CN113077891A - 基于算法、区块链和医学影像的大数据疾病诊断系统 - Google Patents

基于算法、区块链和医学影像的大数据疾病诊断系统 Download PDF

Info

Publication number
CN113077891A
CN113077891A CN202110403451.XA CN202110403451A CN113077891A CN 113077891 A CN113077891 A CN 113077891A CN 202110403451 A CN202110403451 A CN 202110403451A CN 113077891 A CN113077891 A CN 113077891A
Authority
CN
China
Prior art keywords
medical image
bird
bird nest
nest
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110403451.XA
Other languages
English (en)
Inventor
王小娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202110403451.XA priority Critical patent/CN113077891A/zh
Publication of CN113077891A publication Critical patent/CN113077891A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20064Wavelet transform [DWT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Data Mining & Analysis (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)

Abstract

本发明提供基于算法、区块链和医学影像的大数据疾病诊断系统,包括:医学影像获取模块,用于获取患者的医学图像;数据通讯模块,用于对医学影像获取模块获取的医学图像进行传输;医学影像处理模块,接收数据通讯模块的医学图像并进行处理;区块链存储模块,用于存储带有医学诊断结果的医学影像;疾病预测模块,根据区块链存储模块中医学影像对医学影像处理模块处理的医学图像进行诊断预测,得到患者的医学图像诊断结果。本发明通过区块链实现医学影像的大数据处理,通过区块链实现远程数据的互联与共享,实现医学图像的疾病诊断,提高诊断准确性,可实现远程诊断,提高诊断效率。

Description

基于算法、区块链和医学影像的大数据疾病诊断系统
技术领域
本发明涉及疾病智能诊断技术领域,具体涉及基于算法、区块链和医学影像的大数据疾病诊断系统。
背景技术
随着社会的快速发展,人们越来越关注自己的身体健康,希望能获得快捷完善的医疗服务。但是由于生活节奏的加快、生活压力的提高、生态环境的恶化,越来越多的年轻人出现了或轻或重的健康问题。然而,当人们试图寻求医生或营养师的帮助时,却由于医生掌握的医疗数据较少,也没有能力对人们的日常生活进行密切跟踪,因此难以为人们改善亚健康提供精确有效的指导和帮助。
医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程;通过医学影像可以进行疾病的诊断和预测,疾病预测基于用户的历史信息推断未来的疾病或临床事件的风险;在疾病预测的过程中,由于受数据量有限、数据偏差较大的影响,很多工作尝试将医学知识图谱融入疾病预测过程,以提升预测精准度和与现有医学知识的吻合度。
现有的疾病预测采用深度学习模型以应对医疗数据量不足和数据偏差所带来的影响。由于医疗数据量是事先获取的,在一定时间内是静态的,而用户的历史信息是动态更新的,所以作为疾病预测的医疗数据量在预测过程中往往难以考虑历史信息的变动性,无法准确的对疾病进行准确预测。
发明内容
为了克服上述现有技术存在的问题,本发明提供基于区块链的医学影像大数据疾病诊断系统。
本发明的技术方案是:
基于区块链的医学影像大数据疾病诊断系统,包括:
医学影像获取模块,用于获取患者的医学图像;
数据通讯模块,用于对医学影像获取模块获取的医学图像进行传输;
医学影像处理模块,接收数据通讯模块的医学图像并进行处理;
区块链存储模块,用于存储带有医学诊断结果的医学影像;
疾病预测模块,根据区块链存储模块中医学影像对医学影像处理模块处理的医学图像进行诊断预测,得到患者的医学图像诊断结果。
作为本发明的进一步技术方案为,所述医学影像处理模块包括:
图像去噪单元,用于对获取的医学图像去噪处理,
图像分割单元,用于对去噪后的医学图像进行分割,获取医学图像的目标区域图像;
特征提取模块,用于对目标区域图像的特征进行提取。
作为本发明的进一步技术方案为,所述用于对获取的医学图像去噪处理,具体包括:
对医学图像用马拉特Mallat快速算法进行图层小波变换,得到若干小波系数;
根据小波系数估计噪声方差并确定各个不同细节子带相应的小波系数的阈值;
对小波系数进行阈值处理,重构医学影像;
保存或输出重构的医学影像。
作为本发明的进一步技术方案为,所述根据小波系数估计噪声方差并确定各个不同细节子带相应的小波系数的阈值;具体包括:根据第1层的对角细节小波系数估计噪声方差,统计出第1层对角细节小波系数的绝对值的中值,并用系数0.6745除该中值,根据估计出的噪声方差由BayesShrink方法求取各个不同细节子带相应的小波系数的阈值。
作为本发明的进一步技术方案为,所述对小波系数进行阈值处理,重构医学影像;具体包括:将各小波系数与相应阈值比较,对小波系数的绝对值小于相应阈值时将该系数置为零,在小波系数的绝对值大于或等于相应阈值时对该系数进行收缩处理,其中阈值的大小即为收缩的幅度;根据处理后的小波系数对医学图像进行小波反变换,重构医学影像。
作为本发明的进一步技术方案为,所述用于对去噪后的医学图像进行分割,获取医学图像的目标区域图像,具体包括:
图像特征的提取,采用灰度共生矩阵的方法提取重构医学图像的特征;
建立BP神经网络,提取BP神经网络的特征输入向量,调整BP神经网络初始权值,确定BP神经网络节点数;
建立BP神经网络训练模型对重构医学图像进行分割。
作为本发明的进一步技术方案为,所述建立BP神经网络训练模型对重构医学图像进行分割,具体包括:对BP神经网络进行充分训练,对训练好的BP神经网络的权值及阈值根据训练样本进行调整,根据调整后的BP神经网络权值和阈值对重构医学图像进行分割;任意选择分割后的医学图像中的一个像素,进行区域生长,对区域生长的图像进行填充得到分割图像。
作为本发明的进一步技术方案为,所述对BP神经网络进行充分训练,具体为:对BP神经网络使用误差反向传播算法进行训练的多层前馈网络,所述BP神经网络包括输入层、输出层及隐层,输入层的节点数为输入向量的特征值,所述BP神经网络的特征输入向量通过提取重构后的医学图像特征作为输入向量,输出层的节点数为1,其表示分割后的图像的背景,所述隐层的节点数为输入层的节点数减去输出层7倍的输出节点数,所述BP神经网络的建立通过将确定的BP神经网络节点数作为参数,建立隐层传递函数,选用双曲正切S形函数。
作为本发明的进一步技术方案为,所述区块链存储模块,用于存储带有医学诊断结果的医学影像;具体包括:
所述区块链存储模块由区块链节点和区块链网络组成;其中区块链节点通过公钥对上传的医学诊断结果的医学影像进行加密,利于私钥进行签名生成存证交易,并将该存证交易发送给区块链网络内的每个区块链节点。
作为本发明的进一步技术方案为,所述疾病预测模块,根据区块链存储模块中医学影像对医学影像处理模块处理的医学图像进行诊断预测,得到患者的医学图像诊断结果;具体包括:
区块链节点提交医学影像处理模块处理的医学图像至区块链网络,将处理后的医学图像与区块链网络中的带有医学诊断结果的医学影像进行对比,获取相似医学影像数据包;区块链节点接收到该相似医学影像数据包进行验签,验签通过则可进行相似医学影像数据包进行交易下载并通过私钥进行解密;根据相似医学影像数据包中的医学影像及其诊断结果对处理后的医学图像进行疾病诊断。
本发明的有益效果为:
本发明可以通过设置在医院、家庭或其他场所医疗设备对患者病患处进行图像扫描获取患者的医学图像;通过数据通讯模块将扫描获取的患者的医学图像进行传输至医学图像处理模块,通过医学影像处理模块对医学图像进行分析处理,然后通过区块链存储模块将处理后的医学图像上传至区块链网络,获取该区块链网络内的相似的带有诊断结果的医学影像数据包,疾病预测模块获取待预测患者的诊疗数据和医学图像,并通过构建BP神经网络模型对医学图像提取的特征信息进行训练,从而获得待预测患者的预测疾病类型;
本发明根据特征提取模块提取的特征从区块链网络中的带有医学诊断结果的医学影像获取相似医学影像数据包;区块链节点接收到该相似医学影像数据包进行验签,验签通过则可进行相似医学影像数据包进行下载并通过私钥进行解密;根据相似医学影像数据包中的医学影像诊断结果和患者的医学图形采用BP神经网络进行训练,对患者的医学图像进行疾病诊断。
本发明对含噪医学图像进行小波变换,通过设置阈值处理,可以有效去除医学影像中的噪声点,使图像更加纯净,以便于进行医学诊断。
在完成医学图像的疾病诊断并给出诊断结果,同时将该诊断结果及其该医学图像共同存储在区块链存储模块中,区块链存储模块的数据实现动态更新。
本发明通过区块链实现医学影像的大数据处理和连接,通过区块链实现远程数据的互联与共享,区块链网络将区块链节点连接在一个网络,通过区块链节点实现数据获取和存储实现大数据的融合,所有区块链节点存储的带有诊断结果的医疗影像在区块链网络中可共享互联,每个区块链节点均可对所有的区块链节点上的医学影像数据进行调取使用,在疾病预测过程中,只需要提取与特征相对应的医学影像数据,大大减少了需要处理的数据量,集中实现医学图像的疾病诊断,提高诊断准确性,可实现远程诊断,提高诊断效率。
附图说明
图1为本发明提出的基于区块链的医学影像大数据疾病诊断系统结构图;
图2为本发明提出的所述医学影像处理模块结构图;
图3为本发明提出的所述区块链存储模块连接图。
具体实施方式
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
参见图1,为本发明提出的基于区块链的医学影像大数据疾病诊断系统结构图;
如图1所示,基于区块链的医学影像大数据疾病诊断系统,包括:
医学影像获取模块101,用于获取患者的医学图像;
数据通讯模块102,用于对医学影像获取模块获取的医学图像进行传输;
医学影像处理模块103,接收数据通讯模块的医学图像并进行处理;
区块链存储模块104,用于存储带有医学诊断结果的医学影像;
疾病预测模块105,根据区块链存储模块中医学影像对医学影像处理模块处理的医学图像进行诊断预测,得到患者的医学图像诊断结果。
本发明实施例中,通过设置在医院、家庭或其他场所医疗设备对患者病患处进行图像扫描获取患者的医学图像;通过数据通讯模块将扫描获取的患者的医学图像进行传输,其中数据通讯模块可以嵌入设置在医疗设备的数据通讯模块,也可以是独立的模块,医疗设备通过有线或无线连接方式与数据通讯模块连接,通过数据通讯模块连接至医学图像处理模块,通过医学影像处理模块对医学图像进行分析处理,然后通过区块链存储模块将处理后的医学图像上传至区块链网络,获取该区块链网络内的相似的带有诊断结果的医学影像数据包,疾病预测模块获取待预测患者的诊疗数据和医学图像,并通过数据处理单元对获取的诊疗数据和医学图像进行处理,将处理后的诊疗数据和医学图像输入至构建的疾病预测模型中,从而获得待预测患者的预测疾病类型。模型构建单元采用样本集对BP神经网络进行训练和测试,引入布谷鸟搜索算法优化所述BP神经网络的权值和阈值。
本发明实施例中,通过区块链实现医学影像的大数据处理和连接,通过区块链实现远程数据的互联与共享,区块链网络将区块链节点连接在一个网络,通过区块链节点实现数据获取和存储实现大数据的融合,所有区块链节点存储的带有诊断结果的医疗影像在区块链网络中可共享查询,实现医学图像的疾病诊断,提高诊断准确性,可实现远程诊断,提高诊断效率。
参见图2,本发明实施例中,医学影像处理模块包括:
图像去噪单元131,用于对获取的医学图像去噪处理;
图像分割单元132,用于对去噪后的医学图像进行分割,获取医学图像的目标区域图像;
特征提取模块133,用于对目标区域图像的特征进行提取。
其中,用于对获取的医学图像去噪处理,具体包括:
对医学图像用马拉特Mallat快速算法进行图层小波变换,得到若干小波系数;
根据小波系数估计噪声方差并确定各个不同细节子带相应的小波系数的阈值;
对小波系数进行阈值处理,重构医学影像;
保存或输出重构的医学影像。
本发明实施例中,根据小波系数估计噪声方差并确定各个不同细节子带相应的小波系数的阈值;具体包括:根据第1层的对角细节小波系数估计噪声方差,统计出第1层对角细节小波系数的绝对值的中值,并用系数0.6745除该中值,根据估计出的噪声方差由BayesShrink方法求取各个不同细节子带相应的小波系数的阈值。
本发明实施例中,对小波系数进行阈值处理,重构医学影像;具体包括:将各小波系数与相应阈值比较,对小波系数的绝对值小于相应阈值时将该系数置为零,在小波系数的绝对值大于或等于相应阈值时对该系数进行收缩处理,其中阈值的大小即为收缩的幅度;根据处理后的小波系数对医学图像进行小波反变换,重构医学影像。
本发明基于上述小波变换的这种特性,对含噪医学图像进行小波变换,然后对其各个子带系数分别设定合适的阈值Threshold,若某个小波系数的绝对值小于阈值,则认为该小波系数由噪声变换而来,并将其置零;若某个小波系数的绝对值大于或等于阈值,则认为该小波系数主要由有用图像信号变换而来,并对其进行收缩处理以去除其中含有的噪声,通过以上处理,可以有效去除医学影像中的噪声点,使图像更加纯净,以便于进行医学诊断。
本发明实施例中,用于对去噪后的医学图像进行分割,获取医学图像的目标区域图像,具体包括:
图像特征的提取,采用灰度共生矩阵的方法提取重构医学图像的特征;
建立BP神经网络,提取BP神经网络的特征输入向量,调整BP神经网络初始权值,确定BP神经网络节点数;
建立BP神经网络训练模型对重构医学图像进行分割。
本发明实施例中,灰度共生矩阵是建立在估计图像的二阶组合条件概率密度函数基础上的纹理分析方法,在纹理图像中,某个方向上相隔一定距离的一对像元灰度出现的统计规律,具体反映这个图像的纹理特性。提取医学图像的纹理特征的方法使用了灰度共生矩阵。可以用一对像元的灰度共生矩阵来描述这个规律,进而由共生矩阵计算出一些参数定量来描述这个纹理的特性。
本发明中灰度共生矩阵是由于纹理是由灰度分布在空间位置上反复出现而形成的,因而在图像空间中相隔某距离的两象素之间会存在一定的灰度关系,即图像中灰度的空间相关特性;灰度直方图是对图像上单个象素具有某个灰度统计的结果,灰度共生矩阵是对图像上保持某距离的两象素分别具有某灰度的状况进行统计,取图像(N×N)中任意一点(x,y)及偏离它的另一点(x+a,y+b),设该点对的灰度值为(g1,g2)。令点(x,y)在整个画面上移动,则会得到各种(g1,g2)值,设灰度值的级数为k,则(g1,g2)的组合共有k的平方种。对于整个画面,统计出每一种(g1,g2)值出现的次数,然后排列成一个方阵,再用(g1,g2)出现的总次数将它们归一化为出现的概率P(g1,g2),这样的方阵称为灰度共生矩阵。距离差分值(a,b)取不同的数值组合,可以得到不同情况下的联合概率矩阵。(a,b)取值要根据纹理周期分布的特性来选择,对于较细的纹理,选取(1,0)、(1,1)、(2,0)等小的差分值,当a=1,b=0时,像素对是水平的,即0度扫描;当a=0,b=1时,像素对是垂直的,即90度扫描;当a=1,b=1时,像素对是右对角线的,即45度扫描;当a=-1,b=1时,像素对是左对角线,即135度扫描,这样,两个像素灰度级同时发生的概率,就将(x,y)的空间坐标转化为“灰度对”(g1,g2)的描述,形成了灰度共生矩阵。
参见图3,本发明实施例中,区块链存储模块,用于存储带有医学诊断结果的医学影像;具体包括:
所述区块链存储模块由区块链节点和区块链网络组成;其中区块链节点通过公钥对上传的医学诊断结果的医学影像进行加密,利于私钥进行签名生成存证交易,并将该存证交易发送给区块链网络内的每个区块链节点。
根据特征提取模块提取的特征从区块链网络中的带有医学诊断结果的医学影像获取相似医学影像数据包;区块链节点接收到该相似医学影像数据包进行验签,验签通过则可进行相似医学影像数据包进行下载并通过私钥进行解密;根据相似医学影像数据包中的医学影像诊断结果和患者的医学图形采用BP神经网络进行训练,对患者的医学图像进行疾病诊断。
在完成医学图像的疾病诊断并给出诊断结果,同时将该诊断结果及其该医学图像共同存储在区块链存储模块中,区块链存储模块的数据实现动态更新。
本发明实施例中,所述疾病预测模块,根据区块链存储模块中医学影像对医学影像处理模块处理的医学图像进行诊断预测,得到患者的医学图像诊断结果;具体包括:
根据特征提取模块从区块链存储模块获取带有诊疗数据的医学影像作为样本集;
采用样本集对BP神经网络进行训练和测试,引入布谷鸟搜索算法优化BP神经网络的权值和阈值;
将提取的带有疾病诊断结果的医学图像的特征和其对应的疾病诊断结果标签作为训练数据集,采用BP神经网络对训练数据集进行训练,并将提取的患者的医学图像的特征作为训练好的BP神经网络的输入数据,训练好的BP神经网络的输出数据即为患者的疾病诊断结果。
优选地,引入布谷鸟搜索算法优化所述BP神经网络的权值和阈值,定义布谷鸟搜索算法的适应度函数h为:
Figure BDA0003021280150000071
其中,C表示用于训练的样本个数,Ya表示第a个样本的实际输出值,
Figure BDA0003021280150000072
表示第a个样本的期望值。
优选地,在布谷鸟搜索算法的更新过程中,鸟巢位置的适应度函数值越小,该鸟巢位置代表的解越优。
优选地,所述布谷鸟算法通过莱维飞行模式对鸟巢位置进行更新后,具体包括:
(1)采用下列方式进行全局随机搜索:
Figure BDA0003021280150000081
其中,xi(t+1)表示种群中第i个鸟巢在第(t+1)次全局随机搜索产生的鸟巢位置,Xi(t)表示种群中的第i个鸟巢在第t次莱维飞行更新后的位置,α表示全局随机搜索的步长控制量,
Figure BDA0003021280150000082
表示点对点乘法,Lev′y(λ)表示步长大小服从Le′vy分布的随机游走,λ为稳定性指数;
(2)执行选择操作:
设Xi(t+1)表示种群中的第i个鸟巢在第(t+1)次莱维飞行更新后的位置,当鸟巢位置xi(t+1)满足:h(xi(t+1))<hi(t)时,则令鸟巢位置Xi(t+1)=xi(t+1);当鸟巢位置xi(t+1)满足:h(xi(t+1))≥hi(t)时,则令鸟巢位置Xi(t+1)=Xi(t),其中,h(xi(t+1))表示鸟巢位置xi(t+1)的适应度函数值,hi(t)表示鸟巢位置Xi(t)的适应度函数值。
优选地,在所述布谷鸟搜索算法中,通过莱维飞行模式对鸟巢位置进行更新后,根据发现概率pa选取部分鸟巢位置进行随机更新,具体为:
在第(t+1)次莱维飞行更新后,在种群中选取鸟巢位置进行随机更新,具体包括:
(1)设B(t+1)表示在第(t+1)次莱维飞行更新后种群中鸟巢位置组成的集合,给定阈值d(t+1),其中,d(t+1)的值可以取:
Figure BDA0003021280150000083
其中,
Figure BDA0003021280150000084
表示种群中距离鸟巢位置Xi(t+1)第r近的鸟巢位置,N表示种群中的鸟巢数;
对集合B(t+1)中的鸟巢位置进行子集合的划分:设b1(t+1)表示对集合B(t+1)中鸟巢位置进行划分所得的第1个子集合,选取集合B(t+1)中适应度函数值最小的鸟巢位置加入到子集合b1(t+1)中,并将集合B(t+1)中和该鸟巢位置之间的欧式距离小于等于阈值d(t+1)的鸟巢位置加入到子集合b1(t+1)中;设b2(t+1)表示对集合B(t+1)中鸟巢位置进行划分所得的第2个子集合,选取集合B(t+1)中适应度函数值最小的未划分的鸟巢位置加入到子集合b2(t+1)中,并将集合B(t+1)中和该鸟巢位置之间的欧式距离小于等于阈值d(t+1)的未划分的鸟巢位置加入到子集合b2(t+1)中;继续采用上述方法对集合B(t+1)中剩余的未划分的鸟巢位置进行划分,直到将集合B(t+1)中的鸟巢位置都划分完时,则停止划分;
(2)对种群中的鸟巢位置进行检测,设Xi(t+1)表示种群中第i个鸟巢在第(t+1)次莱维飞行更新后的位置,Xi(t)表示种群中第i个鸟巢在第t次莱维飞行更新后的位置,当鸟巢位置Xi(t+1)满足:Xi(t+1)=Xi(t)时,则将鸟巢位置Xi(t+1)标注为1;
(3)对各子集合中标注为1的鸟巢位置进行随机更新,设bj(t+1)表示对集合B(t+1)中的鸟巢位置进行划分所得的第j个子集合,将子集合bj(t+1)中标注为1的鸟巢位置按照适应度函数值由小到大进行排序组成序列
Figure BDA0003021280150000091
Figure BDA0003021280150000092
表示序列
Figure BDA0003021280150000093
中的第l个鸟巢位置,则采用下列方式对鸟巢位置
Figure BDA0003021280150000094
进行随机更新:
定义Qj(t+1)表示子集合bj(t+1)的局部检测系数,且Qj(t+1)的计算公式为:
Figure BDA0003021280150000095
其中,m(t+1)表示对集合B(t+1)中的鸟巢位置进行划分所得的子集合数,mj(t+1)表示子集合bj(t+1)中的鸟巢位置数,
Figure BDA0003021280150000096
表示子集合bj(t+1)中标注为1的鸟巢位置数,uj(t+1)表示子集合bj(t+1)的空间检测系数,且
Figure BDA0003021280150000097
Figure BDA0003021280150000098
Xj,k(t+1)表示子集合bj(t+1)中的第k个鸟巢位置,Xj,g(t+1)表示子集合bj(t+1)中的第g个鸟巢位置,hj,k(t+1)表示鸟巢位置Xj,k(t+1)的适应度函数值,hj,g(t+1)表示鸟巢位置Xj,g(t+1)的适应度函数值,u′(t+1)表示对集合B(t+1)中的鸟巢位置进行划分所得的子集合的局部检测系数的中值,且
Figure BDA0003021280150000099
Figure BDA00030212801500000910
表示计算中值函数,
Figure BDA00030212801500000911
表示子集合bj(t+1)的第一局部检测函数,且
Figure BDA00030212801500000912
表示子集合bj(t+1)的第二局部检测函数,且
Figure BDA00030212801500000913
表示子集合bj(t+1)的第三局部检测函数,且
Figure BDA00030212801500000914
定义
Figure BDA00030212801500000915
表示对鸟巢位置
Figure BDA00030212801500000916
进行随机更新的概率,且
Figure BDA00030212801500000917
的表达式为:
Figure BDA00030212801500000918
其中,
Figure BDA00030212801500000919
表示鸟巢位置
Figure BDA00030212801500000920
产生的0到1之间的随机数,
Figure BDA00030212801500000921
表示鸟巢位置
Figure BDA00030212801500000922
的属性值,且
Figure BDA00030212801500000923
Figure BDA00030212801500000924
表示鸟巢位置
Figure BDA00030212801500000925
对应的鸟巢在第τ次莱维飞行更新后的鸟巢位置,
Figure BDA00030212801500000926
Figure BDA00030212801500000927
表示鸟巢位置
Figure BDA00030212801500000928
和鸟巢位置
Figure BDA00030212801500000929
之间的判断函数,且
Figure BDA00030212801500000930
Figure BDA0003021280150000101
当鸟巢位置
Figure BDA0003021280150000102
满足:
Figure BDA0003021280150000103
时,则不对鸟巢位置
Figure BDA0003021280150000104
进行随机更新,当鸟巢位置
Figure BDA0003021280150000105
满足:
Figure BDA0003021280150000106
且Qj(t+1)=1时,则采用下列方式对鸟巢位置
Figure BDA0003021280150000107
进行随机更新,获得新的鸟巢位置
Figure BDA0003021280150000108
Figure BDA0003021280150000109
其中,rand表示0到1之间的随机数,
Figure BDA00030212801500001010
Figure BDA00030212801500001011
为随机从子集合bj(t+1)中选取的两个鸟巢位置,月
Figure BDA00030212801500001012
当鸟巢位置
Figure BDA00030212801500001013
满足:
Figure BDA00030212801500001014
且Qj(t+1)=0时,则采用下列方式对鸟巢位置
Figure BDA00030212801500001015
进行随机更新:
Figure BDA00030212801500001016
其中,
Figure BDA00030212801500001017
Figure BDA00030212801500001018
为随机从种群中选取的两个鸟巢位置,且
Figure BDA00030212801500001019
Figure BDA00030212801500001020
(3)执行选择操作:只有当新的鸟巢位置
Figure BDA00030212801500001021
满足:
Figure BDA00030212801500001022
对,令鸟巢位置
Figure BDA00030212801500001023
代替鸟巢位置
Figure BDA00030212801500001024
否则,舍弃新的鸟巢位置
Figure BDA00030212801500001025
并且保留原鸟巢位置
Figure BDA00030212801500001026
其中,
Figure BDA00030212801500001027
表示鸟巢位置
Figure BDA00030212801500001028
的适应度函数值,
Figure BDA00030212801500001029
表示鸟巢位置
Figure BDA00030212801500001030
的适应度函数值。
本优选实施例针对随机初始化BP神经网络的权值和阈值会导致BP神经网络容易陷入局部极小点,从而在进行疾病预测时可能会出现识别率不理想和可信度不高的情况,将布谷鸟算法和BP神经网络结合,利用布谷鸟搜索算法获得BP神经网络的最优权值和阈值,然而传统的布谷鸟搜索算法采用的莱维飞行机制具有较强的随机性,这种随机性使得布谷鸟搜索算法只能在每个鸟巢附近进行粗略的搜索,从而导致布谷鸟搜索算法的局部搜索能力较弱,缺乏自适应性,即采用传统的布谷鸟算法对BP神经网络进行优化,并不能有效的获得BP神经网络的最优权值和阈值,即不能有效的提高疾病预测的精度,针对上述情况,本优选实施例对布谷鸟算法进行改进,在每次的莱维飞行更新后对种群中的鸟巢位置进行随机更新,采用莱维飞行的方式对种群中的鸟巢位置进行更新,具有较强的随机性,能够增加种群的多样性,但另一方面,在每次的莱维飞行更新结束后,种群中都存在部分鸟巢位置未得到有效的更新,从而影响算法的收敛速度和寻优精度,针对上述现象,本优选实施例在每次的莱维飞行更新后,对种群中未发生改变的鸟巢位置进行随机更新,在保证种群多样性的同时,能够有效的弥补莱维飞行更新的不足,从而提高了算法的收敛速度和寻优精度;在对鸟巢位置进行随机更新时,通过定义的对鸟巢位置进行随机更新的概率值和发现概率进行比较从而确定是否对该鸟巢位置进行随机更新,所述概率值的计算公式中的第一部分保留了传统的通过产生随机数确定是否对该鸟巢位置进行随机更新的随机性,所述属性值用于衡量该鸟巢位置在其所在区域中寻优结果的好坏和其位置未发送改变的迭代次数,当一个鸟巢位置在其所在区域中寻优结果较差并且多次未被更新时,即增加该鸟巢位置进行随机更新的概率值,即相较于传统的方式,本优选实施例通过定义的概率值增加了对较差鸟巢位置进行随机更新的概率,并增加了对较优鸟巢位置进行保留的概率,从而保证种群质量;此外,在对鸟巢位置进行随机更新时,设置了两种更新模式,并通过定义的局部检测系数来确定鸟巢位置采用的更新模式,当鸟巢处于寻优结果较好的区域,并且该鸟巢所处的区域中具有较多新的鸟巢位置、鸟巢之间的寻优空间也较大时,此时,令该鸟巢位置在其所在区域中进行随机更新,从而提高该鸟巢的寻优精度,相反的,令鸟巢位置在全局范围内进行随机更新,从而保证算法的多样性;即本优选实施例通过对传统布谷鸟搜索算法的改进,从而提高了布谷鸟搜索算法的收敛速度和寻优精度,再利用改进的布谷鸟算法对BP神经网络进行优化时,能够有效获得BP神经网络的最优权值和阈值,从而提高疾病预测的准确率。
本发明实施例中,疾病预测模块获取待预测患者的诊疗数据和医学图像,并通过数据处理单元对获取的诊疗数据和医学图像进行处理,将处理后的诊疗数据和医学图像输入至构建的疾病预测模型中,从而获得待预测患者的预测疾病类型。
反向传播(Back Propagation,BP)算法也称为误差后向传播神经网络,它是一种用于前向多层神经网络的反向传播学习算法,用输出后误差来估计输出层的直接前导层的误差,再用这个误差估计更前一层的误差,如此逐层反传下去,各层单元产生的误差信号,用来修正各单元误差(权值),以期误差最小。
在BP模型的学习训练过程中,可利用一些方法如梯度下降法,使权值不断的朝着输出误差减少的方向调整,直到网络输出的误差减少到允许的程度,或者可以事先指定必要的学习次数,达到既定次数即可停止训练。
本发明实施例中,建立BP神经网络训练模型对重构医学图像进行分割,具体包括:对BP神经网络进行充分训练,对训练好的BP神经网络的权值及阈值根据训练样本进行调整,根据调整后的BP神经网络权值和阈值对重构医学图像进行分割;任意选择分割后的医学图像中的一个像素,进行区域生长,对区域生长的图像进行填充得到分割图像。
其中,对BP神经网络进行充分训练,具体为:所述BP神经网络包括输入层、输出层及隐层,输入层的节点数为输入向量的特征值,所述BP神经网络的特征输入向量通过提取重构后的医学图像特征作为输入向量,输出层的节点数为1,其表示分割后的图像的背景,所述隐层的节点数为输入层的节点数减去输出层7倍的输出节点数,所述BP神经网络的建立通过将确定的BP神经网络节点数作为参数,建立隐层传递函数,选用双曲正切S形函数。
本发明实施例中,BP神经网络初始权值调整到足够小,使各节点的净输入在零点附近,加快网络训练速度。
本发明中BP神经网络是使用了误差反向传播算法进行训练的多层前馈网络。BP算法的学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望输出不符,则转入误差的反向传播阶段。误差反向传播是将输出误差通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的。权值不断调整的过程,也就是网络的学习训练过程。此过程一直进行到网络输出的误差减少到可接受的程度,或进行到预先设定的学习次数为止。
本发明将医学图像的提取的特征信息作为BP神经网络的特征输入。通过灰度共生矩阵提取特征信息,可以定义0°、45°、90°、135°四个方向的灰度共生矩阵,而每个灰度共生矩阵可以提取五个特征值。这样,可以得到4X5=20个特征值。考虑到医学影像的像素灰度值也是一个很重要的特征,为了达到更好的分割效果,把像素点的灰度值也作为BP神经网络的特征输入。这样,可以确定BP神经网络的21个输入向量,即医学影像像素值,以及灰度共生矩阵20个特征值。
BP神经网络是多层前馈网络,需要确定其输入层、输出层及隐层的节点数量。隐层的数目可以有多个,本发明使用了应用最为普遍的单隐层网络。输出层节点数设为1。取目标区域为0(黑色),背景区域为1(白色);隐节点用于提取并存储样本中的内在规律。隐层传递函数选择双曲正切S形函数,输出层由于要控制输出大小在0-1之间,可选择对数S形函数。对医学影像提取其点阵信息、纹理信息,作为期望输入,并勾勒出目标区域,作为期望输出。
本发明通过提取医学图像的纹理特征,采用BP神经网络方法对医学图像进行分割,该方法具有较强的自学习性及自适应性,可大大减轻图像处理工作量,能有效的区分各组织。
本发明通过区块链实现医学影像的大数据处理和连接,通过区块链实现远程数据的互联与共享,区块链网络将区块链节点连接在一个网络,通过区块链节点实现数据获取和存储实现大数据的融合,所有区块链节点存储的带有诊断结果的医疗影像在区块链网络中可共享互联,每个区块链节点均可对所有的区块链节点上的医学影像数据进行调取使用,在疾病预测过程中,只需要提取与特征相对应的医学影像数据,大大减少了需要处理的数据量,集中实现医学图像的疾病诊断,提高诊断准确性,可实现远程诊断,提高诊断效率。
以上对本发明进行了详细介绍,但是本发明不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。不脱离本发明的构思和范围可以做出许多其他改变和改型。应当理解,本发明不限于特定的实施方式,本发明的范围由所附权利要求限定。

Claims (10)

1.基于区块链的医学影像大数据疾病诊断系统,其特征在于,包括:
医学影像获取模块,用于获取患者的医学图像;
数据通讯模块,用于对医学影像获取模块获取的医学图像进行传输;
医学影像处理模块,接收数据通讯模块的医学图像并进行处理;
区块链存储模块,用于存储带有医学诊断结果的医学影像;
疾病预测模块,根据区块链存储模块中医学影像对医学影像处理模块处理的医学图像进行诊断预测,得到患者的医学图像诊断结果。
2.根据权利要求1所述的基于区块链的医学影像大数据疾病诊断系统,其特征在于,所述医学影像处理模块包括:
图像去噪单元,用于对获取的医学图像去噪处理,
图像分割单元,用于对去噪后的医学图像进行分割,获取医学图像的目标区域图像;
特征提取模块,用于对目标区域图像的特征进行提取。
3.根据权利要求2所述的基于区块链的医学影像大数据疾病诊断系统,其特征在于,所述用于对获取的医学图像去噪处理,具体包括:
对医学图像用马拉特Mallat快速算法进行图层小波变换,得到若干小波系数;
根据小波系数估计噪声方差并确定各个不同细节子带相应的小波系数的阈值;
对小波系数进行阈值处理,重构医学影像;
保存或输出重构的医学影像。
4.根据权利要求3所述的基于区块链的医学影像大数据疾病诊断系统,其特征在于,所述根据小波系数估计噪声方差并确定各个不同细节子带相应的小波系数的阈值;具体包括:根据第1层的对角细节小波系数估计噪声方差,统计出第1层对角细节小波系数的绝对值的中值,并用系数0.6745除该中值,根据估计出的噪声方差由BayesShrink方法求取各个不同细节子带相应的小波系数的阈值。
5.根据权利要求3所述的基于区块链的医学影像大数据疾病诊断系统,其特征在于,所述对小波系数进行阈值处理,重构医学影像;具体包括:将各小波系数与相应阈值比较,对小波系数的绝对值小于相应阈值时将该系数置为零,在小波系数的绝对值大于或等于相应阈值时对该系数进行收缩处理,其中阈值的大小即为收缩的幅度;根据处理后的小波系数对医学图像进行小波反变换,重构医学影像。
6.根据权利要求2所述的基于区块链的医学影像大数据疾病诊断系统,其特征在于,所述用于对去噪后的医学图像进行分割,获取医学图像的目标区域图像,具体包括:
图像特征的提取,采用灰度共生矩阵的方法提取重构医学图像的特征;
建立BP神经网络,提取BP神经网络的特征输入向量,调整BP神经网络初始权值,确定BP神经网络节点数;
建立BP神经网络训练模型对重构医学图像进行分割。
7.根据权利要求6所述的基于区块链的医学影像大数据疾病诊断系统,其特征在于,所述建立BP神经网络训练模型对重构医学图像进行分割,具体包括:对BP神经网络进行充分训练,对训练好的BP神经网络的权值及阈值根据训练样本进行调整,根据调整后的BP神经网络权值和阈值对重构医学图像进行分割;任意选择分割后的医学图像中的一个像素,进行区域生长,对区域生长的图像进行填充得到分割图像。
8.根据权利要求7所述的基于区块链的医学影像大数据疾病诊断系统,其特征在于,所述对BP神经网络进行充分训练,具体为:对BP神经网络使用误差反向传播算法进行训练的多层前馈网络,所述BP神经网络包括输入层、输出层及隐层,输入层的节点数为输入向量的特征值,所述BP神经网络的特征输入向量通过提取重构后的医学图像特征作为输入向量,输出层的节点数为1,其表示分割后的图像的背景,所述隐层的节点数为输入层的节点数减去输出层7倍的输出节点数,所述BP神经网络的建立通过将确定的BP神经网络节点数作为参数,建立隐层传递函数,选用双曲正切S形函数。
9.根据权利要求1所述的基于区块链的医学影像大数据疾病诊断系统,其特征在于,所述区块链存储模块,用于存储带有医学诊断结果的医学影像;具体包括:
所述区块链存储模块由区块链节点和区块链网络组成;其中区块链节点通过公钥对上传的医学诊断结果的医学影像进行加密,利于私钥进行签名生成存证交易,并将该存证交易发送给区块链网络内的每个区块链节点。
10.根据权利要求1所述的基于区块链的医学影像大数据疾病诊断系统,其特征在于,所述疾病预测模块,根据区块链存储模块中医学影像对医学影像处理模块处理的医学图像进行诊断预测,得到患者的医学图像诊断结果;具体包括:
根据特征提取模块从区块链存储模块获取带有诊疗数据的医学影像作为样本集;
采用样本集对BP神经网络进行训练和测试,引入布谷鸟搜索算法优化BP神经网络的权值和阈值;
将提取的带有疾病诊断结果的医学图像的特征和其对应的疾病诊断结果标签作为训练数据集,采用BP神经网络对训练数据集进行训练,并将提取的患者的医学图像的特征作为训练好的BP神经网络的输入数据,训练好的BP神经网络的输出数据即为患者的疾病诊断结果;
引入布谷鸟搜索算法优化所述BP神经网络的权值和阈值,在所述布谷鸟搜索算法中,通过莱维飞行模式对鸟巢位置进行更新后,根据发现概率pa选取部分鸟巢位置进行随机更新,具体为:
在第(t+1)次莱维飞行更新后,在种群中选取鸟巢位置进行随机更新,具体包括:
(1)设B(t+1)表示在第(t+1)次莱维飞行更新后种群中鸟巢位置组成的集合,给定阈值d(t+1),对集合B(t+1)中的鸟巢位置进行子集合的划分:设b1(t+1)表示对集合B(t+1)中的鸟巢位置进行划分所得的第1个子集合,选取集合B(t+1)中适应度函数值最小的鸟巢位置加入到子集合b1(t+1)中,并将集合B(t+1)中和该鸟巢位置之间的欧式距离小于等于阈值d(t+1)的鸟巢位置加入到子集合b1(t+1)中;设b2(t+1)表示对集合B(t+1)中的鸟巢位置进行划分所得的第2个子集合,选取集合B(t+1)中适应度函数值最小的未划分的鸟巢位置加入到子集合b2(t+1)中,并将集合B(t+1)中和该鸟巢位置之间的欧式距离小于等于阈值d(t+1)的未划分的鸟巢位置加入到子集合b2(t+1)中;继续采用上述方法对集合B(t+1)中剩余的未划分的鸟巢位置进行划分,直到集合B(t+1)中的鸟巢位置都被划分完,则停止划分;
(2)对种群中的鸟巢位置进行检测,设Xi(t+1)表示种群中的第i个鸟巢在第(t+1)次莱维飞行更新后的位置,Xi(t)表示种群中第i个鸟巢在第t次莱维飞行更新后的位置,当鸟巢位置Xi(t+1)满足:Xi(t+1)=Xi(t)时,则将鸟巢位置Xi(t+1)标注为1;
(3)对各子集合中标注为1的鸟巢位置进行随机更新,设bj(t+1)表示对集合B(t+1)中的鸟巢位置进行划分所得的第j个子集合,将子集合bj(t+1)中标注为1的鸟巢位置按照适应度函数值由小到大进行排序组成序列
Figure FDA0003021280140000031
Figure FDA0003021280140000032
表示序列
Figure FDA0003021280140000033
中的第l个鸟巢位置,则采用下列方式对鸟巢位置
Figure FDA0003021280140000034
进行随机更新:
定义Qj(t+1)表示子集合bj(t+1)的局部检测系数,且Qj(t+1)的计算公式为:
Figure FDA0003021280140000035
其中,m(t+1)表示对集合B(t+1)中的鸟巢位置进行划分所得的子集合数,mj(t+1)表示子集合bj(t+1)中的鸟巢位置数,
Figure FDA0003021280140000036
表示子集合bj(t+1)中标注为1的鸟巢位置数,uj(t+1)表示子集合bj(t+1)的空间检测系数,且
Figure FDA0003021280140000041
Figure FDA0003021280140000042
Xj,k(t+1)表示子集合bj(t+1)中的第k个鸟巢位置,Xj,g(t+1)表示子集合bj(t+1)中的第g个鸟巢位置,hj,k(t+1)表示鸟巢位置Xj,k(t+1)的适应度函数值,hj,g(t+1)表示鸟巢位置Xj,g(t+1)的适应度函数值,u′(t+1)表示对集合B(t+1)中的鸟巢位置进行划分所得的子集合的空间检测系数的中值,且
Figure FDA0003021280140000043
Figure FDA0003021280140000044
Figure FDA0003021280140000045
表示计算中值函数,
Figure FDA0003021280140000046
表示子集合bj(t+1)的第一局部检测函数,且
Figure FDA0003021280140000047
Figure FDA0003021280140000048
表示子集合bj(t+1)的第二局部检测函数,且
Figure FDA0003021280140000049
Figure FDA00030212801400000410
表示子集合bj(t+1)的第三局部检测函数,且
Figure FDA00030212801400000411
定义
Figure FDA00030212801400000412
表示对鸟巢位置
Figure FDA00030212801400000413
进行随机更新的概率,且
Figure FDA00030212801400000414
的表达式为:
Figure FDA00030212801400000415
其中,
Figure FDA00030212801400000416
表示鸟巢位置
Figure FDA00030212801400000417
产生的0到1之间的随机数,
Figure FDA00030212801400000418
表示鸟巢位置
Figure FDA00030212801400000419
的属性值,且
Figure FDA00030212801400000420
Figure FDA00030212801400000421
表示鸟巢位置
Figure FDA00030212801400000422
对应的鸟巢在第τ次莱维飞行更新后的鸟巢位置,
Figure FDA00030212801400000423
Figure FDA00030212801400000424
表示鸟巢位置
Figure FDA00030212801400000425
和鸟巢位置
Figure FDA00030212801400000426
之间的判断函数,且
Figure FDA00030212801400000427
Figure FDA00030212801400000428
当鸟巢位置
Figure FDA00030212801400000429
满足:
Figure FDA00030212801400000430
时,则不对鸟巢位置
Figure FDA00030212801400000431
进行随机更新,当鸟巢位置
Figure FDA00030212801400000432
满足:
Figure FDA00030212801400000433
且Qj(t+1)=1时,则采用下列方式对鸟巢位置
Figure FDA00030212801400000434
进行随机更新,从而获得新的鸟巢位置
Figure FDA00030212801400000435
Figure FDA0003021280140000051
其中,rand表示产生0到1之间的随机数,
Figure FDA0003021280140000052
Figure FDA0003021280140000053
为随机从子集合bj(t+1)中选取的两个鸟巢位置,且
Figure FDA0003021280140000054
当鸟巢位置
Figure FDA0003021280140000055
满足:
Figure FDA0003021280140000056
且Qj(t+1)=0时,则采用下列方式对鸟巢位置
Figure FDA0003021280140000057
进行随机更新:
Figure FDA0003021280140000058
其中,Xq1(t+1)和Xq2(t+1)为随机从种群中选取的两个鸟巢位置,且Xq1(t+1)≠Xq2(t+1);
执行选择操作:只有当新的鸟巢位置
Figure FDA0003021280140000059
满足:
Figure FDA00030212801400000510
对,令鸟巢位置
Figure FDA00030212801400000511
代替鸟巢位置
Figure FDA00030212801400000512
否则,舍弃新的鸟巢位置
Figure FDA00030212801400000513
并且保留原鸟巢位置
Figure FDA00030212801400000514
其中,
Figure FDA00030212801400000515
表示鸟巢位置
Figure FDA00030212801400000516
的适应度函数值,
Figure FDA00030212801400000517
表示鸟巢位置
Figure FDA00030212801400000518
的适应度函数值。
CN202110403451.XA 2021-04-15 2021-04-15 基于算法、区块链和医学影像的大数据疾病诊断系统 Pending CN113077891A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110403451.XA CN113077891A (zh) 2021-04-15 2021-04-15 基于算法、区块链和医学影像的大数据疾病诊断系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110403451.XA CN113077891A (zh) 2021-04-15 2021-04-15 基于算法、区块链和医学影像的大数据疾病诊断系统

Publications (1)

Publication Number Publication Date
CN113077891A true CN113077891A (zh) 2021-07-06

Family

ID=76617686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110403451.XA Pending CN113077891A (zh) 2021-04-15 2021-04-15 基于算法、区块链和医学影像的大数据疾病诊断系统

Country Status (1)

Country Link
CN (1) CN113077891A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113344470A (zh) * 2021-08-02 2021-09-03 山东炎黄工业设计有限公司 一种基于区块链的供电系统智能管理方法
CN114224308A (zh) * 2021-12-14 2022-03-25 上海掌门科技有限公司 腕带诊脉装置和脉搏波采集方法
CN116864109A (zh) * 2023-07-13 2023-10-10 中世康恺科技有限公司 一种医学影像人工智能辅助诊断系统
CN117372463A (zh) * 2023-10-27 2024-01-09 国网浙江省电力有限公司双创中心 一种用于电力部件图像的图像分割优化方法
CN117672470A (zh) * 2024-01-29 2024-03-08 北京大学 一种基于Web浏览器的医学影像辅助诊断装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571949A (zh) * 2009-05-05 2009-11-04 南京信息工程大学 基于pcnn的小波域超声医学图像去噪方法
CN101739665A (zh) * 2009-11-23 2010-06-16 深圳市安健科技有限公司 实现小波在dr图像处理中去噪的方法
CN102332162A (zh) * 2011-09-19 2012-01-25 西安百利信息科技有限公司 基于人工神经网络的医学图像兴趣区自动识别和分级压缩方法
CN104751477A (zh) * 2015-04-17 2015-07-01 薛笑荣 基于空间域和频域特征的并行sar图像分类方法
CN107391944A (zh) * 2017-07-27 2017-11-24 北京太云科技有限公司 一种基于区块链的电子病历共享系统
CN108229714A (zh) * 2016-12-19 2018-06-29 普天信息技术有限公司 预测模型构建方法、门诊量预测方法及装置
WO2018176484A1 (zh) * 2017-04-01 2018-10-04 深圳前海达闼云端智能科技有限公司 医学影像传输数据的处理方法、装置及电子设备
CN109299778A (zh) * 2018-10-16 2019-02-01 南京邮电大学 一种基于布谷鸟搜索算法的rcrss救援地图分区的计算方法
CN109635846A (zh) * 2018-11-16 2019-04-16 哈尔滨工业大学(深圳) 一种多类医学图像判断方法和系统
CN111899250A (zh) * 2020-08-06 2020-11-06 罗春华 基于区块链和医学图像的远程疾病智能诊断系统
AU2020103785A4 (en) * 2020-11-30 2021-02-11 Ningxia Medical University Method for improving recognition rates of mri images of prostate tumors based on cad system
CN112530537A (zh) * 2020-12-15 2021-03-19 罗鑫龙 一种基于算法、医学影像和区块链的大健康管理平台

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571949A (zh) * 2009-05-05 2009-11-04 南京信息工程大学 基于pcnn的小波域超声医学图像去噪方法
CN101739665A (zh) * 2009-11-23 2010-06-16 深圳市安健科技有限公司 实现小波在dr图像处理中去噪的方法
CN102332162A (zh) * 2011-09-19 2012-01-25 西安百利信息科技有限公司 基于人工神经网络的医学图像兴趣区自动识别和分级压缩方法
CN104751477A (zh) * 2015-04-17 2015-07-01 薛笑荣 基于空间域和频域特征的并行sar图像分类方法
CN108229714A (zh) * 2016-12-19 2018-06-29 普天信息技术有限公司 预测模型构建方法、门诊量预测方法及装置
WO2018176484A1 (zh) * 2017-04-01 2018-10-04 深圳前海达闼云端智能科技有限公司 医学影像传输数据的处理方法、装置及电子设备
CN107391944A (zh) * 2017-07-27 2017-11-24 北京太云科技有限公司 一种基于区块链的电子病历共享系统
CN109299778A (zh) * 2018-10-16 2019-02-01 南京邮电大学 一种基于布谷鸟搜索算法的rcrss救援地图分区的计算方法
CN109635846A (zh) * 2018-11-16 2019-04-16 哈尔滨工业大学(深圳) 一种多类医学图像判断方法和系统
CN111899250A (zh) * 2020-08-06 2020-11-06 罗春华 基于区块链和医学图像的远程疾病智能诊断系统
AU2020103785A4 (en) * 2020-11-30 2021-02-11 Ningxia Medical University Method for improving recognition rates of mri images of prostate tumors based on cad system
CN112530537A (zh) * 2020-12-15 2021-03-19 罗鑫龙 一种基于算法、医学影像和区块链的大健康管理平台

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵晓梅等: ""基于CS-BP神经网络的舌诊图像颜色校正算法"", 《贵州大学学报(自然科学版》, vol. 36, no. 5, 31 October 2019 (2019-10-31), pages 82 - 86 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113344470A (zh) * 2021-08-02 2021-09-03 山东炎黄工业设计有限公司 一种基于区块链的供电系统智能管理方法
CN114224308A (zh) * 2021-12-14 2022-03-25 上海掌门科技有限公司 腕带诊脉装置和脉搏波采集方法
CN116864109A (zh) * 2023-07-13 2023-10-10 中世康恺科技有限公司 一种医学影像人工智能辅助诊断系统
CN116864109B (zh) * 2023-07-13 2024-06-18 中世康恺科技有限公司 一种医学影像人工智能辅助诊断系统
CN117372463A (zh) * 2023-10-27 2024-01-09 国网浙江省电力有限公司双创中心 一种用于电力部件图像的图像分割优化方法
CN117672470A (zh) * 2024-01-29 2024-03-08 北京大学 一种基于Web浏览器的医学影像辅助诊断装置

Similar Documents

Publication Publication Date Title
CN113077891A (zh) 基于算法、区块链和医学影像的大数据疾病诊断系统
CN109685102B (zh) 胸部病灶图像分类方法、装置、计算机设备及存储介质
CN112052886B (zh) 基于卷积神经网络的人体动作姿态智能估计方法及装置
US11354791B2 (en) Methods and system for transforming medical images into different styled images with deep neural networks
US20220148191A1 (en) Image segmentation method and apparatus and storage medium
US20210407086A1 (en) Method and apparatus for training image segmentation model, computer device, and storage medium
CN109242844B (zh) 基于深度学习的胰腺癌肿瘤自动识别系统、计算机设备、存储介质
CN109346159B (zh) 病例图像分类方法、装置、计算机设备及存储介质
US10943349B2 (en) Positron emission tomography system and image reconstruction method using the same
US10878529B2 (en) Registration method and apparatus
CN110363797B (zh) 一种基于过度形变抑制的pet与ct图像配准方法
US11978146B2 (en) Apparatus and method for reconstructing three-dimensional image
CN114842238B (zh) 一种嵌入式乳腺超声影像的识别方法
CN113096806A (zh) 基于医学影像算法和区块链的疾病预测系统
CN114298234A (zh) 脑部医学影像分类方法、装置、计算机设备和存储介质
CN113989551A (zh) 一种基于改进ResNet网络的阿尔茨海默病分类方法
CN114897728A (zh) 图像增强方法、装置、终端设备以及存储介质
CN116051849A (zh) 一种脑网络数据特征提取方法及装置
CN116645283A (zh) 基于自监督感知损失多尺度卷积神经网络的低剂量ct图像去噪方法
CN117115452B (zh) 可控的医学超声图像去噪方法、系统及计算机存储介质
CN113850796A (zh) 基于ct数据的肺部疾病识别方法及装置、介质和电子设备
CN111563858B (zh) 基于深度卷积神经网络的人类胚胎心脏超声图像的去噪方法
CN115601535A (zh) 联合Wasserstein距离与差异度量的胸片异常识别域自适应方法及系统
Pashaei Medical image enhancement using guided filtering and chaotic inertia weight black hole algorithm
CN116129124A (zh) 一种图像分割方法、系统及设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination