WO2018176484A1 - 医学影像传输数据的处理方法、装置及电子设备 - Google Patents

医学影像传输数据的处理方法、装置及电子设备 Download PDF

Info

Publication number
WO2018176484A1
WO2018176484A1 PCT/CN2017/079345 CN2017079345W WO2018176484A1 WO 2018176484 A1 WO2018176484 A1 WO 2018176484A1 CN 2017079345 W CN2017079345 W CN 2017079345W WO 2018176484 A1 WO2018176484 A1 WO 2018176484A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical image
transmission data
image transmission
medical
user terminal
Prior art date
Application number
PCT/CN2017/079345
Other languages
English (en)
French (fr)
Inventor
刘澎
郭潮波
Original Assignee
深圳前海达闼云端智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳前海达闼云端智能科技有限公司 filed Critical 深圳前海达闼云端智能科技有限公司
Priority to PCT/CN2017/079345 priority Critical patent/WO2018176484A1/zh
Priority to CN201780000746.4A priority patent/CN108885899B/zh
Publication of WO2018176484A1 publication Critical patent/WO2018176484A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Definitions

  • the present application relates to the field of medical assisted diagnosis technologies, and in particular, to a method, device, and electronic device for processing medical image transmission data.
  • AI artificial intelligence
  • the application of artificial intelligence in medical treatment has become more and more extensive.
  • the auxiliary diagnosis of artificial intelligence can help doctors reduce the rate of misdiagnosis and improve the efficiency of radiologists when performing image-related diagnosis. It can be seen that the involvement of artificial intelligence in the medical imaging diagnosis process is an inevitable trend.
  • the embodiment of the present application mainly solves the problem of how to effectively ensure that medical image data is securely transmitted to a designated recipient, and the information can be safely returned after the recipient adds the auxiliary diagnosis opinion.
  • a technical solution adopted by the embodiment of the present application is to provide a method for processing medical image transmission data, and the method is applied to a user terminal, including:
  • the medical image transmission data is transmitted to the artificial intelligence service center through the blockchain network.
  • another technical solution adopted by the embodiment of the present application is to provide a method for processing medical image transmission data, and the method is applied to an intelligent service center, including:
  • the medical image auxiliary medical record is transmitted through the blockchain network.
  • a processing device for transmitting medical image data comprising:
  • a medical image transmission data generating unit configured to generate medical image transmission data in response to a request for generating a medical image auxiliary medical record
  • the medical image transmission data sending unit is configured to send the medical image transmission data to the artificial intelligence service center through the blockchain network.
  • a processing device for transmitting medical image data comprising:
  • a medical image transmission data receiving unit configured to receive medical image transmission data sent by the user terminal through the blockchain network
  • the auxiliary medical record generating unit is configured to generate a medical image auxiliary medical record according to the medical image transmission data
  • the first auxiliary medical record sending unit is configured to send the medical image auxiliary medical record through the blockchain network.
  • an electronic device where the electronic device includes:
  • At least one processor and,
  • a memory communicatively coupled to the at least one processor; wherein the memory stores an instruction program executable by the at least one processor, the instruction program being executed by the at least one processor to cause the at least A processor performs a method of processing medical image transmission data as described above.
  • another technical solution adopted by the embodiment of the present application is to provide a computer readable storage medium, where the computer readable storage medium stores computer executable instructions for making The computer executes the processing method of the medical image transmission data as described above.
  • another technical solution adopted by the embodiment of the present application is to provide a computer program product, the computer program product comprising a computer program stored on a computer readable storage medium, the computer program including program instructions And when the program instructions are executed by a computer, causing the computer to execute an instruction of a processing method of medical image transmission data as described above.
  • the method, device and electronic device for processing medical image transmission data provided by the embodiments of the present application can prevent the transmission of medical image data and the process of acquiring medical image auxiliary medical records by transmitting medical image data in a blockchain network. Data information has been tampered with, and at the same time, the entire process of transmitting information is traceable, improving the security of information transmission.
  • FIG. 1 is a schematic diagram of an operating environment of a method for processing medical image transmission data provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for processing medical image transmission data applied to a user terminal according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for generating medical image transmission data according to another embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for processing medical image transmission data applied to an artificial intelligence service center according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a device for processing medical image transmission data according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a device for processing medical image transmission data according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of hardware of an electronic device according to an embodiment of the present application.
  • the embodiment of the present application provides a method, an apparatus, and an electronic device for processing medical image transmission data.
  • the “medical image transmission data” refers to medical data transmitted between a hospital and an artificial intelligence service center, including medical image data sent from a hospital and returned from an artificial intelligence service center.
  • the medical imaging auxiliary medical record of the hospital, the medical image auxiliary medical record refers to the medical record including the artificial diagnosis based on the patient's medical image, which can help the doctor to reduce the misdiagnosis rate when performing image related diagnosis. To improve the efficiency of doctors.
  • FIG. 1 is a schematic diagram of an operating environment of a method for processing medical image transmission data according to an embodiment of the present application.
  • the application environment includes: a medical imaging device 10, a user terminal 20, an artificial intelligence service center 30, and a medical image information system 40.
  • the medical imaging device 10 can be any device capable of acquiring medical image data of a patient, including but not limited to: an ultrasound imaging device, an X-ray computed tomography (CT), a magnetic resonance imaging device (MRI), and a digital blood vessel silhouette (DSA). ), positron emission tomography (PET), endoscopic imaging, angiography equipment, and nuclear medicine imaging equipment.
  • CT computed tomography
  • MRI magnetic resonance imaging device
  • DSA digital blood vessel silhouette
  • PET positron emission tomography
  • endoscopic imaging angiography equipment
  • angiography equipment angiography equipment
  • nuclear medicine imaging equipment nuclear medicine imaging equipment.
  • the user terminal 20 can be any suitable type of electronic device having certain logical computing capabilities and providing one or more functions capable of satisfying the user's intention. For example, robots, PDAs, personal computers, tablets, smart phones, wearable smart devices, and the like.
  • the “user” referred to in the embodiment of the present application may refer to a doctor having the authority to use the user terminal 20 .
  • the user terminal 20 may include any suitable type of storage medium for storing data, such as a magnetic disk, a compact disk (CD-ROM), a read-only memory or a random access memory.
  • the user terminal 20 may also include one or more logical computing modules that perform any suitable type of function or operation in parallel, such as viewing a database, editing a chart, etc., in a single thread or multiple threads.
  • the logic operation module may be any suitable type of electronic circuit or chip-type electronic device capable of performing logical operation operations, such as a single core processor, a multi-core processor, a graphics processing unit (GPU), or the like.
  • the physician can interact with the user terminal 20 by any suitable type of one or more user interaction devices (such as a mouse, keyboard, remote control, touch screen, somatosensory camera, and audio capture device, etc.) to input commands or control the user terminal 20 Perform one or more actions.
  • the artificial intelligence service center 30 refers to a cloud service center capable of generating corresponding auxiliary diagnosis suggestions according to medical image data. Since the cost of the artificial intelligence service center 30 is generally expensive, in general, a plurality of hospitals share the service resources of the artificial intelligence service center 30 by acquiring the authorization of the artificial intelligence service center 30.
  • the medical image information system 40 refers to a management system that technically solves image processing technology based on medical image storage and communication, and can also be simply referred to as PACS (Picture Archiving and Communication Systems).
  • PACS Picture Archiving and Communication Systems
  • its main The task is to pass the various medical images (including nuclear magnetic, CT, DR, ultrasound, various X-ray machines and other equipment generated by the hospital's imaging department) through the DICOM3.0 international standard interface (mostly the Chinese market is analog, DICOM,
  • the network and other interfaces are stored in a digital manner and can be quickly recalled and used for doctors to check the patient's medical image information when needed.
  • the medical imaging device 10, the user terminal 20, and the medical information system 40 are connected through a local area network of the hospital, and data can be directly and safely transmitted between the three; the user terminal 20 and the artificial intelligence service center 30 are both It is a node (participant) of a blockchain network, and data is transmitted between the two through the blockchain network.
  • the "blockchain network” is a network based on blockchain technology
  • the blockchain is a novel decentralization protocol capable of safely storing digital currency transactions or other data. Information can't be falsified and tampered, and smart contracts can be executed automatically without any centralization agency review.
  • the core of the blockchain is a shared database built on a consensus model. Multiple nodes (participants) can be included in the blockchain network. If a node wants to add new transmission events to the shared database, it must cooperate with other nodes. The node agrees (ie, gains recognition from other nodes in the blockchain network). Once the consensus is reached, the other nodes of the blockchain network will compete for the right to record the transmission event through the workload proof, and then the new transmission.
  • the event is escalated into a transaction "block" added to the blockchain, and once the block is embedded in the blockchain, the block is permanently stored in the blockchain and its data is irreversible, thereby making the The transfer event becomes a permanent and transparent transaction record.
  • the blockchain consists of a number of nodes together to form an end-to-end network. There is no centralized device and management organization. The data exchange between nodes is verified by digital signature technology, without mutual trust, as long as the system has established rules. In progress, nodes cannot and cannot spoof other nodes. Therefore, the user terminal 20 and the artificial intelligence service center 30 can perform the data transmission in the blockchain network, so that the transmission record between the user terminal 20 and the artificial intelligence service center 30 can be tracked and traced, thereby improving the medicine. The security of information transmission.
  • the medical image data of the patient is first acquired by the medical imaging device 10, wherein the medical image data may be any type of medical image data, such as an ultrasound image, a CT image, an MRI image, a DSA image, or the like;
  • the medical image data is then transmitted to the user terminal 20 or the medical information system 40 for review by a doctor; when the doctor wants to obtain an auxiliary diagnosis suggestion for the medical image, the user terminal 20 and the artificial intelligence can be serviced by interacting with the user terminal 20.
  • the center 30 issues a request for obtaining a medical image auxiliary medical record; in response to the request, the user terminal 20 transmits the medical image data of the patient to the artificial intelligence service center 30 through the blockchain network, in the process, "the terminal 20 takes the patient's Medical Imaging The transmission of data to the artificial intelligence service center 30 is embedded in the blockchain as a new block, resulting in a permanent and transparent transaction record, making the transmission event traceable; subsequently, the artificial intelligence service center 30 analyzes the received medical images and generates corresponding medical image-assisted diagnosis medical records.
  • the artificial intelligence service center 30 divides the medical image data of the patient in the cloud, thereby detecting and locating the suspicious lesions therein, and avoiding Missing the diagnosis and helping the doctor to make a correct diagnosis decision; finally, the artificial intelligence service center 30 transmits the medical image-assisted diagnosis medical record to the user terminal 20 through the blockchain network (here, it is required to receive the medical image auxiliary medical record)
  • the user terminal 20 may be the user terminal that transmits the medical image data, or may not be the user terminal that transmits the medical image data.
  • the doctor consults the medical image auxiliary medical record at the user terminal 20.
  • the auxiliary medical record has reference value, and the medical image can be assisted
  • the medical record is sent to the medical information system 40 through the user terminal 20 for reference by other doctors, so that other doctors can judge the patient's condition under the condition of referring to the medical image of the same patient.
  • the processing method of the medical image transmission data provided by the embodiment of the present application can be further extended to other suitable application environments, and is not limited to the application environment shown in FIG. 1 .
  • FIG. 1 Although only two medical imaging devices 10, three user terminals 20, one artificial intelligence service center 30, and one medical information system 40 are shown in FIG. 1, those skilled in the art can understand that in practical applications,
  • the application environment may also include more or fewer medical imaging devices, user terminals, artificial intelligence service centers, and medical information systems.
  • FIG. 2 is a schematic flowchart of a method for processing medical image transmission data applied to a user terminal according to an embodiment of the present application.
  • the method includes:
  • the “request for generating medical image auxiliary medical record” refers to an instruction for triggering the user terminal to acquire a medical image auxiliary medical record of the patient, and the instruction may be generated by interaction between the user and the user terminal.
  • the “medical image transmission data” refers to data for transmission to an artificial intelligence service center, where the data includes a medical image of the patient, and when the artificial intelligence service center obtains the medical image transmission data, the medical image can be based on the medical image.
  • a medical imaging auxiliary medical record of the patient is generated.
  • the medical image may include, but is not limited to, an ultrasound image, a CT image, an MRI image, a DSA image, and the like.
  • the doctor when the doctor needs to obtain the auxiliary diagnosis suggestion of the medical image of a certain patient, the doctor may interact with the user terminal in any manner to generate a “generating medical image”.
  • "A request for a secondary medical record” for example, the doctor clicks on "Auxiliary Diagnostic Request” on the page of the patient's medical image, or the doctor adds medical image data of a certain patient to the function list of "Assisted Diagnosis”;
  • the terminal generates the medical image transmission data based on the medical image data of the patient in response to the request.
  • the medical image data of the patient refers to the raw data acquired from the medical imaging device, which includes: the medical image And patient information.
  • the user terminal first processes the medical image data of the patient to generate the removed patient information before transmitting the medical image data of the patient to the artificial intelligence service center.
  • Medical image transmission data specifically includes:
  • S111 Perform data desensitization processing on the medical image data of the patient, and obtain patient information, a medical image, and an identifier uniquely corresponding to the patient information.
  • the “patient information” refers to information related to the privacy of the patient, such as: name, gender, age, examination item, examination ID, examination time, etc.;
  • the “medical image” refers to removing the patient.
  • the image data of the information includes, but is not limited to, an ultrasound image, a CT image, an MRI image, a DSA image, etc.;
  • the “identification” uniquely corresponds to the patient information, and is used to match the patient information of the medical record when acquiring the medical image auxiliary medical record.
  • the identifier can have any form of expression, such as: icon, serial number, hash value, and the like.
  • the medical image data of the patient is subjected to data desensitization processing.
  • the process of the data desensitization process may include: extracting patient information from the medical image data, obtaining medical images and patient information; and then generating an identifier uniquely corresponding to the patient information according to the patient information.
  • the step of generating an identifier uniquely corresponding to the patient information according to the patient information may be implemented by performing hash calculation on the patient information, and the unique hash value generated by the hash calculation, that is, the patient information is unique Corresponding identifier.
  • the "hash calculation” refers to: using a hash function, such as: SHA256, encrypting the patient information, and obtaining a hash value with a fixed length by hash calculation, the hash value and the patient information.
  • a hash function such as: SHA256
  • encrypting the patient information and obtaining a hash value with a fixed length by hash calculation, the hash value and the patient information.
  • the only correspondence For example, when the user terminal receives the request for generating the medical image auxiliary medical record, firstly, the DICOM Tag value is extracted from the patient information in the medical image data of the patient to obtain the patient information; and then, the information is related to the patient information.
  • the DICOM Tag value is hashed and a unique hash value is generated to obtain a unique correspondence with the patient information.
  • the data corresponding to the patient information in the medical image data is modified, and the default value is nulled, thereby obtaining a medical image from which the patient information is removed.
  • the medical image transmission data is generated according to the obtained medical image and the identifier, and at the same time, the patient information is cached locally.
  • the “local” refers to a device that can be connected to a hospital intranet, and may be a user terminal itself or a server inside the hospital.
  • the specific implementation manner of the step of generating the medical image transmission data according to the obtained medical image and the identifier may be: storing the hash value uniquely corresponding to the patient information in a field that allows the vendor to customize in the DICOM Tag value field. Thereby, medical image transmission data including medical images and hash values is generated.
  • the hash value is still stored in the medical image auxiliary medical record, and the local value of the DICOM Tag value related to the patient information can be searched according to the hash value, thereby confirming the medical certificate.
  • the patient's identity is matched by the medical record.
  • the user terminal and the artificial intelligence service center are placed in the same blockchain network by using the characteristics of decentralization, autonomy, information not tampering, and transaction traceability of the blockchain network, and the user terminal passes the
  • the blockchain network sends medical image transmission data to the artificial intelligence service center.
  • the specific implementation manner may be: after generating the medical image transmission data, transmitting, to all nodes of the blockchain network, transmission events of the medical image transmission data sent by the user terminal to the artificial intelligence service center, where the “node” That is, the participants in the blockchain network, including the artificial intelligence service center; when the transmission event obtains an authorization response from all nodes in the blockchain network, the medical image transmission data is transmitted to the artificial intelligence service center.
  • the transmission event obtains an authorization response of all nodes in the blockchain network, that is, the transmission event is considered to be valid by all nodes in the blockchain network, so that the transmission event is treated as a new one at this time.
  • the block is embedded in the blockchain to form a permanent and transparent transaction record, so that the transmission record of "the user terminal transmits the medical image transmission data to the artificial intelligence service center" is traceable and cannot be tampered with.
  • the user terminal in order to enhance confidentiality during data transmission, the user terminal first encrypts the medical image data before transmitting the medical image transmission data to the artificial intelligence service center, and then performs encryption processing.
  • the information obtained afterwards is sent to the artificial intelligence service center through the blockchain network.
  • the specific implementation manner of the encryption process may be:
  • the public key of the user terminal can be used to decrypt the digital signature, and obtain a message digest corresponding to the medical image transmission data in the user terminal, so as to facilitate identification of whether the medical image transmission data has been tampered with during the transmission process;
  • the inclusion of the public key of the user terminal in the encrypted information may also facilitate the determination by the artificial intelligence service center of the transmitting end of the medical image transmission data.
  • the public key of the artificial intelligence service center and its private key are a pair of keys, and the digital envelope can be decrypted by the private key of the artificial intelligence service center.
  • the medical image transmission data to be transmitted is encrypted, but also the encrypted information is encapsulated in a digital envelope, which further enhances the security of medical information transmission.
  • the artificial intelligence service center receives the medical image transmission data through the blockchain network, and generates a medical image auxiliary medical record according to the medical image transmission data
  • the medical image auxiliary medical record may be returned to the random according to a preset rule.
  • a node of a specified blockchain network A node of a specified blockchain network.
  • the method further comprises: receiving, by the blockchain network, a medical image auxiliary medical record returned by the artificial intelligence service center.
  • the medical image transmission data is generated according to the medical image and the identifier, which removes the patient information, and therefore, the medical image auxiliary medical record returned by the artificial intelligence service center does not include any patient information.
  • the method further includes: extracting the identifier in the medical image auxiliary medical record, and according to the identifier Matching patient information; writing the patient information to the medical image auxiliary medical record to obtain a medical image auxiliary medical record including patient information.
  • the hash value is extracted from the vendor-defined field stored in the DICOM Tag value field stored in the returned medical image auxiliary medical record, and the hash value is matched with the locally cached patient information to find out
  • the unique value corresponding to the patient information is the DICOM Tag value, and then these DICOM Tag values are rewritten into the medical image data to form a medical image auxiliary medical record including the patient information.
  • the method further comprises: transmitting the complete medical image auxiliary medical record through the intranet.
  • the medical image auxiliary medical record can be sent to the medical information system for reference by other doctors, so that other doctors refer to the medical image of the same patient. The condition of the patient is judged under the condition of the medical record.
  • the processing method of the medical image transmission data applied to the user terminal has the beneficial effects that the medical image transmission data is sent to the artificial intelligence service center through the blockchain network, and the transmission event can be made.
  • Forming a permanent, transparent and non-tamperable transaction record in the blockchain makes the transmission of the medical information traceable, ensuring the security of transmitting the medical image transmission data to the artificial intelligence service center.
  • desensitization processing on the original medical image data to generate medical image transmission data, the privacy of the patient can be ensured; by encrypting the medical image transmission data before transmitting the medical image transmission data, the transmission event can be further improved.
  • FIG. 4 is a schematic flowchart of a method for processing medical image transmission data applied to an artificial intelligence service center according to an embodiment of the present application. Referring to FIG. 4, the method includes:
  • the “user terminal” may be any device that is in the same blockchain network as the artificial intelligence service center. Receiving, when the user terminal broadcasts a transmission event in the blockchain network that the user terminal sends the medical image transmission data to the artificial intelligence service center, performing authorization authentication on the transmission event; when the transmission event obtains the block The medical image transmission data is received when the authorization of all nodes of the chain network is responded.
  • the user terminal in order to enhance confidentiality during data transmission, the user terminal first transmits the medical image transmission data to the artificial intelligence service center.
  • the data is encrypted, and then the information obtained after the encryption process is sent to the artificial intelligence service center through the blockchain network. Therefore, in this embodiment, the information received by the artificial intelligence service center through the blockchain network is actually encrypted information (ie, digital envelope and encrypted information), in order to obtain medical image transmission data sent by the user terminal,
  • the decryption process is also required to be performed on the encrypted information (ie, the digital envelope and the encrypted information).
  • the digital envelope includes a symmetric key for decrypting the encrypted information
  • the encrypted information includes medical image transmission data, a public key of a user terminal, and a digital signature
  • the public key of the user terminal is used to decrypt the A digital signature, the digital signature including an original message digest sent by the user terminal, the original message digest being obtained by hashing the original medical image transmission data.
  • step S220 determining whether the original message digest and the message digest are consistent, if yes, proceeding to step S220, and if not, ending the process and returning a prompt of information error to the user terminal.
  • the medical image auxiliary medical record is generated according to the received medical image transmission data by using the function of the artificial intelligence service center, and the specific implementation manner may be: firstly, according to the medical image generated in the medical image transmission data. Auxiliary diagnostic advice matching the medical image, and then generating a medical image auxiliary medical record based on the medical image and the auxiliary diagnostic suggestion.
  • the medical image auxiliary diagnosis suggestion is saved as a DICOM format image and appendixed to the medical image, thereby generating a medical image auxiliary medical record.
  • the img2dcm function of the OFFIS DCMTK open source software package is used to generate a secondary diagnostic DICOM image, and the DICOM image is attached to the medical image.
  • the medical image auxiliary medical record may be sent through the blockchain network according to a preset rule.
  • the preset rule may be: by default, the generated medical image auxiliary medical record is returned to the user terminal that transmits the medical image transmission data; or, all the medical image auxiliary medical records may be sent to the designated The node, such as a medical image information system of the hospital; or, may also send the generated medical image auxiliary medical record to a plurality of designated nodes.
  • the node such as a medical image information system of the hospital; or, may also send the generated medical image auxiliary medical record to a plurality of designated nodes.
  • the specific implementation manner of transmitting the medical image auxiliary medical record through the blockchain network is similar to the step S120 in the above embodiment, and details are not described herein again.
  • the technical solution of the medical image transmission data applied to the artificial intelligence service center has the beneficial effects of receiving the medical image transmission data sent by the user terminal through the blockchain network and transmitting the generated image.
  • the medical image auxiliary medical record can prevent the transmission of medical image data, and the data information in the process of obtaining medical image auxiliary medical records is tampered with.
  • the whole process of transmitting information has traceability and improves the security performance of information transmission.
  • by saving the medical imaging auxiliary diagnosis as a DICOM format image and appending it to the medical image it is convenient for doctors and remote experts at all levels in the department to accurately understand the medical imaging auxiliary diagnosis suggestion.
  • FIG. 5 is a schematic structural diagram of a medical image transmission data processing apparatus according to an embodiment of the present application.
  • the apparatus 5 includes:
  • the medical image transmission data generating unit 51 is configured to generate medical image transmission data in response to the request for generating the medical image auxiliary medical record;
  • the medical image transmission data sending unit 52 is configured to send the medical image transmission data to the artificial intelligence service center through the blockchain network.
  • the medical image transmission data generating unit 51 when receiving the request for generating the medical image auxiliary medical record, the medical image transmission data generating unit 51 generates the medical image transmission data; and then transmitting the data through the blockchain network by using the medical image transmission data transmitting unit 52.
  • the medical image transmission data is sent to the artificial intelligence service center.
  • the medical image transmission data transmitting unit 52 includes a medical image transmission event registration module 521 and a medical image transmission data transmission module 522. Transmitting events through medical images
  • the registration module 521 broadcasts a transmission event of the medical image transmission data sent by the user terminal to the artificial intelligence service center to all nodes of the blockchain network; when the transmission event obtains an authorization response of all the nodes,
  • the image transmission data sending module 522 sends the medical image transmission data to the artificial intelligence service center.
  • the medical image transmission data transmitting unit 52 further includes an encryption module 523.
  • the medical image transmission data is hashed by the encryption module 523 to obtain a message digest corresponding to the medical image transmission data, and the message digest is encrypted by using the private key of the user terminal to obtain the message.
  • Digital signature of the abstract encrypting the medical image transmission data, the digital signature and the public key of the user terminal by using a symmetric key to obtain encrypted information; using the public key of the artificial intelligence service center to the symmetric key Encrypt to get a digital envelope.
  • the medical image transmission data sending module 522 is specifically configured to: send the encrypted information and the digital envelope to an artificial intelligence service center.
  • the medical image transmission data generating unit 51 includes: data desensitization processing for the medical image data of the patient, and obtaining data of the patient information, the medical image, and the identifier uniquely corresponding to the patient information.
  • the data desensitization module 511 is specifically configured to extract patient information from the medical image data, obtain medical images and patient information, and generate an identifier uniquely corresponding to the patient information according to the patient information.
  • the generating the identifier corresponding to the patient information according to the patient information is specifically: performing hash calculation on the patient information to generate a unique hash value, where the hash value is the The unique identifier of the patient information.
  • the device 5 further includes: an auxiliary medical record receiving unit 53 configured to receive the medical image auxiliary medical record through the blockchain network; and extract the identifier in the medical image auxiliary medical record, And matching the patient information according to the identifier; writing the patient information to the medical image auxiliary medical record to obtain a medical image auxiliary medical record including the patient information.
  • the device 5 further includes: a method for transmitting the medical image auxiliary medical record including the patient information through the hospital intranet The second auxiliary medical record transmitting unit 54.
  • the technical solution of the medical image transmission data has the beneficial effects that: by transmitting the medical image transmission data to the artificial intelligence service center through the blockchain network by using the medical image transmission data sending unit,
  • the transmission event forms a permanent, transparent and non-tamperable transaction record in the blockchain, making the medical information
  • the transmission has traces to ensure the security of transmitting medical image transmission data to the artificial intelligence service center.
  • the medical image is transmitted by the encryption module before transmitting the medical image transmission data.
  • Encryption can further improve the security of the transmission event; by using the auxiliary medical record receiving unit to receive the medical image auxiliary medical record returned by the artificial intelligence service center, the data processing amount of the artificial intelligence service center can be reduced, and the doctor can view the medicine.
  • the image of the auxiliary medical record is transmitted through the second auxiliary medical record sending unit in the internal network of the hospital, which enables other doctors to carry out the medical condition of the patient under the condition of referring to the medical image of the same patient.
  • FIG. 6 is a schematic structural diagram of a processing device for processing medical image transmission data according to another embodiment of the present application.
  • the device 6 includes:
  • the medical image transmission data receiving unit 61 is configured to receive the medical image transmission data sent by the user terminal through the blockchain network;
  • the auxiliary medical record generating unit 62 is configured to generate a medical image auxiliary medical record according to the medical image transmission data
  • the first auxiliary medical record sending unit 63 is configured to send the medical image auxiliary medical record through the blockchain network.
  • the medical image transmission data receiving unit 61 first receives the medical image transmission data sent by the user terminal through the blockchain network; and then generates the medical image according to the medical image transmission data in the auxiliary medical record generation unit 62. Auxiliary medical record; finally, the medical record auxiliary medical record is transmitted through the blockchain network by the first auxiliary medical record sending unit 63.
  • the medical image transmission data receiving unit 61 includes an authorization authentication module 611 and a medical image transmission data receiving module 612.
  • the medical image transmission data is received by the medical image transmission data receiving module 612 when the authorization of all nodes of the chain network is responded.
  • the user terminal in order to enhance confidentiality during data transmission, the user terminal first encrypts the medical image data before transmitting the medical image transmission data to the artificial intelligence service center, and then encrypts the data.
  • the information obtained after processing is sent to the artificial intelligence service center through the blockchain network.
  • the medical image transmission data receiving module 612 is specifically configured to: receive the digital envelope and the encrypted information; wherein the digital envelope includes a symmetry for decrypting the encrypted information a key; the encrypted information includes medical image transmission data, a public key of the user terminal, and a digital signature, the public key of the user terminal is used to decrypt the digital signature, and the digital signature includes the original medicine issued by the user terminal
  • An original message digest of the image transmission data the original message digest being obtained by hashing the original medical image transmission data
  • decrypting the digital envelope according to a private key of the artificial intelligence service center to obtain the symmetry a key
  • decrypting the encrypted information according to the symmetric key obtaining the medical image transmission data, a public key of the user terminal, and the digital signature
  • the number according to a public key of the user terminal Decrypting the signature to obtain the original message digest; performing a hash operation on the medical image transmission data to obtain a message digest corresponding to the medical image transmission data; and determining whether the original message digest and the message
  • the auxiliary medical record generating unit 62 is specifically configured to: analyze the medical image transmission data and generate a medical image auxiliary diagnosis suggestion; save the medical image auxiliary diagnosis suggestion as a DICOM format image and The appendix is used in medical images to generate medical imaging auxiliary medical records.
  • the medical image auxiliary diagnosis advice into the DICOM format image and appending it to the medical image, it is convenient for the doctors and remote experts at all levels in the department to accurately understand the medical image auxiliary diagnosis suggestion.
  • the technical solution of the medical image transmission data provided by the embodiment of the present invention has the beneficial effects of: receiving, by using the medical image transmission data receiving unit and the first auxiliary medical record sending unit, the user terminal to send through the blockchain network.
  • the medical image transmission data and the transmitted medical image auxiliary medical record can prevent the medical information from being transmitted, and the data information in the process of obtaining the medical image auxiliary medical record is tampered with, and the whole process of transmitting the information is traceable. Improve the security of information transmission.
  • FIG. 7 is a schematic diagram of a hardware structure of an electronic device according to an embodiment of the present disclosure.
  • the electronic device 7 can perform the processing method of the medical image transmission data applied to the user terminal as described above, which may be any suitable method.
  • User terminals in the same blockchain network as the artificial intelligence service center such as: intelligent robots, robot assistants, PDAs, personal computers, Tablets, smartphones, wearable smart devices, and more.
  • the electronic device 7 includes: one or more processors 710 and a memory 720, and one processor 710 is taken as an example in FIG.
  • the processor 710 and the memory 720 may be connected by a bus or other means, and the connection by a bus is taken as an example in FIG.
  • the memory 720 is a non-volatile computer readable storage medium, and can be used for storing non-volatile software programs, non-volatile computer-executable programs, and modules, such as medical images applied to user terminals in the embodiments of the present application.
  • a program instruction/module corresponding to the processing method of transmitting data for example, the medical image transmission data generating unit 51, the medical image transmission data transmitting unit 52, the auxiliary medical record receiving unit 53, and the second auxiliary medical record transmitting unit shown in FIG. 54).
  • the processor 710 executes various functional applications and data processing of the server by running non-volatile software programs, instructions, and modules stored in the memory 720, that is, implementing medical image transmission applied to the user terminal in the foregoing method embodiments. The method of processing data.
  • the memory 720 can include a storage program area and a storage data area, wherein the storage program area can store an operating system, an application required for at least one function; and the storage data area can store data created by use of the processing device that transmits data according to the medical image. Wait.
  • memory 720 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • memory 720 can optionally include memory remotely located relative to processor 710 that can be coupled to the processing device of the medical image transmission data over a particular network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the one or more modules are stored in the memory 720, and when executed by the one or more processors 710, the processing method of the medical image transmission data applied to the user terminal in any of the foregoing method embodiments may be performed. .
  • the embodiment of the present application further provides a computer readable storage medium storing computer executable instructions executed by one or more processors, such as one of the processes in FIG.
  • the 710 may be configured to enable the one or more processors to perform the processing method of the medical image transmission data applied to the user terminal in the foregoing method embodiment, for example, to perform the method steps S110 to S120 in FIG. 2 described above,
  • the method steps S111 to S112 in Fig. 3 implement the functions of the units 51-54 in Fig. 5.
  • the embodiment of the present application further provides a computer program product, including a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program instructions are executed by a computer,
  • the computer performs any of the above methods
  • the processing method of the medical image transmission data applied to the user terminal in the embodiment for example, performing the above-described method steps S110 to S120 in FIG. 2, the method step S111 to step S112 in FIG.
  • the above product can perform the processing method of the medical image transmission data applied to the user terminal provided by the embodiment of the present application, and has the corresponding functional modules and beneficial effects of the execution method.
  • the processing method of the medical image transmission data applied to the user terminal provided by the embodiment of the present application refer to the processing method of the medical image transmission data applied to the user terminal provided by the embodiment of the present application.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

本申请实施例公开了一种医学影像传输数据的处理方法、装置和电子设备,其中,应用于用户终端的医学影像传输数据的处理方法包括:响应于生成医学影像辅诊病历的请求,生成医学影像传输数据;通过区块链网络发送所述医学影像传输数据至人工智能服务中心。应用于人工智能服务中心的医学影像传输数据的处理方法包括:通过区块链网络接收用户终端发送的医学影像传输数据;根据所述医学影像传输数据生成医学影像辅诊病历;通过所述区块链网络发送所述医学影像辅诊病历。通过上述方式,本申请实施例能够防止传输医学影像数据,以及获取医学影像辅诊病历的过程中数据信息被篡改,同时,传输信息的整个过程具有可追溯性,提高了信息传输的安全性能。

Description

医学影像传输数据的处理方法、装置及电子设备 技术领域
本申请涉及医学辅助诊断技术领域,特别是涉及医学影像传输数据的处理方法、装置及电子设备。
背景技术
当前,随着电子智能化的快速发展,人工智能(Artificial Intelligence,AI)成为了人们广泛关注和研究的热点。其中,人工智能在医疗方面的应用已愈加广泛。具体地,在医学影像方面,人工智能的辅助诊断可以帮助医生在进行与影像相关的诊断时降低误诊率,提高放射科医生的工作效率。由此可见,人工智能参与医学影像诊断过程是不可避免的趋势。
然而,当在医学影像诊断的过程中加入人工智能辅助诊断这一环节时,一般需要使用医院以外的网络进行医学影像数据的传输,而基于现有的网络传输方式,医学影像数据的信息安全性很低,存在被攻击和篡改数据的风险,一旦医学影像数据被篡改,这将导致医生作出错误的医疗诊断。因此,如何有效地保障医学影像数据被安全地传输到指定的接受方,并且在接受方添加辅助诊断意见以后,信息也能安全地返回,是利用人工智能进行辅助诊断面临的一个重要课题。
发明内容
本申请实施例主要解决如何有效地保障医学影像数据被安全地传输到指定的接受方,并且在接受方添加辅助诊断意见以后,信息也能安全地返回的问题。
为解决上述技术问题,本申请实施例采用的一个技术方案是:提供一种医学影像传输数据的处理方法,该方法应用于用户终端,包括:
响应于生成医学影像辅诊病历的请求,生成医学影像传输数据;
通过区块链网络发送所述医学影像传输数据至人工智能服务中心。
解决上述技术问题,本申请实施例采用的另一个技术方案是:提供一种医学影像传输数据的处理方法,该方法应用于智能服务中心,包括:
通过区块链网络接收用户终端发送的医学影像传输数据;
根据所述医学影像传输数据生成医学影像辅诊病历;
通过所述区块链网络发送所述医学影像辅诊病历。
为解决上述技术问题,本申请实施例采用的又一个技术方案是:提供一种医学影像传输数据的处理装置,该装置包括:
医学影像传输数据生成单元,用于响应于生成医学影像辅诊病历的请求,生成医学影像传输数据;
医学影像传输数据发送单元,用于通过区块链网络发送所述医学影像传输数据至人工智能服务中心。
为解决上述技术问题,本申请实施例采用的再一个技术方案是:提供一种医学影像传输数据的处理装置,该装置包括:
医学影像传输数据接收单元,用于通过区块链网络接收用户终端发送的医学影像传输数据;
辅诊病历生成单元,用于根据所述医学影像传输数据生成医学影像辅诊病历;
第一辅诊病历发送单元,用于通过所述区块链网络发送所述医学影像辅诊病历。
为解决上述技术问题,本申请实施例采用的还一个技术方案是:提供一种电子设备,该电子设备包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令程序,所述指令程序被所述至少一个处理器执行,以使所述至少一个处理器执行如上所述的医学影像传输数据的处理方法。
为解决上述技术问题,本申请实施例采用的还一个技术方案是:提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如上所述的医学影像传输数据的处理方法。
为解决上述技术问题,本申请实施例采用的还一个技术方案是:提供一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行如上所述的医学影像传输数据的处理方法的指令。
本申请实施例提供的医学影像传输数据的处理方法、装置和电子设备,通过在区块链网络中进行医学影像数据的传输,能够防止传输医学影像数据,以及获取医学影像辅诊病历的过程中数据信息被篡改,同时,传输信息的整个过程具有可追溯性,提高了信息传输的安全性能。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例提供的医学影像传输数据的处理方法的运行环境的示意图;
图2是本申请实施例提供的一种应用于用户终端的医学影像传输数据的处理方法的流程示意图;
图3是本申请另一实施例提供的一种生成医学影像传输数据的方法的流程示意图;
图4为本申请实施例提供的一种应用于人工智能服务中心的医学影像传输数据的处理方法的流程示意图;
图5是本申请实施例提供的一种医学影像传输数据的处理装置的结构示意图;
图6是本申请另一实施例提供的一种医学影像传输数据的处理装置的结构示意图;以及,
图7是本申请实施例提供的电子设备的硬件结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,如果不冲突,本申请实施例中的各个特征可以相互结合,均在本申请的保护范围之内。另外,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。再者,本申请所采用的“第一”“第二”等字样并不对数据和执行次序进行限定,仅是对功能和作用基本相同的相同项或相似项进行区分。
人工智能参与医学影像诊断过程是医学发展中不可避免的趋势,然而,当在医学影像诊断的过程中加入人工智能辅助诊断这一环节时,存在医学信息传输安全性的问题。基于此,本申请实施例提供了一种医学影像传输数据的处理方法、装置和电子设备。其中,在本申请实施例中,所述“医学影像传输数据”是指在医院和人工智能服务中心之间传输的医学数据,包括从医院发出的医学影像数据和从人工智能服务中心返回 医院的医学影像辅诊病历,所述“医学影像辅诊病历”是指包括人工智能基于患者的医学影像给出的辅助诊断建议的病历,能够帮助医生在进行与影像相关的诊断时降低误诊率,提高医生的工作效率。通过使用本申请实施例提供的医学影像传输数据的处理方法,能够在医学影像诊断过程加入人工智能辅助诊断这一环节时保证医学信息传输的安全性和可追溯性。
请参照图1,图1为本申请实施例提供的医学影像传输数据的处理方法的运行环境的示意图。如图1所示,该应用环境包括:医疗影像设备10、用户终端20、人工智能服务中心30以及医学影像信息系统40。
其中,医疗影像设备10可以是任意能够获取患者的医学影像数据的设备,包括但不限于:超声成像设备、X射线计算机断层摄影(CT)、核磁共振成像设备(MRI)、数字血管剪影(DSA)、正电子断层摄影(PET)、内窥镜成像、血管造影设备以及核医学成像设备等。
其中,用户终端20可以为任何合适类型的,具有一定逻辑运算能力,提供一个或者多个能够满足用户意图的功能的电子设备。例如,机器人、PDA、个人电脑、平板电脑、智能手机、可穿戴智能设备等。其中,本申请实施例中所说的“用户”可以指具有使用该用户终端20的权限的医生。该用户终端20中可以包括任何合适类型的,用以存储数据的存储介质,例如磁碟、光盘(CD-ROM)、只读存储记忆体或随机存储记忆体等。该用户终端20还可以包括一个或者多个逻辑运算模块,单线程或者多线程并行执行任何合适类型的功能或者操作,例如查看数据库、编辑图表等。所述逻辑运算模块可以是任何合适类型的,能够执行逻辑运算操作的电子电路或者贴片式电子器件,例如:单核心处理器、多核心处理器、图形处理器(GPU)等。医生可以通过任何合适的类型的,一种或者多种用户交互设备(比如鼠标、键盘、遥控器、触摸屏、体感摄像头以及音频采集装置等)与用户终端20进行交互,输入指令或者控制用户终端20执行一种或者多种操作。
其中,人工智能服务中心30是指能够根据医学影像资料生成相应的辅助诊断建议的云端服务中心。由于人工智能服务中心30的造价一般比较昂贵,因此,一般地,多个医院通过获取人工智能服务中心30的授权来共享人工智能服务中心30的服务资源。
其中,医学影像信息系统40,是指基于医学影像存储与通信,从技术上解决图像处理技术的管理系统,一般也可以简称为PACS(Picture Archiving and Communication Systems)。在现代医疗行业中,其主要的 任务就是把医院影像科日常产生的各种医学影像(包括核磁、CT、DR、超声、各种X光机等设备产生的图像)通过DICOM3.0国际标准接口(中国市场大多为模拟,DICOM,网络等接口)以数字化的方式海量保存起来,当需要的时候在一定的授权下能够很快的调回使用,供医生查阅患者的医学影像信息。
在本申请实施例中,医疗影像设备10、用户终端20和医疗信息系统40通过医院内部的局域网连接,三者之间能够直接安全地进行数据的传输;用户终端20与人工智能服务中心30均为一区块链网络的节点(参与者),两者间通过该区块链网络进行数据的传输。
其中,所述“区块链网络”是一种基于区块链技术的网络,所述区块链(Block chain)是一种新型去中心化协议,能够安全地存储数字货币交易或者其他数据,信息不可伪造和篡改,可以自动执行智能合约,无需任何中心化机构的审核。区块链的核心是一个建立在共识模式上的共享数据库,在区块链网络中可以包括多个节点(参与者),若某一节点要在共享数据库中添加新的传输事件,必须与其他节点达成共识(即:获得区块链网络中其他节点的认可),一旦共识达成,该区块链网络的其他节点将通过工作量证明来竞争记录该传输事件的权利,进而将这个新的传输事件升级为一个交易“区块”添加到区块链中,而一旦该区块嵌入到区块链中,这个区块将永久保存于区块链中,并且其数据是不可逆的,从而使得该传输事件成为永久和透明的交易记录。再者,区块链由众多节点共同组成一个端到端的网络,不存在中心化的设备和管理机构,节点之间的数据交换通过数字签名技术进行验证,无需相互信任,只要按照系统既定的规则进行,节点之间不能也无法欺骗其他节点。因此,用户终端20与人工智能服务中心30通过在区块链网络进行数据传输,可以使用户终端20与人工智能服务中心30之间的传输记录有迹循,具有可追溯性,从而提升了医学信息传输的安全性。
在本申请实施例中,首先通过医疗影像设备10获取患者的医学影像数据,其中,该医学影像数据可以是任意类型的医学影像数据,如:超声影像、CT影像、MRI影像、DSA影像等;然后将该医学影像数据传输到用户终端20或者医疗信息系统40供医生查阅;当医生想要获取针对该医学影像的辅助诊断建议时,可以通过与用户终端20交互向用户终端20和人工智能服务中心30下达获取医学影像辅诊病历的请求;响应于该请求,用户终端20通过区块链网络将患者的医学影像数据传输给人工智能服务中心30,在这个过程中,“终端20将患者的医学影像 数据传输给人工智能服务中心30这一传输事件”作为一个新的区块嵌入该区块链中,从而形成永久和透明的交易记录,使该传输事件具有可追溯特性;随后,人工智能服务中心30对接收到的医学影像进行分析,并生成对应的医学影像辅助诊断病历,比如:人工智能服务中心30在云端对患者的医学影像资料进行分折,进而检测并定位出其中的可疑病灶,避免漏诊并帮助医生做出正确的诊断决策;最后,人工智能服务中心30通过区块链网络将该医学影像辅助诊断病历传输给用户终端20(此处需说明的是,接收医学影像辅诊病历的用户终端20可以是上述发送医学影像数据的用户终端,也可以不是上述发送医学影像数据的用户终端);医生在用户终端20查阅该医学影像辅诊病历。进一步地,若该医生觉得该医学影像辅诊病历具有参考价值,还可以将该医学影像辅诊病历通过用户终端20发送至医学信息系统40供其他医生参考,以使得其他医生在参考相同的患者的医学影像辅诊病历的条件下对患者的病情进行判断。
需要说明的是,本申请实施例提供的医学影像传输数据的处理方法还可以进一步的拓展到其他合适的应用环境中,而不限于图1中所示的应用环境。虽然图1中仅显示了两个医疗影像设备10、三个用户终端20、一个人工智能服务中心30以及一个医疗信息系统40,但本领域技术人员可以理解的是,在实际应用过程中,该应用环境还可以包括更多或者更少的医疗影像设备、用户终端、人工智能服务中心以及医疗信息系统。
具体地,图2是本申请实施例提供的一种应用于用户终端的医学影像传输数据的处理方法的流程示意图,请参阅图2,该方法包括:
S110、响应于生成医学影像辅诊病历的请求,生成医学影像传输数据。
在本申请实施例中,所述“生成医学影像辅诊病历的请求”是指触发用户终端获取患者的医学影像辅诊病历的指令,该指令可以通过用户与用户终端之间交互产生。所述“医学影像传输数据”是指用于传输给人工智能服务中心的数据,该数据中包括患者的医学影像,当人工智能服务中心获取到该医学影像传输数据时,可以根据其中的医学影像生成该患者的医学影像辅诊病历。其中,该医学影像可以包括但不限于:超声影像、CT影像、MRI影像、DSA影像等。
在本申请实施例中,当医生需要获取某一患者的医学影像的辅助诊断建议时,可以通过任何方式与用户终端进行交互,以产生“生成医学影 像辅诊病历的请求”,例如:医生在患者的医学影像的页面点击“辅助诊断请求”,或者,医生在“辅助诊断”的功能列表中添加某一患者的医学影像数据等;随后,用户终端响应于该请求,基于该患者的医学影像数据生成医学影像传输数据。其中,在本申请实施例中,患者的医学影像数据是指从医疗影像设备获取到的原始数据,其包括:医学影像和患者信息。
根据国内外有关法律和法规的规定,如:美国联邦政府制定的HIPPA(Health Insurance Portability and Accountability Act),医疗系统必须采取合适的手段以保障患者信息只对专业医疗人员开放。因此,在一些实施例中,为了进一步保障患者的隐私安全,用户终端在向人工智能服务中心发送该患者的医学影像数据之前,首先对该患者的医学影像数据进行加工处理,以生成去除患者信息的医学影像传输数据。在本实施例中,如图3所示,生成医学影像传输数据的方法具体包括:
S111、对患者的医学影像数据进行数据脱敏处理,获得患者信息、医学影像以及与所述患者信息唯一对应的标识。
在本实施例中,所述“患者信息”是指与患者的隐私相关的信息,如:姓名、性别、年龄、检查项目、检查ID以及检查时间等;所述“医学影像”是指去除患者信息的影像数据,包括但不限于:超声影像、CT影像、MRI影像、DSA影像等;所述“标识”与患者信息唯一对应,用于在获取医学影像辅诊病历时匹配该病历的患者信息,该标识可以具有任意的表现形式,如:图标、序列号、散列值等。
在本实施例中,当用户终端接收到生成医学影像辅诊病历的请求时,对患者的医学影像数据进行数据脱敏处理。其中,该数据脱敏处理的过程可以包括:从所述医学影像数据中提取出患者信息,获得医学影像和患者信息;然后根据所述患者信息生成与所述患者信息唯一对应的标识。其中,根据所述患者信息生成与所述患者信息唯一对应的标识这一步骤可以通过将患者信息进行哈希计算来实现,由该哈希计算生成的唯一哈希值即所述与患者信息唯一对应的标识。其中,所述“哈希计算”是指:利用哈希函数,如:SHA256,对患者信息进行加密计算,通过哈希计算可以得到一个具有固定长度的哈希值,该哈希值与患者信息唯一对应。举例说明:当用户终端接收到生成医学影像辅诊病历的请求时,首先对患者的医学影像数据中的患者信息进行DICOM Tag值提取,从而获得患者信息;然后,对这些信息(与患者信息相关的DICOM Tag值)进行哈希计算,生成唯一的哈希值,从而获得与患者信息唯一对应 的标识,同时,修改医学影像数据中与患者信息对应的数据,默认赋空值,从而获得去除患者信息的医学影像。
S112、根据所述医学影像和所述标识生成医学影像传输数据,并将所述患者信息缓存于本地。
在本实施例中,根据获得的医学影像与标识生成医学影像传输数据,同时,将患者信息缓存于本地。其中,所述“本地”是指能够连接医院内网的设备,可以是用户终端本身,也可以是医院内部的服务器。其中,根据获得的医学影像与标识生成医学影像传输数据这一步骤的具体实现方式可以是:将上述与患者信息唯一对应的哈希值存储在DICOM Tag值域中允许厂商自定义的字段中,从而生成包括医学影像和哈希值的医学影像传输数据。当接收到返回的医学影像辅诊病历时,该哈希值依然存储于医学影像辅诊病历中,可以根据此哈希值查找本地的与患者信息相关的DICOM Tag值缓存,进而确认与该医学影像辅诊病历匹配的患者身份。
S120、通过区块链网络发送所述医学影像传输数据至人工智能服务中心。
在本申请实施例中,利用区块链网络去中心化、自治性、信息不可篡改、交易可追溯等特性,将用户终端与人工智能服务中心置于同一区块链网络中,用户终端通过该区块链网络将医学影像传输数据发送给人工智能服务中心。其具体的实施方式可以是:在生成医学影像传输数据之后,向区块链网络的所有节点广播由本用户终端向人工智能服务中心发送该医学影像传输数据的传输事件,其中,所述“节点”即该区块链网络中的参与者,包括人工智能服务中心;当该传输事件获得区块链网络中所有节点的授权响应时,发送所述医学影像传输数据至所述人工智能服务中心。应当理解的是,该传输事件获得区块链网络中所有节点的授权响应,即说明该传输事件被区块链网络中的所有节点认为是有效的,从而此时该传输事件被作为一个新的区块嵌入区块链中,形成永久和透明的交易记录,使得“本用户终端向人工智能服务中心发送医学影像传输数据”这一传输记录有迹可循且不可篡改。
进一步地,在一些实施例中,为了增强数据传输过程中的保密性,用户终端在将该医学影像传输数据发送至人工智能服务中心之前,首先对医学影像数据进行加密处理,然后再将加密处理后获得的信息通过区块链网络发送给人工智能服务中心。其中,该加密处理的具体实施方式可以是:
(1)、对待发送的医学影像传输数据进行哈希运算,获得与该医学影像传输数据对应的消息摘要。由哈希运算的特性可知,获得的消息摘要与该医学影像传输数据唯一对应,可以便于通过该消息摘要校验人工智能服务中心接收到的医学影像传输数据是否被篡改。
(2)、采用本用户终端的私钥对该消息摘要进行加密,获得该消息摘要的数字签名。其中,对消息摘要进行加密的过程可以采用公钥加密算法(RSA)来实现,通过该数字签名能够表明该消息摘要来源于本用户终端。
(3)、采用对称密钥对该医学影像传输数据、数字签名和本用户终端的公钥进行加密,获得加密信息。其中,本用户终端的公钥能够用于对该数字签名进行解密,获得本用户终端中的医学影像传输数据对应的消息摘要,便于鉴定医学影像传输数据在传输的过程中是否被篡改;同时,在加密信息中包括本用户终端的公钥也可以便于人工智能服务中心确定该医学影像传输数据的发送端。
(4)、采用人工智能服务中心的公钥对所述对称密钥进行加密,获得数字信封。其中,人工智能服务中心的公钥与其私钥是一对密钥,通过人工智能服务中心的私钥可对该数字信封解密。
在该实施例中,不仅对待发送的医学影像传输数据进行加密,还以数字信封的方式封装该加密信息,能够进一步增强医学信息传输的安全性。
此外,当人工智能服务中心通过该区块链网络接收该医学影像传输数据,并根据该医学影像传输数据生成医学影像辅诊病历后,可以将该医学影像辅诊病历按照预设的规定返回任意一指定的区块链网络的节点。
由于在人工智能服务中心接收到的加密信息中包括了发送本用户终端的公钥,因此,若人工智能服务中心默认设置将生成的医学影像辅诊病历返回发送该医学影像传输数据的用户终端,可以减少人工智能服务中心的数据处理量,同时,也便于医生直接在本用户终端查阅患者的医学影像辅诊病历。基于此,在一些实施例中,该方法还包括:通过所述区块链网络接收所述人工智能服务中心返回的医学影像辅诊病历。其中,在一些实施例中,医学影像传输数据根据医学影像和标识生成,其去除了患者信息,因此,人工智能服务中心返回的医学影像辅诊病历也不包含任何患者信息。此时,通过区块链网络接收该医学影像辅诊病历之后,还包括:提取所述医学影像辅诊病历中的标识,并根据所述标识 匹配患者信息;将所述患者信息写入所述医学影像辅诊病历,获得包括患者信息的医学影像辅诊病历。例如:从存储在返回的医学影像辅诊病历的DICOM Tag值域中允许厂商自定义的字段中提取哈希值,将该哈希值与缓存于本地的患者信息进行匹配,找出与该哈希值唯一对应的与患者信息相关的DICOM Tag值,然后将这些DICOM Tag值重新写入医学影像数据中,从而形成包括患者信息的医学影像辅诊病历。
进一步地,在另一些实施例中,所述方法还包括:通过医院内网发送该完整的医学影像辅诊病历。在该实施例中,当医生觉得该医学影像辅诊病历具有参考价值时,可以将该医学影像辅诊病历发送至医学信息系统供其他医生参考,以使得其他医生在参考相同的患者的医学影像辅诊病历的条件下对患者的病情进行判断。
通过上述技术方案可知,本申请实施例提供的应用于用户终端的医学影像传输数据的处理方法的有益效果在于:通过区块链网络发送医学影像传输数据至人工智能服务中心,能够使该传输事件在区块链中形成永久、透明且不可篡改的交易记录,使得该医学信息的传输有迹可循,保障了将医学影像传输数据发送给人工智能服务中心的安全性。此外,通过对原始的医学影像数据进行脱敏处理生成医学影像传输数据,能够保障患者的隐私安全;通过在发送医学影像传输数据前对该医学影像传输数据进行加密,能够进一步提升该传输事件的安全性;通过使用本用户终端接收人工智能服务中心返回的医学影像辅诊病历,能够减少人工智能服务中心的数据处理量,且方便医生查看该医学影像辅诊病历;通过进一步通过医院的内部网络发送该医学影像辅诊病历,能够使得其他医生在参考相同的患者的医学影像辅诊病历的条件下对患者的病情进行判断。
图4是本申请实施例提供的一种应用于人工智能服务中心的医学影像传输数据的处理方法的流程示意图,请参阅图4,该方法包括:
S210、通过区块链网络接收用户终端发送的医学影像传输数据。
在本申请实施例中,所述“用户终端”可以是任意与该人工智能服务中心处于同一区块链网络的设备。当接收到用户终端在区块链网络中广播由该用户终端向本人工智能服务中心发送医学影像传输数据的传输事件时,对该传输事件进行授权认证;当所述传输事件获得所述区块链网络的所有节点的授权响应时,接收所该医学影像传输数据。
在一些实施例中,为了增强数据传输过程中的保密性,用户终端在将该医学影像传输数据发送至本人工智能服务中心之前,首先对医学影 像数据进行加密处理,然后再将加密处理后获得的信息通过区块链网络发送给人工智能服务中心。因此,在该实施例中,本人工智能服务中心通过区块链网络接收到的实际上是加密处理后的信息(即:数字信封和加密信息),为了获得用户终端发送的医学影像传输数据,还需对该加密处理后的信息(即:数字信封和加密信息)进行解密处理,则本步骤具体包括:
(1)接收数字信封和加密信息。其中,所述数字信封包括用于解密所述加密信息的对称密钥;所述加密信息包括医学影像传输数据、用户终端的公钥和数字签名,所述用户终端的公钥用于解密所述数字签名,所述数字签名包括所述用户终端发出的原始消息摘要,所述原始消息摘要通过对原始医学影像传输数据进行哈希运算获得。
(2)根据所述人工智能服务中心的私钥对所述数字信封进行解密,获得所述对称密钥。
(3)根据所述对称密钥对所述加密信息进行解密,获得所述医学影像传输数据、所述用户终端的公钥以及所述数字签名。
(4)根据所述用户终端的公钥对所述数字签名进行解密,获得所述原始消息摘要。
(5)对所述医学影像传输数据进行哈希运算,获得与所述医学影像传输数据对应的消息摘要。其中,需要说明的是,此处进行的哈希运算与用户终端对原始医学影像传输数据进行的哈希运算一样。
(6)判断所述原始消息摘要和所述消息摘要是否一致,若是则进入步骤S220,若否,则结束该进程并向所述用户终端返回信息错误的提示。
S220、根据所述医学影像传输数据生成医学影像辅诊病历。
在本申请实施例中,利用人工智能服务中心的功能,根据接收到的医学影像传输数据生成医学影像辅诊病历,其具体的实施方式可以是:首先根据该医学影像传输数据中的医学影像生成与该医学影像匹配的辅助诊断建议,然后根据该医学影像和该辅助诊断建议生成医学影像辅诊病历。
其中,为了使得各级医生都能够完整地看到人工智能服务中心给出的辅助诊断建议,以及便于医生同时查阅患者的医学影像及其辅助诊断建议,在一些实施例中,在对所述医学影像传输数据进行分析并生成医学影像辅诊建议之后,将该医学影像辅诊建议保存为DICOM格式的影像并附录于医学影像中,从而生成医学影像辅诊病历。其中,可以通过 例如OFFIS DCMTK开源软件包的img2dcm功能来生成辅诊建议DICOM影像,并将该DICOM影像附录于医学影像中。在该实施例中,通过将医学影像辅诊建议保存为DICOM格式并附录于医学影像中,能够方便科室内各级医生及远程专家准确理解该医学影像辅诊建议,同时,也避免了医学影像不支持中文输入的问题。
S230、通过所述区块链网络发送所述医学影像辅诊病历。
在本申请实施例中,人工智能服务中心生成医学影像辅诊病历之后,可以根据预设的规则通过区块链网络发送该医学影像辅诊病历。其中,所述预设的规则可以是:默认将生成的医学影像辅诊病历原路返回给发送该医学影像传输数据的用户终端;或者,也可以是将所有医学影像辅诊病历发送给指定的节点,如:医院的医学影像信息系统;或者,还可以是将生成的医学影像辅诊病历发送给多个指定节点。此外,通过区块链网络发送该医学影像辅诊病历的具体实施方式与上述实施例中的步骤S120相似,此处便不再赘述。
通过上述技术方案可知,本申请实施例提供的应用于人工智能服务中心的医学影像传输数据的处理方法的有益效果在于:通过区块链网络接收用户终端发送的医学影像传输数据以及发送所生成的医学影像辅诊病历,能够防止传输医学影像数据,以及获取医学影像辅诊病历的过程中数据信息被篡改,同时,传输信息的整个过程具有可追溯性,提高了信息传输的安全性能。再者,通过将医学影像辅诊建议保存为DICOM格式的影像并附录于医学影像中,能够方便科室内各级医生及远程专家准确理解该医学影像辅诊建议。
图5是本申请实施例提供的一种医学影像传输数据的处理装置的结构示意图,请参照图5,该装置5包括:
医学影像传输数据生成单元51,用于响应于生成医学影像辅诊病历的请求,生成医学影像传输数据;
医学影像传输数据发送单元52,用于通过区块链网络发送所述医学影像传输数据至人工智能服务中心。
在本申请实施例中,当接收到生成医学影像辅诊病历的请求时,通过医学影像传输数据生成单元51生成医学影像传输数据;然后利用医学影像传输数据发送单元52通过区块链网络发送所述医学影像传输数据至人工智能服务中心。
其中,医学影像传输数据发送单元52包括:医学影像传输事件注册模块521和医学影像传输数据发送模块522。通过医学影像传输事件 注册模块521向区块链网络的所有节点广播由所述用户终端向人工智能服务中心发送所述医学影像传输数据的传输事件;当所述传输事件获得所述所有节点的授权响应时,通过医学影像传输数据发送模块522发送所述医学影像传输数据至所述人工智能服务中心。进一步地,在一些实施例中,为了进一步提升医学信息传输的安全性能,医学影像传输数据发送单元52还包括:加密模块523。通过该加密模块523对所述医学影像传输数据进行哈希运算,获得与所述医学影像传输数据对应的消息摘要;采用所述用户终端的私钥对所述消息摘要进行加密,获得所述消息摘要的数字签名;采用对称密钥对所述医学影像传输数据、所述数字签名和所述用户终端的公钥进行加密,获得加密信息;采用人工智能服务中心的公钥对所述对称密钥进行加密,获得数字信封。在该实施例中,上述医学影像传输数据发送模块522具体用于:发送所述加密信息和所述数字信封至人工智能服务中心。
其中,为了保护患者的隐私安全,医学影像传输数据生成单元51包括:用于对患者的医学影像数据进行数据脱敏处理,获得患者信息、医学影像以及与所述患者信息唯一对应的标识的数据脱敏模块511;以及,用于根据所述医学影像和所述标识生成医学影像传输数据,并将所述患者信息缓存于本地的医学影像传输数据生成模块512。具体地,数据脱敏模块511具体用于从医学影像数据中提取出患者信息,获得医学影像和患者信息并根据所述患者信息生成与所述患者信息唯一对应的标识。其中,所述根据所述患者信息生成与所述患者信息唯一对应的标识具体为:将所述患者信息进行哈希计算,生成唯一的哈希值,所述哈希值即所述与所述患者信息唯一对应的标识。
此外,在一些实施例中,装置5还包括:辅诊病历接收单元53,用于通过所述区块链网络接收所述医学影像辅诊病历;提取所述医学影像辅诊病历中的标识,并根据所述标识匹配患者信息;将所述患者信息写入所述医学影像辅诊病历,获得包括患者信息的医学影像辅诊病历。进一步地,在另一些实施例中,为了使更多的医生能够查阅该医学影像辅诊病历,装置5还包括:用于通过医院内网发送所述包括患者信息的医学影像辅诊病历的第二辅诊病历发送单元54。
通过上述技术方案可知,本申请实施例提供的医学影像传输数据的处理装置的有益效果在于:通过利用医学影像传输数据发送单元通过区块链网络发送医学影像传输数据至人工智能服务中心,能够使该传输事件在区块链中形成永久、透明且不可篡改的交易记录,使得该医学信息 的传输有迹可循,保障了将医学影像传输数据发送给人工智能服务中心的安全性。此外,通过在医学影像传输数据生成单元中对原始的医学影像数据进行脱敏处理生成医学影像传输数据,能够保障患者的隐私安全;通过加密模块在发送医学影像传输数据前对该医学影像传输数据进行加密,能够进一步提升该传输事件的安全性;通过使用辅诊病历接收单元接收人工智能服务中心返回的医学影像辅诊病历,能够减少人工智能服务中心的数据处理量,且方便医生查看该医学影像辅诊病历;通过第二辅诊病历发送单元在医院的内部网络中发送该医学影像辅诊病历,能够使得其他医生在参考相同的患者的医学影像辅诊病历的条件下对患者的病情进行判断。
图6是本申请另一实施例提供的一种医学影像传输数据的处理装置的结构示意图,请参阅图6,该装置6包括:
医学影像传输数据接收单元61,用于通过区块链网络接收用户终端发送的医学影像传输数据;
辅诊病历生成单元62,用于根据所述医学影像传输数据生成医学影像辅诊病历;
第一辅诊病历发送单元63,用于通过所述区块链网络发送所述医学影像辅诊病历。
在本申请实施例中,首先利用医学影像传输数据接收单元61通过区块链网络接收用户终端发送的医学影像传输数据;然后在辅诊病历生成单元62中根据所述医学影像传输数据生成医学影像辅诊病历;最后利用第一辅诊病历发送单元63通过所述区块链网络发送所述医学影像辅诊病历。
其中,医学影像传输数据接收单元61包括:授权认证模块611和医学影像传输数据接收模块612。通过授权认证模块611对用户终端在区块链网络中广播的由所述用户终端向所述人工智能服务中心发送医学影像传输数据的传输事件进行授权认证;当所述传输事件获得所述区块链网络的所有节点的授权响应时通过医学影像传输数据接收模块612接收所述医学影像传输数据。进一步地,在一些实施例中,为了增强数据传输过程中的保密性,用户终端在将该医学影像传输数据发送至本人工智能服务中心之前,首先对医学影像数据进行加密处理,然后再将加密处理后获得的信息通过区块链网络发送给人工智能服务中心。因此,在该实施例中,医学影像传输数据接收模块612具体用于:接收数字信封和加密信息;其中,所述数字信封包括用于解密所述加密信息的对称 密钥;所述加密信息包括医学影像传输数据、用户终端的公钥和数字签名,所述用户终端的公钥用于解密所述数字签名,所述数字签名包括所述用户终端发出的原始医学影像传输数据的原始消息摘要,所述原始消息摘要通过对所述原始医学影像传输数据进行哈希运算获得;根据所述人工智能服务中心的私钥对所述数字信封进行解密,获得所述对称密钥;根据所述对称密钥对所述加密信息进行解密,获得所述医学影像传输数据、所述用户终端的公钥以及所述数字签名;根据所述用户终端的公钥对所述数字签名进行解密,获得所述原始消息摘要;对所述医学影像传输数据进行哈希运算,获得与所述医学影像传输数据对应的消息摘要;判断所述原始消息摘要和所述消息摘要是否一致,若是则通过所述辅诊病历生成单元62根据所述医学影像传输数据生成医学影像辅诊病历。
其中,在一些实施例中,辅诊病历生成单元62具体用于:对所述医学影像传输数据进行分析并生成医学影像辅诊建议;将所述医学影像辅诊建议保存为DICOM格式的影像并附录于医学影像中,从而生成医学影像辅诊病历。在该实施例中,通过将医学影像辅诊建议保存为DICOM格式的影像并附录于医学影像中,能够方便科室内各级医生及远程专家准确理解该医学影像辅诊建议。
通过上述技术方案可知,本申请实施例提供的医学影像传输数据的处理装置的有益效果在于:通过分别利用医学影像传输数据接收单元和第一辅诊病历发送单元通过区块链网络接收用户终端发送的医学影像传输数据以及发送所生成的医学影像辅诊病历,能够防止传输医学影像数据,以及获取医学影像辅诊病历的过程中数据信息被篡改,同时,传输信息的整个过程具有可追溯性,提高了信息传输的安全性能。再者,通过在辅诊病历生成单元中将医学影像辅诊建议保存为DICOM格式的影像并附录于医学影像中,能够方便科室内各级医生及远程专家准确理解该医学影像辅诊建议。
值得说明的是,上述装置内的模块、单元之间的信息交互、执行过程等内容,由于与本申请的方法实施例基于同一构思,具体内容可参见本申请方法实施例中的叙述,此处不再赘述。
图7是本申请实施例提供的电子设备的硬件结构示意图,请参照图7,该电子设备7能够执行如上所述的应用于用户终端的医学影像传输数据的处理方法,其可以为任何合适的与人工智能服务中心处于同一区块链网络的用户终端,如:智能机器人、机器人助手、PDA、个人电脑、 平板电脑、智能手机、可穿戴智能设备等。
具体地,如图7所示,该电子设备7包括:一个或多个处理器710以及存储器720,图7中以一个处理器710为例。
处理器710、存储器720可以通过总线或者其他方式连接,图7中以通过总线连接为例。
存储器720作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的应用于用户终端的医学影像传输数据的处理方法对应的程序指令/模块(例如,附图5所示的医学影像传输数据生成单元51、医学影像传输数据发送单元52、辅诊病历接收单元53和第二辅诊病历发送单元54)。处理器710通过运行存储在存储器720中的非易失性软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的应用于用户终端的医学影像传输数据的处理方法。
存储器720可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据医学影像传输数据的处理装置的使用所创建的数据等。此外,存储器720可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器720可选包括相对于处理器710远程设置的存储器,这些远程存储器可以通过特定的网络连接至医学影像传输数据的处理装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器720中,当被所述一个或者多个处理器710执行时,可执行上述任意方法实施例中的应用于用户终端的医学影像传输数据的处理方法。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图7中的一个处理器710,可使得上述一个或多个处理器可执行上述方法实施例中的应用于用户终端的医学影像传输数据的处理方法,例如,执行以上描述的图2中的方法步骤S110至步骤S120,图3中的方法步骤S111至步骤S112,实现图5中的单元51-54的功能。
本申请实施例还提供了一种计算机程序产品,包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时时,使所述计算机执行上述任意方法实 施例中的应用于用户终端的医学影像传输数据的处理方法,例如,执行以上描述的执行以上描述的图2中的方法步骤S110至步骤S120,图3中的方法步骤S111至步骤S112,实现图5中的单元51-54的功能。
上述产品可执行本申请实施例所提供的应用于用户终端的医学影像传输数据的处理方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的应用于用户终端的医学影像传输数据的处理方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (27)

  1. 一种医学影像传输数据的处理方法,应用于用户终端,其特征在于,包括:
    响应于生成医学影像辅诊病历的请求,生成医学影像传输数据;
    通过区块链网络发送所述医学影像传输数据至人工智能服务中心。
  2. 根据权利要求1所述的方法,其特征在于,所述通过区块链网络发送所述医学影像传输数据至人工智能服务中心,包括:
    向区块链网络的所有节点广播由所述用户终端向所述人工智能服务中心发送所述医学影像传输数据的传输事件;
    当所述传输事件获得所述所有节点的授权响应时,发送所述医学影像传输数据至所述人工智能服务中心。
  3. 根据权利要求2所述的方法,其特征在于,所述发送所述医学影像传输数据至所述人工智能服务中心的步骤之前,所述方法还包括:
    对所述医学影像传输数据进行哈希运算,获得与所述医学影像传输数据对应的消息摘要;
    采用所述用户终端的私钥对所述消息摘要进行加密,获得所述消息摘要的数字签名;
    采用对称密钥对所述医学影像传输数据、所述数字签名和所述用户终端的公钥进行加密,获得加密信息;
    采用人工智能服务中心的公钥对所述对称密钥进行加密,获得数字信封;
    则,所述发送所述医学影像传输数据至所述人工智能服务中心,包括:
    发送所述加密信息和所述数字信封至人工智能服务中心。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述生成医学影像传输数据,包括:
    对患者的医学影像数据进行数据脱敏处理,获得患者信息、医学影像以及与所述患者信息唯一对应的标识;
    根据所述医学影像和所述标识生成医学影像传输数据,并将所述患者信息缓存于本地。
  5. 根据权利要求4所述的方法,其特征在于,所述对患者的医学影像数据进行数据脱敏处理,获得患者信息、医学影像以及与所述患者信息唯一对应的标识,包括:
    从所述医学影像数据中提取出患者信息,获得医学影像和患者信息;
    根据所述患者信息生成与所述患者信息唯一对应的标识。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述患者信息生成与 所述患者信息唯一对应的标识,包括:
    将所述患者信息进行哈希计算,生成唯一的哈希值,所述哈希值即所述与所述患者信息唯一对应的标识。
  7. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    通过所述区块链网络接收所述人工智能服务中心返回的医学影像辅诊病历;
    提取所述医学影像辅诊病历中的标识,并根据所述标识匹配患者信息;
    将所述患者信息写入所述医学影像辅诊病历,获得包括患者信息的医学影像辅诊病历。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    通过医院内网发送所述包括患者信息的的医学影像辅诊病历。
  9. 一种医学影像传输数据的处理方法,应用于人工智能服务中心,其特征在于,包括:
    通过区块链网络接收用户终端发送的医学影像传输数据;
    根据所述医学影像传输数据生成医学影像辅诊病历;
    通过所述区块链网络发送所述医学影像辅诊病历。
  10. 根据权利要求9所述的方法,其特征在于,所述通过区块链网络接收用户终端发送的医学影像传输数据,包括:
    对用户终端在区块链网络中广播的由所述用户终端向所述人工智能服务中心发送医学影像传输数据的传输事件进行授权认证;
    当所述传输事件获得所述区块链网络的所有节点的授权响应时,接收所述医学影像传输数据。
  11. 根据权利要求10所述的方法,其特征在于,所述接收所述医学影像传输数据,包括:
    接收数字信封和加密信息;其中,所述数字信封包括用于解密所述加密信息的对称密钥;所述加密信息包括医学影像传输数据、用户终端的公钥和数字签名,所述用户终端的公钥用于解密所述数字签名,所述数字签名包括所述用户终端发出的原始医学影像传输数据的原始消息摘要,所述原始消息摘要通过对所述原始医学影像传输数据进行哈希运算获得;
    根据所述人工智能服务中心的私钥对所述数字信封进行解密,获得所述对称密钥;
    根据所述对称密钥对所述加密信息进行解密,获得所述医学影像传输数据、所述用户终端的公钥以及所述数字签名;
    根据所述用户终端的公钥对所述数字签名进行解密,获得所述原始消息摘要;
    对所述医学影像传输数据进行哈希运算,获得与所述医学影像传输数据对应的消息摘要;
    判断所述原始消息摘要和所述消息摘要是否一致,若是则根据所述医学影像传输数据生成医学影像辅诊病历。
  12. 根据权利要求9或10所述的方法,其特征在于,所述根据所述医学影像传输数据生成医学影像辅诊病历,包括:
    对所述医学影像传输数据进行分析并生成医学影像辅诊建议;
    将所述医学影像辅诊建议保存为DICOM格式的影像并附录于医学影像中,从而生成医学影像辅诊病历。
  13. 一种医学影像传输数据的处理装置,其特征在于,包括:
    医学影像传输数据生成单元,用于响应于生成医学影像辅诊病历的请求,生成医学影像传输数据;
    医学影像传输数据发送单元,用于通过区块链网络发送所述医学影像传输数据至人工智能服务中心。
  14. 根据权利要求13所述的装置,其特征在于,所述医学影像传输数据发送单元,包括:
    医学影像传输事件注册模块,用于向区块链网络的所有节点广播由所述用户终端向所述人工智能服务中心发送所述医学影像传输数据的传输事件;
    医学影像传输数据发送模块,用于当所述传输事件获得所述所有节点的授权响应时,发送所述医学影像传输数据至所述人工智能服务中心。
  15. 根据权利要求14所述的装置,其特征在于,所述医学影像传输数据发送单元还包括:
    加密模块,用于对所述医学影像传输数据进行哈希运算,获得与所述医学影像传输数据对应的消息摘要;
    采用所述用户终端的私钥对所述消息摘要进行加密,获得所述消息摘要的数字签名;
    采用对称密钥对所述医学影像传输数据、所述数字签名和所述用户终端的公钥进行加密,获得加密信息;
    采用人工智能服务中心的公钥对所述对称密钥进行加密,获得数字信封;
    则,所述医学影像传输数据发送模块具体用于:
    发送所述加密信息和所述数字信封至人工智能服务中心。
  16. 根据权利要求13-15任一项所述的装置,其特征在于,所述医学影像传输数据生成单元包括:
    数据脱敏模块,用于对患者的医学影像数据进行数据脱敏处理,获得患者信息、医学影像以及与所述患者信息唯一对应的标识;
    医学影像传输数据生成模块,用于根据所述医学影像和所述标识生成医学影像传输数据,并将所述患者信息缓存于本地。
  17. 根据权利要求16所述的装置,其特征在于,所述数据脱敏模块具体用于:
    从所述医学影像数据中提取出患者信息,获得医学影像和患者信息;
    根据所述患者信息生成与所述患者信息唯一对应的标识。
  18. 根据权利要求17所述的装置,其特征在于,所述根据所述患者信息生成与所述患者信息唯一对应的标识具体为:
    将所述患者信息进行哈希计算,生成唯一的哈希值,所述哈希值即所述与所述患者信息唯一对应的标识。
  19. 根据权利要求16所述的装置,其特征在于,所述装置还包括:
    辅诊病历接收单元,用于通过所述区块链网络接收所述人工智能服务中心返回的医学影像辅诊病历;提取所述医学影像辅诊病历中的标识,并根据所述标识匹配患者信息;将所述患者信息写入所述医学影像辅诊病历,获得包括患者信息的医学影像辅诊病历。
  20. 根据权利要求19所述的装置,其特征在于,所述装置还包括:
    第二辅诊病历发送单元,用于通过医院内网发送所述包括患者信息的医学影像辅诊病历。
  21. 一种医学影像传输数据的处理装置,其特征在于,包括:
    医学影像传输数据接收单元,用于通过区块链网络接收用户终端发送的医学影像传输数据;
    辅诊病历生成单元,用于根据所述医学影像传输数据生成医学影像辅诊病历;
    第一辅诊病历发送单元,用于通过所述区块链网络发送所述医学影像辅诊病历。
  22. 根据权利要求21所述的装置,其特征在于,所述医学影像传输数据接收单元包括:
    授权认证模块,用于对用户终端在区块链网络中广播的由所述用户终端向所述人工智能服务中心发送医学影像传输数据的传输事件进行授权认证;
    医学影像传输数据接收模块,用于当所述传输事件获得所述区块链网络的所有节点的授权响应时,接收所述医学影像传输数据。
  23. 根据权利要求22所述的装置,其特征在于,医学影像传输数据接收模块具体用于:
    接收数字信封和加密信息;其中,所述数字信封包括用于解密所述加密信息的对称密钥;所述加密信息包括医学影像传输数据、用户终端的公钥和数字签名,所述用户终端的公钥用于解密所述数字签名,所述数字签名包括所述用 户终端发出的原始医学影像传输数据的原始消息摘要,所述原始消息摘要通过对所述原始医学影像传输数据进行哈希运算获得;
    根据所述人工智能服务中心的私钥对所述数字信封进行解密,获得所述对称密钥;
    根据所述对称密钥对所述加密信息进行解密,获得所述医学影像传输数据、所述用户终端的公钥以及所述数字签名;
    根据所述用户终端的公钥对所述数字签名进行解密,获得所述原始消息摘要;
    对所述医学影像传输数据进行哈希运算,获得与所述医学影像传输数据对应的消息摘要;
    判断所述原始消息摘要和所述消息摘要是否一致,若是则通过所述辅诊病历生成单元根据所述医学影像传输数据生成医学影像辅诊病历。
  24. 根据权利要求22或23所述的装置,其特征在于,所述辅诊病历生成单元具体用于:
    对所述医学影像传输数据进行分析并生成医学影像辅诊建议;
    将所述医学影像辅诊建议保存为DICOM格式的影像并附录于医学影像中,从而生成医学影像辅诊病历。
  25. 一种电子设备,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令程序,所述指令程序被所述至少一个处理器执行,以使所述至少一个处理器执行如权利要求1-8任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如权利要求1-8任一项所述的方法。
  27. 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行如权利要求1-8任一项所述的方法。
PCT/CN2017/079345 2017-04-01 2017-04-01 医学影像传输数据的处理方法、装置及电子设备 WO2018176484A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/079345 WO2018176484A1 (zh) 2017-04-01 2017-04-01 医学影像传输数据的处理方法、装置及电子设备
CN201780000746.4A CN108885899B (zh) 2017-04-01 2017-04-01 医学影像传输数据的处理方法、装置及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/079345 WO2018176484A1 (zh) 2017-04-01 2017-04-01 医学影像传输数据的处理方法、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2018176484A1 true WO2018176484A1 (zh) 2018-10-04

Family

ID=63674085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079345 WO2018176484A1 (zh) 2017-04-01 2017-04-01 医学影像传输数据的处理方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN108885899B (zh)
WO (1) WO2018176484A1 (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110413366A (zh) * 2019-07-30 2019-11-05 深圳市乘法信息技术有限公司 一种基于区块链的截屏方法、装置、设备及存储介质
CN110473607A (zh) * 2019-06-28 2019-11-19 马鞍山师范高等专科学校 一种多终端交互式生物医学影像分析系统
CN110489577A (zh) * 2019-08-06 2019-11-22 腾讯医疗健康(深圳)有限公司 医疗影像管理方法及装置、眼底影像处理方法、电子设备
CN111061811A (zh) * 2019-12-16 2020-04-24 张云峰 基于区块链和云服务的健康大数据管理系统
CN111710431A (zh) * 2020-06-17 2020-09-25 安徽科大讯飞医疗信息技术有限公司 一种识别同义诊断名称的方法、装置、设备及存储介质
CN111798967A (zh) * 2020-07-18 2020-10-20 贵州精准健康数据有限公司 一种智慧超声检测系统
CN111916217A (zh) * 2020-08-07 2020-11-10 上海交通大学医学院附属第九人民医院 基于区块链的医疗数据管理方法、系统、存储介质及终端
CN112071404A (zh) * 2020-09-04 2020-12-11 河南中医药大学 一种基于计算机的医学影像处理系统
CN112233812A (zh) * 2020-09-22 2021-01-15 广州思达信息科技有限公司 基于区块链的医疗诊断系统
CN112614586A (zh) * 2020-12-15 2021-04-06 广东德澳智慧医疗科技有限公司 一种基于医学影像和区块链的远程疾病智能诊断系统
CN113077891A (zh) * 2021-04-15 2021-07-06 王小娟 基于算法、区块链和医学影像的大数据疾病诊断系统
CN113096793A (zh) * 2021-04-15 2021-07-09 王小娟 基于医学影像、算法和区块链的远程医疗诊断系统
CN113223654A (zh) * 2021-06-04 2021-08-06 杭州云呼网络科技有限公司 一种医学检验报告单的智能解读管理平台
CN113658667A (zh) * 2021-08-17 2021-11-16 岱川医疗(深圳)有限责任公司 内窥镜工作站及云储存装置
CN113674840A (zh) * 2021-08-24 2021-11-19 平安国际智慧城市科技股份有限公司 医学影像共享方法、装置、电子设备及存储介质
CN113707289A (zh) * 2021-07-16 2021-11-26 联影智能医疗科技(北京)有限公司 医学人工智能平台及其搭建方法
CN113946851A (zh) * 2021-10-21 2022-01-18 平安国际智慧城市科技股份有限公司 医疗图像的管理方法、装置、电子设备以及存储介质
CN114023430A (zh) * 2021-10-27 2022-02-08 深圳市普朗信息技术有限公司 一种基于5g区块链的医疗服务系统
CN114095757A (zh) * 2021-11-17 2022-02-25 南通市肿瘤医院 基于云端的医院放射科自学习影像传输系统
CN115240819A (zh) * 2021-04-22 2022-10-25 西门子医疗有限公司 用于传输多个医学图像的方法
CN115842679A (zh) * 2022-12-30 2023-03-24 江西曼荼罗软件有限公司 一种基于数字信封技术的数据传输方法及系统
CN116016700A (zh) * 2022-12-09 2023-04-25 北京京东拓先科技有限公司 一种医学影像的传输方法和装置
CN117974659A (zh) * 2024-03-29 2024-05-03 重庆医科大学绍兴柯桥医学检验技术研究中心 一种医学影像计算机辅助分析方法、系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110232969A (zh) * 2019-06-06 2019-09-13 武汉联影医疗科技有限公司 医学影像上传至云服务器的方法、装置、终端和存储介质
CN111458269A (zh) * 2020-05-07 2020-07-28 厦门汉舒捷医疗科技有限公司 一种外周血淋巴微核细胞图像人工智能识别方法
CN111641617B (zh) * 2020-05-19 2022-10-21 全链通有限公司 区块链网络中记账权的处理方法、设备及存储介质
CN112863652A (zh) * 2021-02-20 2021-05-28 云南达远软件有限公司 一种医学影像数据存证系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106055993A (zh) * 2016-08-13 2016-10-26 深圳市樊溪电子有限公司 一种用于区块链的加密存储系统及其使用方法
CN106330431A (zh) * 2016-08-29 2017-01-11 北京瑞卓喜投科技发展有限公司 基于区块链技术的数据处理方法、装置及系统
CN106354994A (zh) * 2016-08-22 2017-01-25 布比(北京)网络技术有限公司 处理医疗数据的方法及系统
CN106529177A (zh) * 2016-11-12 2017-03-22 杭州电子科技大学 一种基于医疗大数据的患者画像方法及装置
KR101720268B1 (ko) * 2015-10-26 2017-03-27 (주)아이알엠 환자정보 보호를 위한 의료영상의 클라우드 데이터베이스 구축 및 판독 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5025371B2 (ja) * 2007-07-31 2012-09-12 シスメックス株式会社 血液分析装置
CN102063579A (zh) * 2011-01-30 2011-05-18 潘亚萍 牙周电子病历系统及其操作方法
WO2016057960A1 (en) * 2014-10-10 2016-04-14 Radish Medical Solutions, Inc. Apparatus, system and method for cloud based diagnostics and image archiving and retrieval

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101720268B1 (ko) * 2015-10-26 2017-03-27 (주)아이알엠 환자정보 보호를 위한 의료영상의 클라우드 데이터베이스 구축 및 판독 방법
CN106055993A (zh) * 2016-08-13 2016-10-26 深圳市樊溪电子有限公司 一种用于区块链的加密存储系统及其使用方法
CN106354994A (zh) * 2016-08-22 2017-01-25 布比(北京)网络技术有限公司 处理医疗数据的方法及系统
CN106330431A (zh) * 2016-08-29 2017-01-11 北京瑞卓喜投科技发展有限公司 基于区块链技术的数据处理方法、装置及系统
CN106529177A (zh) * 2016-11-12 2017-03-22 杭州电子科技大学 一种基于医疗大数据的患者画像方法及装置

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473607A (zh) * 2019-06-28 2019-11-19 马鞍山师范高等专科学校 一种多终端交互式生物医学影像分析系统
CN110413366A (zh) * 2019-07-30 2019-11-05 深圳市乘法信息技术有限公司 一种基于区块链的截屏方法、装置、设备及存储介质
CN110413366B (zh) * 2019-07-30 2023-10-31 深圳市乘法信息技术有限公司 一种基于区块链的截屏方法、装置、设备及存储介质
CN110489577A (zh) * 2019-08-06 2019-11-22 腾讯医疗健康(深圳)有限公司 医疗影像管理方法及装置、眼底影像处理方法、电子设备
CN110489577B (zh) * 2019-08-06 2024-01-26 腾讯医疗健康(深圳)有限公司 医疗影像管理方法及装置、眼底影像处理方法、电子设备
CN111061811B (zh) * 2019-12-16 2023-09-15 浙江和仁科技股份有限公司 基于区块链和云服务的健康大数据管理系统
CN111061811A (zh) * 2019-12-16 2020-04-24 张云峰 基于区块链和云服务的健康大数据管理系统
CN111710431A (zh) * 2020-06-17 2020-09-25 安徽科大讯飞医疗信息技术有限公司 一种识别同义诊断名称的方法、装置、设备及存储介质
CN111710431B (zh) * 2020-06-17 2023-12-22 讯飞医疗科技股份有限公司 一种识别同义诊断名称的方法、装置、设备及存储介质
CN111798967A (zh) * 2020-07-18 2020-10-20 贵州精准健康数据有限公司 一种智慧超声检测系统
CN111916217A (zh) * 2020-08-07 2020-11-10 上海交通大学医学院附属第九人民医院 基于区块链的医疗数据管理方法、系统、存储介质及终端
CN112071404A (zh) * 2020-09-04 2020-12-11 河南中医药大学 一种基于计算机的医学影像处理系统
CN112233812A (zh) * 2020-09-22 2021-01-15 广州思达信息科技有限公司 基于区块链的医疗诊断系统
CN112614586A (zh) * 2020-12-15 2021-04-06 广东德澳智慧医疗科技有限公司 一种基于医学影像和区块链的远程疾病智能诊断系统
CN113077891A (zh) * 2021-04-15 2021-07-06 王小娟 基于算法、区块链和医学影像的大数据疾病诊断系统
CN113096793A (zh) * 2021-04-15 2021-07-09 王小娟 基于医学影像、算法和区块链的远程医疗诊断系统
CN115240819A (zh) * 2021-04-22 2022-10-25 西门子医疗有限公司 用于传输多个医学图像的方法
CN115240819B (zh) * 2021-04-22 2023-09-08 西门子医疗有限公司 用于传输多个医学图像的方法
CN113223654A (zh) * 2021-06-04 2021-08-06 杭州云呼网络科技有限公司 一种医学检验报告单的智能解读管理平台
CN113707289A (zh) * 2021-07-16 2021-11-26 联影智能医疗科技(北京)有限公司 医学人工智能平台及其搭建方法
CN113707289B (zh) * 2021-07-16 2023-11-10 联影智能医疗科技(北京)有限公司 医学人工智能平台及其搭建方法
CN113658667A (zh) * 2021-08-17 2021-11-16 岱川医疗(深圳)有限责任公司 内窥镜工作站及云储存装置
CN113674840A (zh) * 2021-08-24 2021-11-19 平安国际智慧城市科技股份有限公司 医学影像共享方法、装置、电子设备及存储介质
CN113674840B (zh) * 2021-08-24 2023-11-03 深圳平安智慧医健科技有限公司 医学影像共享方法、装置、电子设备及存储介质
CN113946851A (zh) * 2021-10-21 2022-01-18 平安国际智慧城市科技股份有限公司 医疗图像的管理方法、装置、电子设备以及存储介质
CN114023430A (zh) * 2021-10-27 2022-02-08 深圳市普朗信息技术有限公司 一种基于5g区块链的医疗服务系统
CN114095757A (zh) * 2021-11-17 2022-02-25 南通市肿瘤医院 基于云端的医院放射科自学习影像传输系统
CN116016700A (zh) * 2022-12-09 2023-04-25 北京京东拓先科技有限公司 一种医学影像的传输方法和装置
CN115842679A (zh) * 2022-12-30 2023-03-24 江西曼荼罗软件有限公司 一种基于数字信封技术的数据传输方法及系统
CN117974659A (zh) * 2024-03-29 2024-05-03 重庆医科大学绍兴柯桥医学检验技术研究中心 一种医学影像计算机辅助分析方法、系统
CN117974659B (zh) * 2024-03-29 2024-06-04 重庆医科大学绍兴柯桥医学检验技术研究中心 一种医学影像计算机辅助分析方法、系统

Also Published As

Publication number Publication date
CN108885899B (zh) 2022-02-08
CN108885899A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2018176484A1 (zh) 医学影像传输数据的处理方法、装置及电子设备
JP7411017B2 (ja) 健康データを匿名化し、分析のために地理的領域を横断して健康データを修正及び編集するシステム及び方法
Khalid et al. Privacy-preserving artificial intelligence in healthcare: Techniques and applications
US10164950B2 (en) Controlling access to clinical data analyzed by remote computing resources
WO2022062399A1 (zh) 基于区块链网络的诊断方法、装置和区块链网络系统
EP3511851A1 (en) Storing and accessing medical datasets on the blockchain
US11586742B2 (en) Data processing method, data processing device, and computer readable storage medium
KR20190069551A (ko) 블록체인-기반 데이터 프로세싱 방법 및 디바이스
CN110210234B (zh) 转诊时医疗信息的迁移方法、装置、计算机设备和存储介质
CN110634544A (zh) 基于区块链的病历数据处理方法、装置、存储介质和设备
CN110010213A (zh) 电子病历存储方法、系统、装置、设备及可读存储介质
JP2015515659A (ja) 患者に関連するデータレコードを処理するための方法
CN109947854B (zh) 基于区块链的电子病历处理方法、装置、设备和介质
US9009075B2 (en) Transfer system for security-critical medical image contents
EP3799052A1 (en) Providing and receiving medical data records
CN111128325B (zh) 医疗数据存储方法及装置、电子设备和存储介质
US20150254416A1 (en) Method and system for providing medical advice
Alsudani et al. Blockchain-based e-medical record and data security service management based on IoMT resource
WO2019095552A1 (zh) 区域医疗电子病历安全协同整合系统及方法
CN112735566B (zh) 医学影像的管理方法、装置、计算机设备和存储介质
CN113722731A (zh) 一种医疗数据共享方法、装置、电子设备及存储介质
Prabhudeva An Authorization Framework for Preserving Privacy of Big Medical Data via Blockchain in Cloud Server
WO2020087792A1 (zh) 人工智能的病种分析方法及装置、存储介质、计算机设备
CN115495787A (zh) 医学数据的处理方法、系统、电子设备及介质
CN115831302A (zh) 用于对疾控数据进行管理的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/02/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17904311

Country of ref document: EP

Kind code of ref document: A1