cannot estimate the change of frequency deviation in real time under the scene that the crystal oscillator frequency is unstable or has frequency drift, so that the receiving performance of the system is influenced to a certain extent.
Disclosure of Invention
The invention aims to solve the defects of the prior art and provides a low-power-consumption Bluetooth real-time frequency offset estimation compensation method, which comprises the following steps:
and a coarse frequency offset compensation step: adopting an average filter to filter the differential phase of the BLE sampling signal, taking the output of the average filter as a real-time frequency offset rough estimation value, and demodulating the phase of the BLE sampling signal by using the real-time frequency offset rough estimation value before frame synchronization is finished;
and a final compensation value determining step: taking the output of the average filter as the input of a low-pass filtering unit, and taking the output of the low-pass filtering unit as a final compensation value of coarse frequency offset when frame synchronization is successful;
fine frequency offset estimation: after frame synchronization is completed, taking the differential phase of a BLE sampling signal as the input of a self-adaptive filtering unit, and taking the real-time output value of the self-adaptive filtering unit as a real-time fine frequency offset estimation value; and demodulating the phase of the BLE sampling signal by adopting the final compensation value of the coarse frequency offset and the real-time fine frequency offset estimation value.
The frequency offset estimation compensation method also comprises a link delay processing step:
in the link delay processing step, before a specific time point, the phase of the BLE sampling signal is demodulated by adopting a coarse frequency offset final compensation value and a frequency offset estimation value; and the frequency offset estimation value is gradually decreased to 0 in a gradual decrease mode, and the specific time point is the frame synchronization time + the link delay time.
The gradual decrease is proportional gradual decrease.
The low-pass filtering unit is one of a Butterworth low-pass filter, a Gaussian low-pass filter and a Chebyshev filter.
The self-adaptive filtering unit is an IIR filter.
A low-power Bluetooth real-time frequency offset estimation compensation system comprises the following units:
coarse frequency offset compensation unit: adopting an average filter to filter the differential phase of the BLE sampling signal, taking the output of the average filter as a real-time frequency offset rough estimation value, and demodulating the phase of the BLE sampling signal by using the real-time frequency offset rough estimation value before frame synchronization is finished;
a final compensation value determination unit: taking the output of the average filter as the input of a low-pass filtering unit, and taking the output of the low-pass filtering unit as a final compensation value of coarse frequency offset when frame synchronization is successful;
fine frequency offset estimation unit: after frame synchronization is completed, taking the differential phase of a BLE sampling signal as the input of a self-adaptive filtering unit, and taking the real-time output value of the self-adaptive filtering unit as a real-time fine frequency offset estimation value; and demodulating the phase of the BLE sampling signal by adopting the final compensation value of the coarse frequency offset and the real-time estimation value of the fine frequency offset.
The frequency offset estimation compensation system further comprises a link delay processing unit:
the link delay processing unit demodulates the phase of the BLE sampling signal by adopting a coarse frequency offset final compensation value and a frequency offset estimation value before a specific time point; and the frequency offset estimation value is gradually decreased to 0 in a gradual decrease mode, and the specific time point is the frame synchronization time + the link delay time.
The gradual decrease is proportional gradual decrease.
The low-pass filtering unit is one of a Butterworth low-pass filter, a Gaussian low-pass filter and a Chebyshev filter.
The self-adaptive filtering unit is an IIR filter.
Aiming at the defects in the prior art, the invention provides an ultra-low delay frequency offset estimation algorithm, which has better real-time performance on the premise of ensuring the frequency offset estimation precision and can track the drift of the frequency offset in a receiving system, thereby improving the overall receiving performance of the system.
The above-described and other features, aspects, and advantages of the present application will become more apparent with reference to the following detailed description.
Drawings
Other features, objects and advantages of the invention will become more apparent upon reading of the detailed description of non-limiting embodiments with reference to the following drawings:
fig. 1 is a schematic diagram illustrating a structure of a bluetooth low energy real-time frequency offset estimation compensation algorithm.
Detailed Description
In order to make the objects, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions of the embodiments of the present invention will be clearly and completely described below with reference to the drawings of the embodiments of the present invention. It should be apparent that the described embodiments are only some of the embodiments of the present invention, and not all of them. All other embodiments, which can be derived by a person skilled in the art from the described embodiments of the invention without inventive step, are within the scope of protection of the invention.
Unless defined otherwise, technical or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The use of "first," "second," and similar terms in the description and in the claims of the present application does not denote any order, quantity, or importance, but rather the terms are used to distinguish one element from another. Also, the use of the terms "a" or "an" and the like do not denote a limitation of quantity, but rather denote the presence of at least one.
Referring to fig. 1, a low power consumption bluetooth real-time frequency offset estimation compensation method includes the following steps: and a coarse frequency offset compensation step: adopting an average filter to filter the differential phase of the BLE sampling signal, taking the output of the average filter as a real-time frequency offset rough estimation value, and demodulating the phase of the BLE sampling signal by using the real-time frequency offset rough estimation value before frame synchronization is finished; and a final compensation value determining step: taking the output of the average filter as the input of a low-pass filtering unit, and taking the output of the low-pass filtering unit as a final compensation value of coarse frequency offset when frame synchronization is successful; fine frequency offset estimation: after frame synchronization is completed, taking the differential phase of a BLE sampling signal as the input of a self-adaptive filtering unit, and taking the real-time output value of the self-adaptive filtering unit as a real-time fine frequency offset estimation value; and demodulating the phase of the BLE sampling signal by adopting the final compensation value of the coarse frequency offset and the real-time fine frequency offset estimation value.
As a preferred implementation, the frequency offset estimation compensation method further includes a link delay processing step: in the link delay processing step, before a specific time point, the phase of the BLE sampling signal is demodulated by adopting a coarse frequency offset final compensation value and a frequency offset estimation value; and the estimated value of the frequency offset is gradually decreased to 0 in a gradual decrease mode, and the specific time point is the frame synchronization moment + the link delay time.
In a preferred embodiment, the gradual decrease is an equal proportion gradual decrease.
In a preferred embodiment, the low-pass filter unit is one of a butterworth low-pass filter, a gaussian low-pass filter, and a chebyshev filter.
As a preferred implementation, the adaptive filtering unit is an IIR filter.
A low power consumption Bluetooth real-time frequency offset estimation compensation system comprises the following units: a coarse frequency offset compensation unit: filtering a differential phase of a BLE sampling signal by adopting a mean filter, taking the output of the mean filter as a real-time frequency offset rough estimation value, and demodulating the phase of the BLE sampling signal by using the real-time frequency offset rough estimation value before frame synchronization is completed; a final compensation value determination unit: taking the output of the average filter as the input of a low-pass filtering unit, and taking the output of the low-pass filtering unit as a final compensation value of coarse frequency offset when frame synchronization is successful; fine frequency offset estimation unit: after frame synchronization is completed, taking the differential phase of a BLE sampling signal as the input of a self-adaptive filtering unit, and taking the real-time output value of the self-adaptive filtering unit as a real-time fine frequency offset estimation value; and demodulating the phase of the BLE sampling signal by adopting the final compensation value of the coarse frequency offset and the real-time estimation value of the fine frequency offset.
As a preferred implementation, the frequency offset estimation compensation system further includes a link delay processing unit:
as a preferred embodiment, before a specific time point, the link delay processing unit demodulates the phase of the BLE sampled signal by using a coarse frequency offset final compensation value and a frequency offset estimation value; and the frequency offset estimation value is gradually decreased to 0 in a gradual decrease mode, and the specific time point is the frame synchronization time + the link delay time.
In a preferred embodiment, the gradual decrease is an equal proportion gradual decrease.
In a preferred embodiment, the low-pass filter unit is one of a butterworth low-pass filter, a gaussian low-pass filter, and a chebyshev filter.
As a preferred implementation, the adaptive filtering unit is an IIR filter.
While there have been shown and described what are at present considered the fundamental principles and essential features of the invention and its advantages, it will be apparent to those skilled in the art that the invention is not limited to the details of the foregoing exemplary embodiments, but is capable of other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein. Any reference sign in a claim should not be construed as limiting the claim concerned.
Furthermore, it should be understood that although the present specification describes embodiments, not every embodiment includes only a single embodiment, and the description is for clarity purposes only, and those skilled in the art will recognize that the embodiments described in the various embodiments may be combined as appropriate to form other embodiments understood by those skilled in the art.

Claims (8)

1. A low-power Bluetooth real-time frequency offset estimation compensation method is characterized by comprising the following steps:
and a coarse frequency offset compensation step: adopting an average filter to filter the differential phase of the BLE sampling signal, taking the output of the average filter as a real-time frequency offset rough estimation value, and demodulating the phase of the BLE sampling signal by using the real-time frequency offset rough estimation value before frame synchronization is finished;
and a final compensation value determining step: taking the output of the average filter as the input of a low-pass filtering unit, and taking the output of the low-pass filtering unit as a final compensation value of coarse frequency offset when frame synchronization is successful;
fine frequency offset estimation: after frame synchronization is completed, taking the differential phase of a BLE sampling signal as the input of a self-adaptive filtering unit, and taking the real-time output value of the self-adaptive filtering unit as a real-time fine frequency offset estimation value; demodulating the phase of the BLE sampling signal by adopting the final compensation value of the coarse frequency offset and the real-time estimation value of the fine frequency offset;
the frequency offset estimation compensation method also comprises a link delay processing step:
in the link delay processing step, before a specific time point, the phase of the BLE sampling signal is demodulated by adopting a coarse frequency offset final compensation value and a frequency offset estimation value; and the frequency offset estimation value is gradually decreased to 0 in a gradual decrease mode, and the specific time point is the frame synchronization time + the link delay time.
2. The method of claim 1, wherein the fade-back is an equal-proportion fade-back.
3. The bluetooth low energy real-time frequency offset estimation compensation method according to claim 1, wherein said low-pass filter unit is one of a butterworth low-pass filter, a gaussian low-pass filter, and a chebyshev filter.
4. The method of claim 1, wherein the adaptive filtering unit is an IIR filter.
5. A low power consumption Bluetooth real-time frequency offset estimation compensation method is characterized in that a low power consumption Bluetooth real-time frequency offset estimation compensation system comprises the following units:
a coarse frequency offset compensation unit: adopting an average filter to filter the differential phase of the BLE sampling signal, taking the output of the average filter as a real-time frequency offset rough estimation value, and demodulating the phase of the BLE sampling signal by using the real-time frequency offset rough estimation value before frame synchronization is finished;
a final compensation value determination unit: taking the output of the average filter as the input of a low-pass filtering unit, and taking the output of the low-pass filtering unit as a final compensation value of coarse frequency offset when frame synchronization is successful;
fine frequency offset estimation unit: after frame synchronization is completed, taking the differential phase of a BLE sampling signal as the input of a self-adaptive filtering unit, and taking the real-time output value of the self-adaptive filtering unit as a real-time fine frequency offset estimation value; demodulating the phase of the BLE sampling signal by adopting the final compensation value of the coarse frequency offset and the real-time estimation value of the fine frequency offset;
the frequency offset estimation compensation system further comprises a link delay processing unit:
the link delay processing unit demodulates the phase of the BLE sampling signal by adopting a coarse frequency offset final compensation value and a frequency offset estimation value before a specific time point; and the frequency offset estimation value is gradually decreased to 0 in a gradual decrease mode, and the specific time point is the frame synchronization time + the link delay time.
6. The method of claim 5, wherein the fade-back is an equal-proportion fade-back.
7. The bluetooth low energy real-time frequency offset estimation compensation method according to claim 5, wherein said low-pass filter unit is one of a butterworth low-pass filter, a gaussian low-pass filter, and a chebyshev filter.
8. The method of claim 5, wherein the adaptive filtering unit is an IIR filter.
CN202110353391.5A 2021-04-01 2021-04-01 Low-power-consumption Bluetooth real-time frequency offset estimation compensation method and system Active CN113079495B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110353391.5A CN113079495B (en) 2021-04-01 2021-04-01 Low-power-consumption Bluetooth real-time frequency offset estimation compensation method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110353391.5A CN113079495B (en) 2021-04-01 2021-04-01 Low-power-consumption Bluetooth real-time frequency offset estimation compensation method and system

Publications (2)

Publication Number Publication Date
CN113079495A CN113079495A (en) 2021-07-06
CN113079495B true CN113079495B (en) 2023-02-28

Family

ID=76614341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110353391.5A Active CN113079495B (en) 2021-04-01 2021-04-01 Low-power-consumption Bluetooth real-time frequency offset estimation compensation method and system

Country Status (1)

Country Link
CN (1) CN113079495B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113923086A (en) * 2021-09-01 2022-01-11 之江实验室 Method and system for eliminating signal carrier frequency offset based on Bluetooth fixed frequency extension reference period
CN114071442B (en) * 2022-01-18 2022-04-15 高拓讯达(北京)科技有限公司 Bluetooth signal frequency offset selection method, device and storage medium
CN114465680B (en) * 2022-02-15 2024-01-19 上海兆煊微电子有限公司 High-precision RSSI estimation method applied to low-power consumption Bluetooth
CN116505978B (en) * 2023-06-29 2023-08-29 高拓讯达(北京)微电子股份有限公司 Bluetooth signal processing method and device, electronic equipment and storage medium
CN116743531B (en) * 2023-08-14 2023-10-27 江苏联康信息股份有限公司 Frequency offset estimation method of BR Bluetooth

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480443A (en) * 2010-11-26 2012-05-30 普天信息技术研究院有限公司 Carrier frequency offset estimation method and device for mobile communication system
CN109286589A (en) * 2018-10-16 2019-01-29 安徽传矽微电子有限公司 A kind of frequency offset estimator and its method in GFSK demodulator
CN110831147A (en) * 2019-11-08 2020-02-21 北京邮电大学 Carrier frequency synchronization method suitable for millimeter wave intersatellite link
CN112367283A (en) * 2020-10-30 2021-02-12 青岛鼎信通讯股份有限公司 Carrier frequency offset estimation method for GFSK system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277493B2 (en) * 2003-01-28 2007-10-02 Agere Systems Inc. Equalization in orthogonal frequency domain multiplexing
CN104601506B (en) * 2014-10-10 2017-10-03 中国电子科技集团公司第四十一研究所 A kind of OQPSK signal closed loop carrier synchronization methods of unbound nucleus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480443A (en) * 2010-11-26 2012-05-30 普天信息技术研究院有限公司 Carrier frequency offset estimation method and device for mobile communication system
CN109286589A (en) * 2018-10-16 2019-01-29 安徽传矽微电子有限公司 A kind of frequency offset estimator and its method in GFSK demodulator
CN110831147A (en) * 2019-11-08 2020-02-21 北京邮电大学 Carrier frequency synchronization method suitable for millimeter wave intersatellite link
CN112367283A (en) * 2020-10-30 2021-02-12 青岛鼎信通讯股份有限公司 Carrier frequency offset estimation method for GFSK system

Also Published As

Publication number Publication date
CN113079495A (en) 2021-07-06

Similar Documents

Publication Publication Date Title
CN113079495B (en) Low-power-consumption Bluetooth real-time frequency offset estimation compensation method and system
KR101299332B1 (en) Receiver for fsk radio frequency signals with high sensitivity demodulator and method for activating the same
EP0913963B1 (en) Timing phase synchronization detecting circuit and demodulator
CN103270730A (en) Automatic frequency control under low signal-o-noise conditions
JPS62298255A (en) Identifying device
US9853844B2 (en) Circuits and methods for frequency offset estimation in FSK communications
IE900181L (en) A method of controlling the frequency of a coherent radio¹receiver and apparatus for carrying out the method
CN109862545A (en) Frequency bias compensation method, device, computer equipment and the storage medium of Bluetooth signal
CN104682978B (en) Carrier wave frequency deviation treating method and apparatus and receiver
CN114697941A (en) Low-power consumption Bluetooth baseband receiving method
WO2010013511A1 (en) Fsk receiver
EP1202511A1 (en) Method for estimating and removing a time-varying DC-offset
US20100014613A1 (en) Demodulation of a digitally frequency-modulated analog received signal by evaluation of the time intervals between the zero crossings
CN110932720B (en) Frequency discrimination method and system for satellite two-way time comparison signal
KR102151813B1 (en) Method and apparatus for stable signal demodulation in communication system
JPH08139771A (en) Fsk receiver
CN111212006B (en) Signal demodulation system and demodulation method
CN107317776A (en) Novel carrier wave frequency deviation suppressing method in automatic frequency control
CN104242928B (en) Frequency locking detector processing method based on cross product algorithm in frequency locking loop
CN111384985B (en) Wireless communication receiver and receiving method
EP2709329B1 (en) Device and corresponding method for differential demodulation
JP3502817B2 (en) PSK receiver
CN113726706B (en) Method, device and storage medium for improving demodulation precision of D8PSK signal
CN114465680B (en) High-precision RSSI estimation method applied to low-power consumption Bluetooth
CN110289874B (en) Method and system for removing influence of frequency offset on receiving performance in wireless communication

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant