CN113078159B - Integrated circuit chip with decoupling capacitor and method for manufacturing the same - Google Patents
Integrated circuit chip with decoupling capacitor and method for manufacturing the same Download PDFInfo
- Publication number
- CN113078159B CN113078159B CN202110305307.2A CN202110305307A CN113078159B CN 113078159 B CN113078159 B CN 113078159B CN 202110305307 A CN202110305307 A CN 202110305307A CN 113078159 B CN113078159 B CN 113078159B
- Authority
- CN
- China
- Prior art keywords
- region
- semiconductor substrate
- layer
- logic
- silicon dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 126
- 238000000034 method Methods 0.000 title claims abstract description 68
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 30
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 73
- 229920005591 polysilicon Polymers 0.000 claims abstract description 73
- 239000010410 layer Substances 0.000 claims description 162
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 134
- 239000000758 substrate Substances 0.000 claims description 83
- 239000004065 semiconductor Substances 0.000 claims description 82
- 235000012239 silicon dioxide Nutrition 0.000 claims description 66
- 239000000377 silicon dioxide Substances 0.000 claims description 66
- 238000003860 storage Methods 0.000 claims description 62
- 229910052751 metal Inorganic materials 0.000 claims description 49
- 239000002184 metal Substances 0.000 claims description 49
- 238000005468 ion implantation Methods 0.000 claims description 15
- 238000000151 deposition Methods 0.000 claims description 13
- 230000015654 memory Effects 0.000 claims description 11
- 239000003989 dielectric material Substances 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 10
- 238000002955 isolation Methods 0.000 claims description 10
- 230000003647 oxidation Effects 0.000 claims description 9
- 238000007254 oxidation reaction Methods 0.000 claims description 9
- 238000000206 photolithography Methods 0.000 claims description 8
- 238000000059 patterning Methods 0.000 claims description 7
- 238000005229 chemical vapour deposition Methods 0.000 claims description 6
- 229910000449 hafnium oxide Inorganic materials 0.000 claims description 6
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000000231 atomic layer deposition Methods 0.000 claims description 4
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- ILCYGSITMBHYNK-UHFFFAOYSA-N [Si]=O.[Hf] Chemical compound [Si]=O.[Hf] ILCYGSITMBHYNK-UHFFFAOYSA-N 0.000 claims description 3
- ZQXQADNTSSMHJI-UHFFFAOYSA-N hafnium(4+) oxygen(2-) tantalum(5+) Chemical compound [O-2].[Ta+5].[Hf+4] ZQXQADNTSSMHJI-UHFFFAOYSA-N 0.000 claims description 3
- 238000002513 implantation Methods 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 3
- MIQVEZFSDIJTMW-UHFFFAOYSA-N aluminum hafnium(4+) oxygen(2-) Chemical compound [O-2].[Al+3].[Hf+4] MIQVEZFSDIJTMW-UHFFFAOYSA-N 0.000 claims description 2
- 230000000717 retained effect Effects 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 229910021332 silicide Inorganic materials 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- RJCRUVXAWQRZKQ-UHFFFAOYSA-N oxosilicon;silicon Chemical group [Si].[Si]=O RJCRUVXAWQRZKQ-UHFFFAOYSA-N 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- GEIAQOFPUVMAGM-UHFFFAOYSA-N Oxozirconium Chemical compound [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- OLBVUFHMDRJKTK-UHFFFAOYSA-N [N].[O] Chemical compound [N].[O] OLBVUFHMDRJKTK-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B10/00—Static random access memory [SRAM] devices
- H10B10/12—Static random access memory [SRAM] devices comprising a MOSFET load element
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/60—Capacitors
- H10D1/62—Capacitors having potential barriers
- H10D1/66—Conductor-insulator-semiconductor capacitors, e.g. MOS capacitors
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域technical field
本发明涉及集成电路技术领域,特别涉及一种具有去耦电容的集成电路芯片及其制造方法。The invention relates to the technical field of integrated circuits, in particular to an integrated circuit chip with a decoupling capacitor and a manufacturing method thereof.
背景技术Background technique
在具有逻辑电路和存储器的CMOS IC(集成电路)芯片中,由于电源母线电阻、电流开关等电路部件会引起噪声,因此通常需要接入大的去耦电容来连接到电源,将相应的一部分电路与另一部分电路去耦,并使该噪声通过该去耦电容分流,从而抵消该噪声引起的电源电压降,进而避免该噪声影响电路的可靠性或者引起电路故障。In a CMOS IC (Integrated Circuit) chip with logic circuits and memory, since circuit components such as power bus resistance and current switches will cause noise, it is usually necessary to connect a large decoupling capacitor to connect to the power supply, and connect a corresponding part of the circuit It is decoupled from another part of the circuit, and the noise is shunted through the decoupling capacitor, thereby offsetting the power supply voltage drop caused by the noise, thereby preventing the noise from affecting the reliability of the circuit or causing circuit failure.
目前对于用于逻辑和存储器应用的CMOS IC芯片所需的去耦电容,通常是基于MOS电容来构建的,而该MOS电容具体是利用芯片上最薄的二氧化硅栅氧化层(即利用与低压MOS晶体管的栅氧化层一道形成的二氧化硅薄膜)形成来形成的,其相对金属-绝缘-金属去耦电容(MIM)而言,具有高电容密度、低漏电流和低成本的特点。但是当集成电路芯片技术进入到28nm或以下技术节点后,二氧化硅栅氧化层过薄且容易被隧穿,进而导致漏电流的发生,由此限制了MOS电容作为去耦电容的使用。The decoupling capacitors currently required for CMOS IC chips for logic and memory applications are usually built based on MOS capacitors, and the MOS capacitors specifically utilize the thinnest silicon dioxide gate oxide layer on the chip (that is, using the same The gate oxide layer of the low-voltage MOS transistor is formed by forming a silicon dioxide film), which has the characteristics of high capacitance density, low leakage current and low cost compared with metal-insulator-metal decoupling capacitors (MIM). However, when the integrated circuit chip technology enters the technology node of 28nm or below, the gate oxide layer of silicon dioxide is too thin and is easy to be tunneled, which leads to the occurrence of leakage current, thus limiting the use of MOS capacitors as decoupling capacitors.
发明内容Contents of the invention
本发明的目的在于提供一种具有去耦电容的集成电路芯片及其制造方法,不仅能够将用作去耦电容的MOS电容与CMOS工艺兼容,同时还能避免现有的MOS电容因漏电流问题而不能用于28nm或以下技术节点的集成电路芯片的去耦电容的问题。The object of the present invention is to provide a kind of integrated circuit chip with decoupling capacitor and its manufacturing method, not only can the MOS capacitor used as decoupling capacitor be compatible with CMOS process, but also can avoid existing MOS capacitor at the same time because of leakage current problem But it cannot be used for the problem of decoupling capacitors of integrated circuit chips with technology nodes of 28nm or below.
为实现上述目的,本发明提供一种具有去耦电容的集成电路芯片的制造方法,其包括以下步骤:To achieve the above object, the present invention provides a method for manufacturing an integrated circuit chip with a decoupling capacitor, which comprises the following steps:
提供具有逻辑区和电容区的半导体衬底,并在所述半导体衬底的表面上沉积介电常数高于二氧化硅的高k介质层;providing a semiconductor substrate having a logic region and a capacitor region, and depositing a high-k dielectric layer with a dielectric constant higher than silicon dioxide on the surface of the semiconductor substrate;
图案化所述高k介质层,以去除所述逻辑区的高k介质层,并在所述电容区形成至少一个去耦电容的电容介质;patterning the high-k dielectric layer to remove the high-k dielectric layer in the logic region, and form at least one capacitive medium of a decoupling capacitor in the capacitive region;
在所述逻辑区的半导体衬底上形成二氧化硅栅氧化层;forming a silicon dioxide gate oxide layer on the semiconductor substrate of the logic region;
在所述二氧化硅栅氧化层和所述高k介质层上沉积多晶硅层,并图形化所述多晶硅层和所述二氧化硅栅氧化层,以在所述逻辑区中形成至少一个多晶硅栅极,并在所述电容区中形成堆叠在所述电容介质上的多晶硅极板;Depositing a polysilicon layer on the silicon dioxide gate oxide layer and the high-k dielectric layer, and patterning the polysilicon layer and the silicon dioxide gate oxide layer to form at least one polysilicon gate in the logic region pole, and form a polysilicon plate stacked on the capacitor medium in the capacitor region;
以所述多晶硅栅极和所述多晶硅极板为掩膜,对所述半导体衬底进行源漏离子注入,以在所述逻辑区中形成相应的逻辑晶体管,并在所述电容区中形成相应的去耦电容,各个所述去耦电容均为具有相应的所述多晶硅极板的MOS电容;Using the polysilicon gate and the polysilicon plate as a mask, perform source-drain ion implantation on the semiconductor substrate to form corresponding logic transistors in the logic region, and form corresponding logic transistors in the capacitor region. decoupling capacitors, each of which is a MOS capacitor with a corresponding polysilicon plate;
通过金属布线工艺,在所述半导体衬底上形成电源线、地线以及包括导电插塞和金属互连线的金属互连结构,且所述金属互连结构的一部分将至少一个所述逻辑晶体管和至少一个所述多晶硅极板电性连接至所述电源线,另一部分将至少一个所述逻辑晶体管和所述半导体衬底电性连接至所述地线。Through a metal wiring process, a power line, a ground line, and a metal interconnection structure including conductive plugs and metal interconnection lines are formed on the semiconductor substrate, and a part of the metal interconnection structure connects at least one logic transistor The at least one polysilicon plate is electrically connected to the power line, and the other part electrically connects at least one logic transistor and the semiconductor substrate to the ground line.
可选地,所述半导体衬底中形成有浅沟槽隔离结构,以实现各个所述逻辑晶体管和各个所述去耦电容之间的电性隔离。Optionally, a shallow trench isolation structure is formed in the semiconductor substrate to realize electrical isolation between each of the logic transistors and each of the decoupling capacitors.
可选地,在所述半导体衬底的表面上沉积介电常数高于二氧化硅的高k介质层之前,先在所述半导体衬底的表面上形成二氧化硅界面层。Optionally, before depositing a high-k dielectric layer with a dielectric constant higher than silicon dioxide on the surface of the semiconductor substrate, a silicon dioxide interface layer is first formed on the surface of the semiconductor substrate.
可选地,去除所述逻辑区的高k介质层,并保留所述电容区中相应的高k介质层时,还去除所述逻辑区的二氧化硅界面层,并保留所述电容区中相应的二氧化硅界面层,以使得最终形成的所述去耦电容的电容介质包括依次层叠的二氧化硅界面层和高k介质层。Optionally, when removing the high-k dielectric layer in the logic region and retaining the corresponding high-k dielectric layer in the capacitance region, also remove the silicon dioxide interface layer in the logic region and retain the high-k dielectric layer in the capacitance region Corresponding silicon dioxide interface layer, so that the capacitive medium of the decoupling capacitor finally formed includes a silicon dioxide interface layer and a high-k dielectric layer stacked in sequence.
可选地,所述高k介质层为单层高k介电材料形成的结构或者多层高k介电材料堆叠而成的复合结构,所述高k介电材料包括氮化硅、氧氮化硅、氧化铪、氧化铪硅、氧化铪铝、氧化铪钽、氧化锆和氧化铝中的至少一种。Optionally, the high-k dielectric layer is a structure formed by a single layer of high-k dielectric material or a composite structure formed by stacking multiple layers of high-k dielectric material, and the high-k dielectric material includes silicon nitride, oxygen nitrogen At least one of silicon oxide, hafnium oxide, hafnium silicon oxide, hafnium aluminum oxide, hafnium tantalum oxide, zirconium oxide and aluminum oxide.
可选地,所述逻辑区至少具有工作电压不同的第一区和第二区;在所述逻辑区的半导体衬底上形成二氧化硅栅氧化层的步骤包括:在所述第一区和所述第二区的半导体衬底上形成厚度不同的二氧化硅栅氧化层。Optionally, the logic region has at least a first region and a second region with different operating voltages; the step of forming a silicon dioxide gate oxide layer on the semiconductor substrate of the logic region includes: Silicon dioxide gate oxide layers with different thicknesses are formed on the semiconductor substrate in the second region.
可选地,通过热氧化工艺、原子层沉积工艺、化学气相沉积工艺中的至少一种,在所述逻辑区的半导体衬底上形成二氧化硅栅氧化层。Optionally, a silicon dioxide gate oxide layer is formed on the semiconductor substrate in the logic region by at least one of a thermal oxidation process, an atomic layer deposition process, and a chemical vapor deposition process.
可选地,提供的所述半导体衬底还具有存储区,所述制造方法还包括在所述存储区形成至少一个存储单元;且在所述金属布线工艺中,所述存储单元与相应的所述逻辑晶体管电性连接。Optionally, the provided semiconductor substrate further has a storage area, and the manufacturing method further includes forming at least one storage unit in the storage area; and in the metal wiring process, the storage unit and the corresponding The logic transistor is electrically connected.
基于同一发明构思,本发明还提供一种具有去耦电容的集成电路芯片,其采用本发明所述的具有去耦电容的集成电路芯片的制造方法形成,所述集成电路芯片包括:具有逻辑区和电容区的半导体衬底、形成在半导体衬底的逻辑区中的至少一个逻辑晶体管、形成在所述半导体衬底的电容区中的至少一个去耦电容以及电源线、地线和包括导电插塞及金属互连线的金属互连结构,其中,所述金属互连结构的一部分将至少一个所述逻辑晶体管和至少一个去耦电容的所述多晶硅极板电性连接至所述电源线,另一部分将至少一个所述逻辑晶体管和所述半导体衬底电性连接至所述地线。Based on the same inventive concept, the present invention also provides an integrated circuit chip with a decoupling capacitor, which is formed by the method for manufacturing an integrated circuit chip with a decoupling capacitor according to the present invention, and the integrated circuit chip includes: a logic area and the semiconductor substrate of the capacitor area, at least one logic transistor formed in the logic area of the semiconductor substrate, at least one decoupling capacitor formed in the capacitor area of the semiconductor substrate, and power lines, ground lines, and conductive plugs a metal interconnection structure plugged with a metal interconnection line, wherein a part of the metal interconnection structure electrically connects at least one logic transistor and the polysilicon plate of at least one decoupling capacitor to the power supply line, Another part electrically connects at least one of the logic transistors and the semiconductor substrate to the ground.
可选地,所述半导体衬底还具有存储区,在所述半导体衬底的存储区中形成有具有至少一个存储单元的存储器,所述金属互连结构的又一部分将所述存储单元与至少一个所述逻辑晶体管电性连接。Optionally, the semiconductor substrate further has a storage area, a memory with at least one storage unit is formed in the storage area of the semiconductor substrate, and another part of the metal interconnection structure connects the storage unit with at least one One of the logic transistors is electrically connected.
与现有技术相比,本发明的技术方案至少具有以下有益效果之一:Compared with the prior art, the technical solution of the present invention has at least one of the following beneficial effects:
1、本发明中至少采用高k介质层作为MOS电容(即去耦电容)的电容介质,且当本发明的MOS电容(即去耦电容)与现有技术中MOS电容的电容介质层具有相同厚度时,能够利用高k介电材料本身不同于二氧化硅的特性,降低漏电流,提高电容密度,由此,本发明的MOS电容能够用作28nm或以下技术节点的集成电路芯片的去耦电容。1. In the present invention, at least the high-k dielectric layer is used as the capacitance medium of the MOS capacitor (ie, the decoupling capacitor), and when the MOS capacitor of the present invention (ie, the decoupling capacitor) has the same capacitance dielectric layer as the MOS capacitor in the prior art When the thickness is high, the characteristics of the high-k dielectric material itself different from silicon dioxide can be used to reduce the leakage current and increase the capacitance density. Therefore, the MOS capacitor of the present invention can be used as the decoupling of the integrated circuit chip of the technology node of 28nm or below capacitance.
2、本发明中由于需要采用高k介质层用于作MOS电容的电容介质,因此与现有的CMOS工艺中的直接用二氧化硅栅氧化层作MOS电容的电容介质的方案相比,仅仅多一张用于图案化高k介质层的附件掩膜,因此能与原先的CMOS工艺兼容,工艺简单,成本低。2, in the present invention, owing to needing to adopt high-k dielectric layer to be used as the capacitor medium of MOS capacitor, therefore compare with the scheme of directly using silicon dioxide gate oxide layer as the capacitor medium of MOS capacitor in the existing CMOS process, only There is an additional accessory mask for patterning the high-k dielectric layer, so it is compatible with the original CMOS process, the process is simple, and the cost is low.
附图说明Description of drawings
图1是本发明一实施例的具有去耦电容的集成电路芯片的制造方法流程图。FIG. 1 is a flowchart of a method for manufacturing an integrated circuit chip with decoupling capacitors according to an embodiment of the present invention.
图2至图8是本发明一实施例的具有去耦电容的集成电路芯片的制造方法中的器件剖面结构示意图。FIG. 2 to FIG. 8 are schematic cross-sectional structural diagrams of devices in a method of manufacturing an integrated circuit chip with decoupling capacitors according to an embodiment of the present invention.
图9至图10是本发明另一实施例的具有去耦电容的集成电路芯片的制造方法中的器件剖面结构示意图。9 to 10 are schematic diagrams of cross-sectional structures of devices in a method for manufacturing an integrated circuit chip with decoupling capacitors according to another embodiment of the present invention.
图11至图14是本发明一实施例中形成的去耦电容的剖面结构示例。11 to 14 are examples of cross-sectional structures of decoupling capacitors formed in an embodiment of the present invention.
具体实施方式Detailed ways
以下结合附图和具体实施例对本发明提出的技术方案作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。The technical solutions proposed by the present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments. The advantages and features of the present invention will become clearer from the following description. It should be noted that all the drawings are in very simplified form and use inaccurate scales, and are only used to facilitate and clearly assist the purpose of illustrating the embodiments of the present invention.
请参考图1,本发明一实施例提供一种具有去耦电容的集成电路芯片的制造方法,其包括以下步骤:Please refer to FIG. 1, an embodiment of the present invention provides a method for manufacturing an integrated circuit chip with a decoupling capacitor, which includes the following steps:
S1,提供具有逻辑区和电容区的半导体衬底,并在所述半导体衬底的表面上沉积介电常数高于二氧化硅的高k介质层;S1, providing a semiconductor substrate having a logic region and a capacitor region, and depositing a high-k dielectric layer with a dielectric constant higher than silicon dioxide on the surface of the semiconductor substrate;
S2,通过光刻和刻蚀工艺图案化所述高k介质层,以去除所述逻辑区的高k介质层,并在所述电容区形成至少一个去耦电容的电容介质;S2, patterning the high-k dielectric layer by photolithography and etching process, so as to remove the high-k dielectric layer in the logic area, and form at least one capacitive medium of decoupling capacitor in the capacitive area;
S3,在所述逻辑区的半导体衬底上形成二氧化硅栅氧化层;S3, forming a silicon dioxide gate oxide layer on the semiconductor substrate in the logic region;
S4,在所述二氧化硅栅氧化层和所述高k介质层上沉积多晶硅层,并图形化所述多晶硅层和所述二氧化硅栅氧化层,以在所述逻辑区中形成至少一个多晶硅栅极,并在所述电容区中形成堆叠在所述电容介质上的至少一个去耦电容的多晶硅极板;S4, depositing a polysilicon layer on the silicon dioxide gate oxide layer and the high-k dielectric layer, and patterning the polysilicon layer and the silicon dioxide gate oxide layer to form at least one a polysilicon gate, and forming a polysilicon plate of at least one decoupling capacitor stacked on the capacitor medium in the capacitor region;
S5,以所述多晶硅栅极和所述多晶硅极板为掩膜,对所述半导体衬底进行源漏离子注入,以在所述逻辑区中形成相应的逻辑晶体管,并在所述电容区中形成相应的去耦电容,各个所述去耦电容均为具有相应的所述多晶硅极板的MOS电容;S5, using the polysilicon gate and the polysilicon plate as a mask, perform source-drain ion implantation on the semiconductor substrate, so as to form corresponding logic transistors in the logic region, and forming corresponding decoupling capacitors, each of which is a MOS capacitor having a corresponding polysilicon plate;
S6,通过金属布线工艺,在所述半导体衬底上形成电源线、地线以及包括导电插塞和金属互连线的金属互连结构,且所述金属互连结构的一部分将至少一个所述逻辑晶体管和至少一个所述多晶硅极板电性连接至所述电源线,另一部分将至少一个所述逻辑晶体管和所述半导体衬底电性连接至所述地线。S6, forming a power line, a ground line, and a metal interconnection structure including conductive plugs and metal interconnection lines on the semiconductor substrate through a metal wiring process, and a part of the metal interconnection structure connects at least one of the The logic transistor and at least one polysilicon plate are electrically connected to the power line, and the other part electrically connects at least one logic transistor and the semiconductor substrate to the ground line.
请参考图2,在步骤S1中,首先,提供半导体衬底100,半导体衬底100可以是本领域技术人员所熟知的用于制作PMOS晶体管和NMOS晶体管的任意合适衬底材料,例如硅、锗、绝缘体上硅、绝缘体上硅锗等,并通过热氧化工艺在半导体衬底100的表面上形成二氧化硅界面层103,二氧化硅界面层103的厚度可以为例如为/>然后,可以先对半导体衬底100的多个区域进行阱离子注入,后在半导体衬底100中制作浅沟槽隔离结构(STI)101,也可以先在半导体衬底100中制作浅沟槽隔离结构(STI)101,后对半导体衬底100的多个区域进行阱离子注入,以定义出逻辑区I、逻辑区I中的各个晶体管区以及电容区II。本实施例中,逻辑区I中定义有工作电压不同的高压晶体管区(HV,即第一区)和低压晶体管区(LV,即第二区),且高压晶体管区(HV)的半导体衬底100中形成有第一导电类型的深阱102a,第一导电类型的深阱102a中形成有第二导电类型的高压阱102b,低压晶体管区(LV)的半导体衬底100中形成有低压阱102c,电容区II的半导体衬底100中形成有低压阱102d,其中低压阱102c和低压阱102d可以采用同一道阱离子注入工艺形成,且注入深度小于高压阱102b。作为一种示例,当需要在高压晶体管区(HV)中制作高压NMOS晶体管、在低压晶体管区(LV)制作低压NMOS晶体管、在电容区II中制作N型MOS电容(即去耦电容)时,该第一导电类型的深阱102a为深N阱(DNW),第二导电类型的高压阱102b为高压P阱(HV-PW),低压阱102c为低压N阱(LV-NW),低压阱102d可以是低压N阱(LV-NW)或低压P阱(LV-PW)。浅沟槽隔离结构(STI)101可以实现最终形成的各个所述逻辑晶体管和各个所述去耦电容之间的电性隔离。之后,在所述浅沟槽隔离结构(STI)101和二氧化硅界面层103的表面上沉积介电常数k高于二氧化硅的高k介质层104,例如介电常数k大于3.9或不低于7。其中,所述高k介质层104可以为单层高k介电材料形成的结构,也可以为多层高k介电材料堆叠而成的复合结构,所述高k介电材料的选材需要根据所需的MOS电容的漏电流性能要求和电容密度要求来确定,其可以包括氮化硅(SiN)、氧氮化硅(SiON)、氧化铪(HfO)、氧化铪硅(HfSiO)、氧化铪铝(HfAlO)、氧化铪钽(HfTaO)、氧化锆(ZrO)和氧化铝(Al2O3)中的至少一种。作为一种示例,高k介质层104为Al2O3层、HfO层、Al2O3层依次堆叠的复合结构或者为Al2O3层、ZrO层、Al2O3层依次堆叠的复合结构。Please refer to Fig. 2, in step S1, at first, provide semiconductor substrate 100, semiconductor substrate 100 can be any suitable substrate material for making PMOS transistor and NMOS transistor known to those skilled in the art, for example silicon, germanium , silicon-on-insulator, silicon-germanium-on-insulator, etc., and form a silicon dioxide interfacial layer 103 on the surface of the semiconductor substrate 100 through a thermal oxidation process, the thickness of the silicon dioxide interfacial layer 103 can be e.g. for /> Then, well ion implantation can be performed on multiple regions of the semiconductor substrate 100 first, and then a shallow trench isolation structure (STI) 101 can be formed in the semiconductor substrate 100, or a shallow trench isolation structure can be formed in the semiconductor substrate 100 first. structure (STI) 101, and then perform well ion implantation on multiple regions of the semiconductor substrate 100 to define a logic region I, each transistor region in the logic region I, and a capacitor region II. In this embodiment, a high-voltage transistor region (HV, i.e. the first region) and a low-voltage transistor region (LV, i.e. the second region) with different operating voltages are defined in the logic region I, and the semiconductor substrate of the high-voltage transistor region (HV) A deep well 102a of the first conductivity type is formed in 100, a high voltage well 102b of the second conductivity type is formed in the deep well 102a of the first conductivity type, and a low voltage well 102c is formed in the semiconductor substrate 100 of the low voltage transistor region (LV). A low-voltage well 102d is formed in the semiconductor substrate 100 in the capacitor region II, wherein the low-voltage well 102c and the low-voltage well 102d can be formed by the same well ion implantation process, and the implantation depth is smaller than the high-voltage well 102b. As an example, when it is necessary to fabricate high-voltage NMOS transistors in the high-voltage transistor area (HV), low-voltage NMOS transistors in the low-voltage transistor area (LV), and N-type MOS capacitors (ie, decoupling capacitors) in the capacitance area II, The deep well 102a of the first conductivity type is a deep N well (DNW), the high voltage well 102b of the second conductivity type is a high voltage P well (HV-PW), and the low voltage well 102c is a low voltage N well (LV-NW). 102d may be a low-voltage N-well (LV-NW) or a low-voltage P-well (LV-PW). The shallow trench isolation structure (STI) 101 can realize electrical isolation between each of the logic transistors and each of the decoupling capacitors that are finally formed. After that, deposit a high-k dielectric layer 104 with a dielectric constant k higher than silicon dioxide on the surface of the shallow trench isolation structure (STI) 101 and the silicon dioxide interface layer 103, for example, the dielectric constant k is greater than 3.9 or not lower than 7. Wherein, the high-k dielectric layer 104 may be a structure formed by a single layer of high-k dielectric material, or may be a composite structure formed by stacking multiple layers of high-k dielectric materials, and the material selection of the high-k dielectric material needs to be based on The leakage current performance requirements and capacitance density requirements of the required MOS capacitors are determined, which can include silicon nitride (SiN), silicon oxynitride (SiON), hafnium oxide (HfO), hafnium silicon oxide (HfSiO), hafnium oxide At least one of aluminum (HfAlO), hafnium tantalum oxide (HfTaO), zirconium oxide (ZrO), and aluminum oxide (Al 2 O 3 ). As an example, the high-k dielectric layer 104 is a composite structure in which Al 2 O 3 layers, HfO layers, and Al 2 O 3 layers are stacked in sequence, or a composite structure in which Al 2 O 3 layers, ZrO layers, and Al 2 O 3 layers are stacked in sequence.
需要说明的是,上述示例中,二氧化硅界面层103是在阱离子注入和STI形成之前形成在半导体衬底100上的,本发明的技术方案并不仅仅限定于此,在本发明的其他一实施例中,可以在阱离子注入和STI形成之前,先通过热氧化工艺在半导体衬底100上形成垫氧化层(未图示),在阱离子注入和STI形成之后去除该垫氧化层,并重新通过热氧化工艺在半导体衬底100和STI 101的表面上形成二氧化硅界面层103,以避免阱离子注入工艺对后续用作电容介质的二氧化硅界面层103的性能影响。在本发明的其他另一实施例中,可以在阱离子注入和STI形成之前,先通过热氧化工艺在半导体衬底100上形成垫氧化层(未图示),在阱离子注入和STI形成之后去除该垫氧化层,并省略二氧化硅界面层103的形成,直接在半导体衬底100和STI 101的表面上沉积高k介质层104。It should be noted that, in the above example, the silicon dioxide interface layer 103 is formed on the semiconductor substrate 100 before well ion implantation and STI formation, the technical solution of the present invention is not limited thereto, and in other aspects of the present invention In one embodiment, before the well ion implantation and STI formation, a pad oxide layer (not shown) may be formed on the semiconductor substrate 100 by a thermal oxidation process, and the pad oxide layer is removed after the well ion implantation and STI formation, And the silicon dioxide interfacial layer 103 is formed on the surface of the semiconductor substrate 100 and the STI 101 through a thermal oxidation process again, so as to avoid the effect of the trap ion implantation process on the subsequent performance of the silicon dioxide interfacial layer 103 used as a capacitor medium. In another embodiment of the present invention, before the well ion implantation and STI formation, a pad oxide layer (not shown) may be formed on the semiconductor substrate 100 through a thermal oxidation process, and after the well ion implantation and STI formation The pad oxide layer is removed, and the formation of the silicon dioxide interface layer 103 is omitted, and the high-k dielectric layer 104 is directly deposited on the surface of the semiconductor substrate 100 and the STI 101 .
请参考图2,在步骤S2中,首先,通过光刻胶涂覆、曝光、显影等一系列光刻工艺,形成图案化光刻胶层,以定义出电容区II中用于构成MOS电容(即去耦电容)的电容介质的区域;然后,以所述图案化光刻胶层为掩膜,通过干法刻蚀工艺或者湿法刻蚀工艺对高k介质层104进行刻蚀,以去除所述逻辑区I中的高k介质层104,并图案化所述电容区II中相应的高k介质层104,刻蚀停止在半导体衬底100的表面(即电容区II的低压阱102d的表面),从而在电容区II中形成至少一个去耦电容的电容介质。本实施例中,每个去耦电容的电容介质包括高k介质层104及其下方的二氧化硅界面层103,每个去耦电容的下极板为半导体衬底100(即电容区II的低压阱102d)。Please refer to FIG. 2, in step S2, first, through a series of photolithography processes such as photoresist coating, exposure, and development, a patterned photoresist layer is formed to define the MOS capacitor ( That is, the region of the capacitor medium of the decoupling capacitor); then, using the patterned photoresist layer as a mask, the high-k dielectric layer 104 is etched by a dry etching process or a wet etching process to remove the high-k dielectric layer 104 in the logic region I, and pattern the corresponding high-k dielectric layer 104 in the capacitance region II, the etching stops on the surface of the semiconductor substrate 100 (that is, the low-voltage well 102d of the capacitance region II surface), thereby forming the capacitive medium of at least one decoupling capacitor in capacitive region II. In this embodiment, the capacitive medium of each decoupling capacitor includes a high-k dielectric layer 104 and the silicon dioxide interface layer 103 below it, and the lower plate of each decoupling capacitor is the semiconductor substrate 100 (that is, the capacitor region II Low pressure well 102d).
请参考图4,在步骤S3中,通过热氧化工艺、原子层沉积工艺、化学气相沉积工艺中的至少一种,在所述逻辑区I的半导体衬底100上形成二氧化硅栅氧化层。本实施例中,由于低压晶体管和高压晶体管所需的二氧化硅栅氧化层的厚度不同,因此需要分多步来形成低压晶体管和高压晶体管所需的二氧化硅栅氧化层。作为一种示例,首先,通过热氧化工艺、原子层沉积工艺或者化学气相沉积工艺,在半导体衬底100的表面上形成二氧化硅层105;然后,通过光刻结合刻蚀的方法,去除低压晶体管区LV和电容区II的半导体衬底100表面上的二氧化硅层105,并保留高压晶体管区HV的半导体衬底100表面上的二氧化硅层105;接着,再通过热氧化工艺、原子层沉积工艺或者化学气相沉积工艺,在半导体衬底100和二氧化硅层105的表面上形成二氧化硅层106,二氧化硅层106的厚度满足低压晶体管的栅氧化层的厚度需要。由此,在高压晶体管区HV中,二氧化硅层105和二氧化硅层106堆叠而成的氧化层结构用作高压MOS晶体管所需的较厚的二氧化硅栅氧化层,低压晶体管区LV中,二氧化硅层106用作低压MOS晶体管所需的较薄的二氧化硅栅氧化层。Referring to FIG. 4 , in step S3 , a silicon dioxide gate oxide layer is formed on the semiconductor substrate 100 in the logic region I by at least one of thermal oxidation process, atomic layer deposition process, and chemical vapor deposition process. In this embodiment, since the thickness of the gate oxide layer of silicon dioxide required by the low-voltage transistor and the high-voltage transistor is different, it is necessary to form the gate oxide layer of silicon dioxide required by the low-voltage transistor and the high-voltage transistor in multiple steps. As an example, firstly, a silicon dioxide layer 105 is formed on the surface of the semiconductor substrate 100 by thermal oxidation process, atomic layer deposition process or chemical vapor deposition process; The silicon dioxide layer 105 on the semiconductor substrate 100 surface of the transistor region LV and the capacitor region II, and the silicon dioxide layer 105 on the semiconductor substrate 100 surface of the high-voltage transistor region HV is reserved; then, through the thermal oxidation process, the atomic A layer deposition process or a chemical vapor deposition process forms a silicon dioxide layer 106 on the surface of the semiconductor substrate 100 and the silicon dioxide layer 105, and the thickness of the silicon dioxide layer 106 meets the thickness requirement of a gate oxide layer of a low-voltage transistor. Therefore, in the high-voltage transistor region HV, the oxide layer structure formed by stacking the silicon dioxide layer 105 and the silicon dioxide layer 106 is used as a thicker silicon dioxide gate oxide layer required by the high-voltage MOS transistor, and the low-voltage transistor region LV In this case, the silicon dioxide layer 106 is used as a thinner silicon dioxide gate oxide layer required for low voltage MOS transistors.
请参考图4和图5,在步骤S4中,首先,通过化学气相沉积工艺,在二氧化硅层106和所述高k介质层104上沉积多晶硅层107,并通过化学机械抛光工艺对多晶硅层107进行顶面平坦化;之后,通过光刻结合刻蚀的工艺,来图形化所述多晶硅层107、二氧化硅层106和二氧化硅层105,刻蚀停止在半导体衬底100的表面(即停止在各个阱的表面),在所述逻辑区I中剩余的多晶硅层107,相互分立,分别用作高压晶体管区HV中的多晶硅栅极和低压晶体管区LV中的多晶硅栅极,所述电容区II中剩余的多晶硅层107相互分立,作为堆叠在所述高k介质层104上的多晶硅极板,即用作去耦电容的上极板。Please refer to Fig. 4 and Fig. 5, in step S4, first, by chemical vapor deposition process, deposit polysilicon layer 107 on silicon dioxide layer 106 and described high-k dielectric layer 104, and the polysilicon layer is polished by chemical mechanical polishing process 107 to planarize the top surface; afterward, the polysilicon layer 107, the silicon dioxide layer 106 and the silicon dioxide layer 105 are patterned by a process of photolithography combined with etching, and the etching stops on the surface of the semiconductor substrate 100 ( That is, stop at the surface of each well), the remaining polysilicon layer 107 in the logic region I is separated from each other, and is used as the polysilicon gate in the high-voltage transistor region HV and the polysilicon gate in the low-voltage transistor region LV, respectively. The remaining polysilicon layers 107 in the capacitor region II are separated from each other and serve as polysilicon plates stacked on the high-k dielectric layer 104 , that is, as upper plates of decoupling capacitors.
请参考图5和图6,在步骤S5中,首先,通过侧墙工艺(包括介质层沉积和刻蚀),在各个多晶硅栅极和多晶硅极板的侧壁上形成第一侧墙108a,第一侧墙108a的材质可以是二氧化硅。然后,以第一侧墙108a和各个多晶硅栅极和多晶硅极板为掩膜,对所述半导体衬底100进行轻掺杂漏区离子注入(LDD),以在各个多晶硅栅极和多晶硅极板周围的阱中形成轻掺杂(LDD)区109,该步骤可以采用多步先光刻掩膜后LDD注入的工艺来实现,使得逻辑区I中的高压晶体管区HV和低压晶体管区LV以及电容区II中形成的轻掺杂(LDD)区109的深度、浓度不完全相同。之后,再采用侧墙工艺,在第一侧墙108a的外侧上依次形成第二侧墙108b和第三侧墙108c,其中第二侧墙108b的材质可以是氮化硅,第三侧墙108c的材质可以是氧化硅,第三侧墙108c、第二侧墙108b、第一侧墙108a共同作为栅极侧墙108。接着,沉积第一介质层110,并对第一介质层110光刻和刻蚀,以定义出逻辑区I和电容区II中待形成源极和漏极的区域,本实施例中,低压晶体管区LV和电容区II中的第一介质层110被全部去除,高压晶体管区HV中的第一介质层110具有形成在第三侧墙108c外侧的开口110a,开口110a用于定义高压晶体管的源极和漏极的形成区域。之后,以第一介质层110、第三侧墙108c、第二侧墙108b、第一侧墙108a和各个多晶硅栅极和多晶硅极板为掩膜,对所述半导体衬底100进行源漏离子注入,以在各个多晶硅栅极和多晶硅极板周围的阱中形成源漏区111,其中位于多晶硅栅极一侧的源漏区111作为源极S,另一侧的源漏区111作为漏极D。由此,在所述逻辑区I的高压晶体管区HV中形成高压晶体管(即高压逻辑晶体管),在低压晶体管区LV中形成低压晶体管(即低压逻辑晶体管),在所述电容区II中形成相应的去耦电容,各个所述去耦电容均为MOS电容,其包括依次堆叠的半导体衬底100、二氧化硅界面层103、高k介质层104以及多晶硅层107。Please refer to FIG. 5 and FIG. 6, in step S5, first, through a sidewall process (including dielectric layer deposition and etching), a first sidewall 108a is formed on the sidewalls of each polysilicon gate and polysilicon plate, and the second The material of the side wall 108a may be silicon dioxide. Then, lightly doped drain region ion implantation (LDD) is performed on the semiconductor substrate 100 by using the first sidewall 108a and each polysilicon gate and polysilicon plate as a mask, so as to form a layer on each polysilicon gate and polysilicon plate A lightly doped (LDD) region 109 is formed in the surrounding wells. This step can be realized by adopting a multi-step photolithography mask first and then LDD implantation process, so that the high-voltage transistor region HV and the low-voltage transistor region LV and the capacitor in the logic region I The depths and concentrations of the lightly doped (LDD) regions 109 formed in the region II are not completely the same. Afterwards, the sidewall process is used to sequentially form the second sidewall 108b and the third sidewall 108c on the outer side of the first sidewall 108a, wherein the material of the second sidewall 108b can be silicon nitride, and the third sidewall 108c The material may be silicon oxide, and the third sidewall 108c, the second sidewall 108b, and the first sidewall 108a collectively serve as the gate spacer 108 . Next, deposit the first dielectric layer 110, and photolithographically and etch the first dielectric layer 110 to define the regions where the source and drain electrodes are to be formed in the logic region I and the capacitor region II. In this embodiment, the low-voltage transistor The first dielectric layer 110 in the region LV and the capacitance region II is completely removed, and the first dielectric layer 110 in the high-voltage transistor region HV has an opening 110a formed outside the third spacer 108c, and the opening 110a is used to define the source of the high-voltage transistor The region where the electrodes and drains are formed. Afterwards, using the first dielectric layer 110, the third sidewall 108c, the second sidewall 108b, the first sidewall 108a, and each polysilicon gate and polysilicon plate as a mask, the semiconductor substrate 100 is source-drained. implanted to form source and drain regions 111 in wells around each polysilicon gate and polysilicon plate, wherein the source and drain region 111 on one side of the polysilicon gate serves as the source S, and the source and drain region 111 on the other side serves as the drain d. Thus, high-voltage transistors (i.e., high-voltage logic transistors) are formed in the high-voltage transistor area HV of the logic area I, low-voltage transistors (i.e., low-voltage logic transistors) are formed in the low-voltage transistor area LV, and corresponding transistors are formed in the capacitance area II. Each of the decoupling capacitors is a MOS capacitor, which includes a semiconductor substrate 100 , a silicon dioxide interface layer 103 , a high-k dielectric layer 104 and a polysilicon layer 107 stacked in sequence.
请参考图7和图8,在步骤S6中,可以先通过第二介质层112沉积、光刻和刻蚀,来定义出源极S、漏极D、多晶硅栅极和多晶硅极板用于外接的区域;然后通过金属硅化工艺,在第二介质层112暴露出的极S、漏极D、多晶硅栅极和多晶硅极板上形成金属硅化物113;之后,通过金属布线工艺(包括层间介质层沉积、接触孔刻蚀、接触孔填充、金属互连工艺等),在所述半导体衬底100上形成电源线VDD、地线VSS和具有至少一层导电插塞(图中未标记)及至少一层金属互连线(未图示,可参考图10的Metal所示)的金属互连结构,且所述金属互连结构的一部分将至少一个所述逻辑晶体管和至少一个去耦电容的所述多晶硅极板电性连接至所述电源线VDD,所述金属互连结构的另一部分将至少一个所述逻辑晶体管和所述半导体衬底100电性连接至所述地线VSS。本实施例中,所述金属互连结构的一部分通过相应的金属硅化物将一个高压晶体管的漏极D和一个去耦电容的多晶硅极板(即多晶硅层107)电性连接至电源线VDD,所述金属互连结构的另一部分通过相应的金属硅化物将一个低压晶体管的源极S和一个去耦电容的源极S电性连接至地线VSS。Please refer to FIG. 7 and FIG. 8. In step S6, the source S, the drain D, the polysilicon gate and the polysilicon plate can be defined for external connection through deposition of the second dielectric layer 112, photolithography and etching. Then through the metal silicide process, a metal silicide 113 is formed on the pole S, drain D, polysilicon gate and polysilicon pole plate exposed by the second dielectric layer 112; after that, through the metal wiring process (including interlayer dielectric layer deposition, contact hole etching, contact hole filling, metal interconnection process, etc.), on the semiconductor substrate 100, a power line VDD, a ground line VSS, and at least one layer of conductive plugs (not marked in the figure) and A metal interconnection structure of at least one layer of metal interconnection lines (not shown, refer to Metal in FIG. 10 ), and a part of the metal interconnection structure connects at least one logic transistor and at least one decoupling capacitor The polysilicon plate is electrically connected to the power line VDD, and another part of the metal interconnection structure electrically connects at least one logic transistor and the semiconductor substrate 100 to the ground line VSS. In this embodiment, a part of the metal interconnection structure electrically connects the drain D of a high-voltage transistor and the polysilicon plate (ie, the polysilicon layer 107 ) of a decoupling capacitor to the power supply line VDD through a corresponding metal silicide, The other part of the metal interconnection structure electrically connects the source S of a low-voltage transistor and the source S of a decoupling capacitor to the ground line VSS through corresponding metal silicides.
在本发明的其他实施例中,可以根据需要,设计和制作相应的金属互连结构,来使得多个去耦电容串联或者并联,设计多个逻辑晶体管串联或者并联,本发明的技术方案对这些电性连接关系并不做具体限制。In other embodiments of the present invention, it is possible to design and fabricate corresponding metal interconnection structures as required, so that multiple decoupling capacitors can be connected in series or in parallel, and multiple logic transistors can be designed in series or in parallel. The electrical connection relationship is not specifically limited.
此外,上述实施例中,逻辑区I中具有高压晶体管区和低压晶体管区,且每个晶体管区仅仅示出了一个晶体管的形成区域,但是本发明的技术方案并不仅仅限定于此,每个晶体管区中可以具有多个晶体管的形成区域,且每个晶体管区中形成的晶体管可以是同类型,也可以是不同类型,例如可以均为NMOS晶体管或PMOS晶体管,也可以同时具有NMOS晶体管和PMOS晶体管,可以有LDMOS晶体管、鳍式晶体管,也可以有普通的平面MOS晶体管等等。逻辑区I中的高压晶体管区和低压晶体管区可以被替换为其他工作电压不同的第一区和第二区,例如标压晶体管区和低压晶体管区,逻辑区I中还可以具有三个甚至更多的工作电压不同的晶体管区。In addition, in the above-mentioned embodiment, the logic region I has a high-voltage transistor region and a low-voltage transistor region, and each transistor region only shows the formation region of one transistor, but the technical solution of the present invention is not limited thereto, each There may be multiple transistor formation regions in the transistor region, and the transistors formed in each transistor region may be of the same type or of different types, for example, they may all be NMOS transistors or PMOS transistors, or they may have both NMOS transistors and PMOS transistors Transistors can include LDMOS transistors, fin transistors, or ordinary planar MOS transistors, etc. The high-voltage transistor area and the low-voltage transistor area in the logic area I can be replaced by other first areas and second areas with different operating voltages, such as the standard voltage transistor area and the low-voltage transistor area, and there can be three or even more in the logic area I. Multiple transistor regions with different operating voltages.
请参考图9和图10,在本发明的其他实施例中,步骤S1中提供的半导体衬底100可以具有其他器件区,例如存储区、电阻区等等。当步骤S1中提供的半导体衬底100具有存储区III时,本发明的集成电路芯片的制造方法还包括在所述存储区III形成至少一个存储单元;且在步骤S6中的金属布线工艺中,形成相应的金属互连结构(包括接至少一层导电插塞和至少一层金属互连线Metal),以将相应的所述存储单元与所述逻辑晶体管电性连接。Please refer to FIG. 9 and FIG. 10 , in other embodiments of the present invention, the semiconductor substrate 100 provided in step S1 may have other device regions, such as storage regions, resistor regions and so on. When the semiconductor substrate 100 provided in step S1 has a storage area III, the method for manufacturing an integrated circuit chip of the present invention further includes forming at least one storage unit in the storage area III; and in the metal wiring process in step S6, A corresponding metal interconnection structure (including connecting at least one layer of conductive plugs and at least one layer of metal interconnection lines Metal) is formed to electrically connect the corresponding memory cells with the logic transistors.
其中,所述存储区形成的存储单元可以是SRAM存储单元、DRAM存储单元、FLASH存储元等等。作为一种示例,在所述存储区形成存储单元的控制栅或者字线等多晶硅材质的电学结构时,可以一道形成逻辑区I中的多晶硅栅极以及电容区II的去耦电容的多晶硅极板。作为另一种示例,先在所述存储区形成存储单元,再在逻辑区和电容区一道制作逻辑晶体管和去耦电容。Wherein, the storage units formed in the storage area may be SRAM storage units, DRAM storage units, FLASH storage units and the like. As an example, when the electrical structure of polysilicon material such as the control gate or word line of the memory cell is formed in the storage area, the polysilicon gate in the logic area I and the polysilicon plate of the decoupling capacitor in the capacitance area II can be formed together . As another example, memory cells are first formed in the storage area, and then logic transistors and decoupling capacitors are fabricated together in the logic area and capacitor area.
请参考图9和图10,作为一种示例,所述存储区形成的存储单元为SRAM存储单元,其包括用于存储数据的存储控制晶体管和用于选择存储数据的存储选择晶体管。存储控制晶体管的栅介质层114为氧化硅-氮化硅-氧化硅堆叠膜层,存储选择晶体管的栅氧化层与低压晶体管的栅氧化层为同一层薄膜。这种情况下,集成电路芯片的制造方法仍旧包括上述的步骤S1~S6,区别在于:在步骤S1中,在形成低压晶体管区LV的低压阱LV-NW的同时,还在存储区III中形成低压阱cell-NW,以及在形成浅沟槽隔离结构STI时,也在存储区III中形成相应的STI,以定义出存储控制晶体管区III-1和存储选择晶体管III-2;在步骤S2中,在去除逻辑区I的高k介质层104的同时,还去除存储区III上的高k介质层104;在步骤S3中,在所述逻辑区I上形成各个逻辑晶体管所需的二氧化硅栅氧化层之前或之后,通过膜层沉积、光刻和刻蚀,在所述存储控制晶体管区III-1的半导体衬底100上形成图形化的氧化硅-氮化硅-氧化硅堆叠膜层,以作为存储控制晶体管区III-1中所需的栅介质层(即存储介质)114,在形成二氧化硅层106时,二氧化硅层106还覆盖在存储区III上;在步骤S4中,沉积的多晶硅层107还覆盖在存储区III上,图形化所述多晶硅层107和二氧化硅层106,以在所述逻辑区I中形成至少一个多晶硅栅极,并在所述电容区II中形成堆叠在所述电容介质上的至少一个多晶硅极板的同时,还在存储区III中形成位于存储控制晶体管区III-1的栅介质层上的多晶硅控制栅,以及位于存储选择晶体管区III-2的二氧化硅层106(即栅氧化层)上的多晶硅栅极;在步骤S5中,还对存储区III进行源漏离子注入,以形成存储选择晶体管和存储控制晶体管;在步骤S6中,形成相应的金属互连结构(包括接至少一层导电插塞和至少一层金属互连线Metal)中的一部分,能将存储选择晶体管和存储控制晶体管电性连接,且将存储选择晶体管与相应的所述逻辑晶体管电性连接,例如将存储控制晶体管的漏极D和存储选择晶体管的源极S电性连接,将存储选择晶体管的漏极D与高压晶体管的源极S电性。Please refer to FIG. 9 and FIG. 10 , as an example, the storage unit formed in the storage area is an SRAM storage unit, which includes a storage control transistor for storing data and a storage selection transistor for selecting and storing data. The gate dielectric layer 114 of the storage control transistor is a silicon oxide-silicon nitride-silicon oxide stacked film layer, and the gate oxide layer of the storage selection transistor and the gate oxide layer of the low-voltage transistor are the same thin film. In this case, the manufacturing method of the integrated circuit chip still includes the above-mentioned steps S1-S6, the difference is that in step S1, while forming the low-voltage well LV-NW of the low-voltage transistor region LV, a well LV-NW is also formed in the storage region III. The low-voltage well cell-NW, and when forming the shallow trench isolation structure STI, also form the corresponding STI in the storage area III, so as to define the storage control transistor area III-1 and the storage selection transistor III-2; in step S2 , while removing the high-k dielectric layer 104 in the logic region I, the high-k dielectric layer 104 on the storage region III is also removed; in step S3, silicon dioxide required by each logic transistor is formed on the logic region I Before or after the gate oxide layer, a patterned silicon oxide-silicon nitride-silicon oxide stacked film layer is formed on the semiconductor substrate 100 in the storage control transistor region III-1 by film deposition, photolithography and etching , as the gate dielectric layer (i.e. storage medium) 114 required in the storage control transistor region III-1, when the silicon dioxide layer 106 is formed, the silicon dioxide layer 106 also covers the storage region III; in step S4 , the deposited polysilicon layer 107 is also covered on the storage area III, and the polysilicon layer 107 and the silicon dioxide layer 106 are patterned to form at least one polysilicon gate in the logic area I, and in the capacitance area II While forming at least one polysilicon plate stacked on the capacitor medium, a polysilicon control gate located on the gate dielectric layer of the storage control transistor area III-1 is also formed in the storage area III, and a polysilicon control gate located in the storage selection transistor area III -2 polysilicon gates on the silicon dioxide layer 106 (i.e. gate oxide layer); in step S5, also carry out source-drain ion implantation to storage region III, to form storage selection transistors and storage control transistors; in step S6 , forming a part of the corresponding metal interconnection structure (including connecting at least one layer of conductive plugs and at least one layer of metal interconnection line Metal), capable of electrically connecting the storage selection transistor and the storage control transistor, and connecting the storage selection transistor and the storage selection transistor Correspondingly, the logic transistor is electrically connected, for example, the drain D of the storage control transistor is electrically connected with the source S of the storage selection transistor, and the drain D of the storage selection transistor is electrically connected with the source S of the high voltage transistor.
应当注意的是,当半导体衬底具有存储区III、逻辑区I和电容区II时,本发明的技术方案中,逻辑区I中的工艺为本领域技术人员所熟知的标准CMOS工艺,存储区III的工艺可以是本领域技术人员所熟知的与逻辑区I中的标准CMOS工艺兼容的制造工艺,也可以是本领域技术人员所熟知的其他存储器的制造工艺。与现有技术相比,本发明的技术方案仅仅多用了一张用于图形化高k介质层的附加掩膜,即相对增加了一道高k介质层沉积、光刻和刻蚀的工艺,其余工艺均可以本领域技术人员所熟知的现有工艺来完成。It should be noted that when the semiconductor substrate has a storage area III, a logic area I and a capacitance area II, in the technical solution of the present invention, the process in the logic area I is a standard CMOS process well known to those skilled in the art, and the storage area The process of III may be a manufacturing process that is compatible with the standard CMOS process in the logic region I known to those skilled in the art, or may be a manufacturing process of other memories known to those skilled in the art. Compared with the prior art, the technical solution of the present invention only uses an additional mask for patterning the high-k dielectric layer, that is, a relatively high-k dielectric layer deposition, photolithography and etching process is added, and the rest All the processes can be completed by existing processes well known to those skilled in the art.
此外,需要说明的是,本发明的集成电路芯片的制造方法中,所形成的去耦电容的类型可以有四种:(1)具有N型掺杂多晶硅极板、N型掺杂源极、N型掺杂漏极以及P型掺杂沟道的耗尽型NMOS电容,如图11所示;(2)具有N型掺杂多晶硅极板、N型掺杂源极、N型掺杂漏极以及N型掺杂沟道的累积型NMOS电容,如图12所示;(3)具有P型掺杂多晶硅极板、P型掺杂源极、P型掺杂漏极以及N型掺杂沟道的耗尽型PMOS电容,如图13所示;(4)具有P型掺杂多晶硅极板、P型掺杂源极、P型掺杂漏极以及P型掺杂沟道的累积型PMOS电容,如图14所示。其中,由于耗尽型PMOS电容比较容易产生严重的多晶硅耗尽,增加有效介质厚度,导致较低电容值,因此在高性能的集成电路芯片中,优选采用耗尽型NMOS电容、累积型NMOS电容和累积型PMOS电容三种形式中的任意一种。In addition, it should be noted that in the manufacturing method of the integrated circuit chip of the present invention, there are four types of decoupling capacitors formed: (1) having N-type doped polysilicon plates, N-type doped source electrodes, A depletion NMOS capacitor with N-type doped drain and P-type doped channel, as shown in Figure 11; (2) has an N-type doped polysilicon plate, an N-type doped source, and an N-type doped drain Pole and N-type doped channel accumulation NMOS capacitance, as shown in Figure 12; (3) with P-type doped polysilicon plate, P-type doped source, P-type doped drain and N-type doped The depletion-type PMOS capacitor of the channel, as shown in Figure 13; (4) the accumulation type with P-type doped polysilicon plate, P-type doped source, P-type doped drain and P-type doped channel PMOS capacitor, as shown in Figure 14. Among them, since depletion-type PMOS capacitors are more likely to produce severe polysilicon depletion, increase the effective dielectric thickness, and result in lower capacitance values, so in high-performance integrated circuit chips, it is preferable to use depletion-type NMOS capacitors and accumulation-type NMOS capacitors. Any of the three forms of accumulative PMOS capacitors.
本发明的集成电路芯片的制造方法中形成的去耦电容,在与现有技术中MOS电容的电容介质层(即二氧化硅栅氧化层)具有相同厚度时,漏电流较小,电容密度较大,能够用作28nm或以下技术节点的集成电路芯片所需的去耦电容。When the decoupling capacitor formed in the manufacturing method of the integrated circuit chip of the present invention has the same thickness as the capacitor dielectric layer (i.e. silicon dioxide gate oxide layer) of the MOS capacitor in the prior art, the leakage current is small and the capacitance density is relatively high. It is large and can be used as a decoupling capacitor for integrated circuit chips with a technology node of 28nm or below.
基于同一发明构思,请参考图8,本发明一实施例还提供一种具有去耦电容的集成电路芯片,其采用本发明所述的具有去耦电容的集成电路芯片的制造方法形成。所述集成电路芯片包括:具有逻辑区I和电容区II的半导体衬底100、形成在半导体衬底100的逻辑区I中的至少一个逻辑晶体管、形成在所述半导体衬底100的电容区II中的至少一个去耦电容以及电源线VDD、地线VSS和包括至少一层导电插塞及至少一层金属互连线的金属互连结构(未图示),其中,所述金属互连结构的一部分将至少一个所述逻辑晶体管和至少一个去耦电容的多晶硅极板电性连接至所述电源线VDD,另一部分将至少一个所述逻辑晶体管和所述半导体衬底100电性连接至所述地线VSS。Based on the same inventive concept, please refer to FIG. 8 , an embodiment of the present invention also provides an integrated circuit chip with decoupling capacitors, which is formed by the method for manufacturing an integrated circuit chip with decoupling capacitors described in the present invention. The integrated circuit chip includes: a semiconductor substrate 100 having a logic region I and a capacitor region II, at least one logic transistor formed in the logic region I of the semiconductor substrate 100, and a capacitor region II formed in the semiconductor substrate 100 At least one decoupling capacitor, power line VDD, ground line VSS, and a metal interconnection structure (not shown) including at least one layer of conductive plugs and at least one layer of metal interconnection lines, wherein the metal interconnection structure One part electrically connects at least one logic transistor and the polysilicon plate of at least one decoupling capacitor to the power supply line VDD, and the other part electrically connects at least one logic transistor and the semiconductor substrate 100 to the The ground wire VSS.
可选地,请参考图10,所述半导体衬底100还具有存储区III,在所述半导体衬底100的存储区III中形成有具有至少一个存储单元的存储器,所述金属互连结构的又一部分将所述存储器与至少一个所述逻辑晶体管电性连接。Optionally, please refer to FIG. 10 , the semiconductor substrate 100 further has a storage region III, a memory having at least one storage unit is formed in the storage region III of the semiconductor substrate 100, and the metal interconnection structure Another part electrically connects the memory with at least one of the logic transistors.
需要说明的是,集成电路芯片的逻辑区I、电容区II和存储区III中的具体器件结构以及膜层选材等等,在此不再赘述,可以参考上文中对集成电路芯片的制造方法中的描述。It should be noted that the specific device structures and film material selection in the logic area I, capacitance area II, and storage area III of the integrated circuit chip will not be described in detail here. description of.
综上所述,本发明的具有去耦电容的集成电路芯片及其制造方法,基于多晶硅栅极和高k介质层来形成去耦电容,能够将去耦电容集成在标准CMOS工艺中,且相对原有的标准CMOS工艺只增加一个附加掩膜,工艺简单,制造成本低。另外,能够通过对高k介质层的选材和厚度进行合理设计,进一步使得形成的去耦电容的电容密度和泄漏性能与MIM电容相似,并使得去耦电容的多晶硅耗尽可控,以满足28nm及以下技术节点的器件的更高性能要求。To sum up, the integrated circuit chip with decoupling capacitor and its manufacturing method of the present invention form a decoupling capacitor based on a polysilicon gate and a high-k dielectric layer, and can integrate a decoupling capacitor in a standard CMOS process, and relatively The original standard CMOS process only adds an additional mask, the process is simple, and the manufacturing cost is low. In addition, through reasonable design of the material selection and thickness of the high-k dielectric layer, the capacitance density and leakage performance of the formed decoupling capacitor can be further similar to that of the MIM capacitor, and the polysilicon depletion of the decoupling capacitor can be controlled to meet the requirements of 28nm Higher performance requirements for devices of technology nodes and below.
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于本发明技术方案的范围。The above description is only a description of the preferred embodiments of the present invention, and does not limit the scope of the present invention. Any changes and modifications made by those of ordinary skill in the field of the present invention based on the above disclosures fall within the scope of the technical solutions of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110305307.2A CN113078159B (en) | 2021-03-18 | 2021-03-18 | Integrated circuit chip with decoupling capacitor and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110305307.2A CN113078159B (en) | 2021-03-18 | 2021-03-18 | Integrated circuit chip with decoupling capacitor and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113078159A CN113078159A (en) | 2021-07-06 |
CN113078159B true CN113078159B (en) | 2023-08-29 |
Family
ID=76613198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110305307.2A Active CN113078159B (en) | 2021-03-18 | 2021-03-18 | Integrated circuit chip with decoupling capacitor and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113078159B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113241345B (en) * | 2021-07-12 | 2021-11-26 | 广州粤芯半导体技术有限公司 | Semiconductor device structure and forming method thereof |
CN114496763B (en) * | 2022-01-25 | 2025-01-28 | 中国电子科技集团公司第五十八研究所 | A gate oxide reinforcement method for improving the total dose resistance of MOS devices |
CN116798863A (en) * | 2023-08-18 | 2023-09-22 | 合肥晶合集成电路股份有限公司 | Preparation method of semiconductor device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1679124A (en) * | 2002-08-29 | 2005-10-05 | 富士通株式会社 | Film capacitor and manufacturing method thereof |
US7465639B1 (en) * | 2005-05-20 | 2008-12-16 | Advanced Micro Devices, Inc. | Method for fabricating an SOI device |
CN101427373A (en) * | 2006-04-20 | 2009-05-06 | 先进微装置公司 | Method for manufacturing semiconductor components comprising capacitors having high capacitance per unit area |
CN105789188A (en) * | 2015-01-14 | 2016-07-20 | 格罗方德半导体公司 | Fdsoi capacitor |
CN109216177A (en) * | 2017-06-30 | 2019-01-15 | 台湾积体电路制造股份有限公司 | Gate structure and its method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10240423B4 (en) * | 2002-09-02 | 2007-02-22 | Advanced Micro Devices, Inc., Sunnyvale | Semiconductor element having a field effect transistor and a passive capacitor with reduced leakage current and an improved capacity per unit area and method for its production |
-
2021
- 2021-03-18 CN CN202110305307.2A patent/CN113078159B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1679124A (en) * | 2002-08-29 | 2005-10-05 | 富士通株式会社 | Film capacitor and manufacturing method thereof |
US7465639B1 (en) * | 2005-05-20 | 2008-12-16 | Advanced Micro Devices, Inc. | Method for fabricating an SOI device |
CN101427373A (en) * | 2006-04-20 | 2009-05-06 | 先进微装置公司 | Method for manufacturing semiconductor components comprising capacitors having high capacitance per unit area |
CN105789188A (en) * | 2015-01-14 | 2016-07-20 | 格罗方德半导体公司 | Fdsoi capacitor |
CN109216177A (en) * | 2017-06-30 | 2019-01-15 | 台湾积体电路制造股份有限公司 | Gate structure and its method |
Also Published As
Publication number | Publication date |
---|---|
CN113078159A (en) | 2021-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104241291B (en) | In-line memory and forming method thereof | |
KR100846613B1 (en) | Semiconductor device and manufacturing method thereof | |
CN113078159B (en) | Integrated circuit chip with decoupling capacitor and method for manufacturing the same | |
US6995415B2 (en) | Semiconductor device and its manufacturing method | |
CN113496731A (en) | Semiconductor memory device and method of forming the same | |
TW480708B (en) | Semiconductor integrated circuit device and fabrication method thereof | |
US6251722B1 (en) | Method of fabricating a trench capacitor | |
US6974987B2 (en) | Semiconductor device | |
US7078774B2 (en) | Semiconductor memory device having a shallow trench isolation structure | |
JPH06326273A (en) | Semiconductor memory | |
JP2008294111A (en) | Manufacturing method of semiconductor device | |
US20050186743A1 (en) | Method for manufacturing semiconductor device | |
US11476258B2 (en) | Semiconductor device including short-circuit prevention structure and manufacturing method thereof | |
TW202226546A (en) | Memory device and manufacturing method thereof | |
TWI708329B (en) | Memory device and method for fabricating the same | |
US7880237B2 (en) | Semiconductor device | |
JPH1098166A (en) | Semiconductor memory device and method of manufacturing the same | |
US20220293582A1 (en) | Gate dielectric layer protection | |
US7335933B2 (en) | Dynamic random access memory cell and method for fabricating the same | |
JP2003332463A (en) | Semiconductor memory device and method of manufacturing the same | |
CN113690237A (en) | Semiconductor device and method of forming the same | |
JP2000124152A (en) | Manufacture of semiconductor device | |
JP4565825B2 (en) | Manufacturing method of semiconductor integrated circuit device | |
JP4031777B2 (en) | Semiconductor device | |
JP4708388B2 (en) | Manufacturing method of semiconductor integrated circuit device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |