CN113073227A - 一种高电导率形变Cu-Fe系原位复合材料的制备方法 - Google Patents

一种高电导率形变Cu-Fe系原位复合材料的制备方法 Download PDF

Info

Publication number
CN113073227A
CN113073227A CN202110320756.4A CN202110320756A CN113073227A CN 113073227 A CN113073227 A CN 113073227A CN 202110320756 A CN202110320756 A CN 202110320756A CN 113073227 A CN113073227 A CN 113073227A
Authority
CN
China
Prior art keywords
graphene
composite material
conductivity
situ composite
deformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110320756.4A
Other languages
English (en)
Other versions
CN113073227B (zh
Inventor
刘克明
盛晓春
赫广雨
韩宁乐
李沐林
沈智
黄会明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Institute of Technology
Original Assignee
Nanchang Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Institute of Technology filed Critical Nanchang Institute of Technology
Priority to CN202110320756.4A priority Critical patent/CN113073227B/zh
Publication of CN113073227A publication Critical patent/CN113073227A/zh
Application granted granted Critical
Publication of CN113073227B publication Critical patent/CN113073227B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

一种高电导率形变Cu‑Fe系原位复合材料的制备方法,其步骤如下:(1)采用惰性气氛保护对石墨烯、铁粉和铜粉等进行液氮低温球磨,使石墨烯对铁粉进行有效包覆,制备适合石墨烯Cu‑Fe系合金熔铸的混合粉;(2)采用中频感应熔炼炉熔融电解铜块,并在熔融过程中加入球磨混合粉和适量润湿剂,促使混合粉末有效分散,通过石墨模浇铸石墨烯Cu‑Fe系合金铸锭;(3)将浇铸的石墨烯Cu‑Fe系合金铸锭进行预备热处理、热轧和多道次冷拔变形;(4)对最终变形的石墨烯Cu‑Fe系原位复合材料进行时效处理,调控其电导率、强度和塑韧性,制备综合性能良好的高电导率形变Cu‑Fe系原位复合材料。

Description

一种高电导率形变Cu-Fe系原位复合材料的制备方法
技术领域
本发明属于有色金属材料制备技术领域,尤其是涉及一种综合性能良好的高电导率形变Cu-Fe系原位复合材料的制备方法。
背景技术
形变铜基原位复合材料是自20世纪七十年代末逐渐发展起来的。哈佛大学BevkJ.等人研究发现,经大变形后的铸态Cu-20%Nb合金可形成Nb纤维分布在Cu基体上的复合材料,其抗拉强度和电导率分别可达2000MPa和接近70%IACS。这类在变形加工过程中原位形成纤维组织的复合材料称为形变原位复合材料,高强度和良好电导率相匹配的优异综合性能是该类材料的显著特点。大量研究表明,具有体心立方(b.c.c.)结构的过渡族金属Nb、W、V、Mo、Cr及Fe和具有面心立方(f.c.c.)结构的Ag等与Cu形成的合金具有类似的组织特点,但因合金元素种类和制备方法等的不同,材料的力学性能和电导率等存在一定差异。
近年来,形变Cu-Fe原位复合材料一直是高性能铜基材料的研究热点之一,究其原因主要有两个方面。一是Fe来源广、成本低,且Cu-Fe材料具有导电性能与力学性能的可调控性及组合潜力,从而促使人们不断探究提高其导电性能和解决其“力学性能与导电性能”矛盾的实现手段和科学内涵;二是许多高新技术领域对高性能导电材料的重大需求,尤其是大规模集成电路、高强磁场线圈、高速电气化铁路及现代通讯等,不断推动着该类材料研究的开展与深入。但Fe在Cu基体中的高温固溶度高、低温扩散速度慢,导致合金中固溶Fe原子难以充分析出。而固溶于Cu基体中的Fe原子会引起电子波强烈散射,严重降低Cu基体的导电性能,致使形变Cu-Fe原位复合材料的电导率通常不足40%IACS。
目前,调控形变Cu-Fe原位复合材料强度和电导率的主要方法有中间热处理和多元合金化。熔铸法制备的Cu-Fe合金,Cu基体中的Fe含量远远超过其平衡浓度,因此在变形过程中对材料进行中间热处理是非常必要的。但由于低温下Fe在Cu基体中的扩散速度慢,已有研究往往采用长时间扩散退火改善材料的电导率,但长时间热处理易引起Fe纤维粗化,致使材料的强度迅速降低。添加第三组元有可能提供更多的热力学和动力学途径,改善材料的综合性能。但大量已有研究表明,第三组元的加入可不同程度地提高材料的强度,然而往往对材料的电导率产生不利影响,即使少有的第三组元可增加材料的电导率,增幅亦相当有限。
上述对形变Cu-Fe系原位复合材料制备方法的分析表明,由于Cu基体中固溶Fe原子难以充分析出且对材料的电导率损害严重,尽管中间热处理和多元合金化可在一定程度上改善材料的综合性能,但仍难以获得一些满足高新技术领域要求的高电导率形变Cu-Fe系原位复合材料。因此,非常有必要研制一种新的高电导率形变Cu-Fe系原位复合材料制备方法,抑止Cu基体中Fe原子的固溶,在不损害材料强度等力学性能的前提下有效提高材料的电导率,制备出综合性能良好的高电导率形变Cu-Fe系原位复合材料。
发明内容
针对形变Cu-Fe原位复合材料基体中固溶Fe原子含量较高,且现有中间热处理和多元合金化等工艺难以有效促进固溶原子析出等问题,本发明提供了一种高电导率形变Cu-Fe原位复合材料的制备方法,采用石墨烯包覆Fe制备形变Cu-Fe原位复合材料,抑止Fe原子固溶,有效提高材料电导率,并不损害材料强度等力学性能,从而显著改善材料综合性能。
为实现本发明的目的,本发明采用的技术方案为:
一种高电导率形变Cu-Fe系原位复合材料的制备方法,包括以下步骤:
(1)采用惰性气氛保护对石墨烯、铁粉和铜粉进行液氮低温球磨,使石墨烯对铁粉进行有效包覆,制备适合石墨烯Cu-Fe系合金熔铸的混合粉;
(2)采用中频感应熔炼炉熔融电解铜块,并在熔融过程中加入球磨混合粉和适量润湿剂,促使混合粉末有效分散,通过石墨模浇铸石墨烯Cu-Fe系合金铸锭;
(3)将浇铸的石墨烯Cu-Fe系合金铸锭进行预备热处理、热轧和多道次冷拔变形,制备具有原位生成的纳米级纤维强化石墨烯Cu-Fe系原位复合材料;
(4)对最终变形的石墨烯Cu-Fe系原位复合材料进行时效处理,调控其电导率、强度和塑韧性。
优选情况下,步骤(1)和(2)中,石墨烯Cu-Fe系合金的配方成分质量组成为:铁粉为8-14%,粒径为2-5μm;石墨烯为铁粉的1/12-1/8,径向平均尺寸为5-12μm;铜粉为石墨烯与铁粉总量的1/4-1/2,粒径为40-50μm;润湿剂为0.5-1%;铜块为余量。
优选情况下,步骤(1)中,液氮低温球磨在氩气气氛保护下进行;球料质量比值为15-30;球磨时间为2-3h,其中先对铁粉和石墨烯进行球磨1.5-2.5h,后加入铜粉再球磨0.5-1h;转速为250-350r/min。
优选情况下,步骤(2)中,采用重力加入法将润湿剂和球磨混合粉加入铜熔体,即将铝箔包覆定量的润湿剂和混合粉并放置于熔炼炉的加料盒中,待熔体形成并静置2-3min后倾倒加料盒加入。
优选情况下,步骤(3)中,预备热处理温度为960-1080℃,时间为2-8h,冷却方式为水淬;热轧起始温度为850℃,热轧过程温度控制在780℃以上;冷拔变形在室温下进行。
优选情况下,步骤(4)中,最终时效处理温度为250-700℃,时间为0-6h,冷却方式为随炉冷却。
本发明的另一目的是提供一种高电导率形变Cu-Fe系原位复合材料,由上述制备方法制得。
本发明的优点在于:
(1)采用液氮低温球磨使石墨烯对铁粉进行有效包覆,抑止Fe原子在Cu基体中的固溶,并通过铜粉的稀释使混合粉与铜在熔铸过程中形成良好结合。
(2)将适量润湿剂和球磨混合粉同时加入铜熔体,减少混合粉在熔铸过程中的团聚,使第二相组织尺寸更细小、分布更均匀。
(3)采用预备热处理、热轧和冷拔变形等,原位生成纳米级纤维,制备石墨烯形变Cu-Fe原位复合材料。
(4)采用最终时效热处理,根据实际需要调控材料的电导率、强度和延伸率等,使最终材料具有高电导率和良好综合性能。
本发明采用石墨烯包覆铁制备形变Cu-Fe系原位复合材料,不仅具有其他形变Cu-Fe系原位复合材料不可比拟的电导率优势,而且拥有良好的强度等力学性能,较好地解决了形变铜基原位复合材料力学性能和电导率之间的矛盾,可以满足大规模集成电路、高强磁场线圈、高速电气化铁路及现代通讯等领域对高性能导电材料的重大需求,对突破形变Cu-Fe系原位复合材料的研发瓶颈具有重要意义。
附图说明
图1为实施例四制得的Cu-14Fe原位复合材料EDS分析图谱。
图2为对比例一制得的Cu-14Fe原位复合材料EDS分析图谱。
具体实施方式
实施例一
(1)按质量百分比分别称取铁粉8%、石墨烯0.8%和铜粉3%,采用球料质量比值为15,球磨时间为2h(先对铁粉和石墨烯进行球磨1.5h,后加入铜粉再球磨0.5h),转速为250r/min的工艺对混合粉进行液氮低温球磨。
(2)按质量百分比称取余量铜块,进行中频感应熔炼,待熔体形成并静置2-3min后,将0.6%的润湿剂镁和球磨混合粉加入铜熔体,熔铸成石墨烯Cu-Fe合金棒。
(3)将石墨烯Cu-Fe合金棒在960℃保温4h后水淬,然后在850℃热轧,热轧过程温度控制在780℃以上,热轧棒在室温下进行多道次冷拔获得冷变形应变量为6的石墨烯形变Cu-Fe原位复合材料。
(4)将冷变形应变量为6的石墨烯形变Cu-Fe原位复合材料在350℃保温1小时,然后随炉冷却至室温,获得高电导率石墨烯形变Cu-Fe原位复合材料。
本实施例制备的形变Cu-8Fe原位复合材料的抗拉强度736MPa,电导率72.4%IACS,延伸率3.9%。
实施例二
(1)按质量百分比分别称取铁粉10%、石墨烯1%和铜粉3%,采用球料质量比值为20,球磨时间为2h(先对铁粉和石墨烯进行球磨1.5h,后加入铜粉再球磨0.5h),转速为300r/min的工艺对混合粉进行液氮低温球磨。
(2)按质量百分比称取余量铜块,进行中频感应熔炼,待熔体形成并静置2-3min后,将0.7%的润湿剂镁和球磨混合粉加入铜熔体,熔铸成石墨烯Cu-Fe合金棒。
(3)将石墨烯Cu-Fe合金棒在1000℃保温4h后水淬,然后在850℃热轧,热轧过程温度控制在780℃以上,热轧棒在室温下进行多道次冷拔获得冷变形应变量为6的石墨烯形变Cu-Fe原位复合材料。
(4)将冷变形应变量为6的石墨烯形变Cu-Fe原位复合材料在400℃保温2小时,然后随炉冷却至室温,获得高电导率石墨烯形变Cu-Fe原位复合材料。
本实施例制备的形变Cu-10Fe原位复合材料的抗拉强度827MPa,电导率72.8%IACS,延伸率4.1%。
实施例三
(1)按质量百分比分别称取铁粉12%、石墨烯1.2%和铜粉4%,采用球料质量比值为20,球磨时间为3h(先对铁粉和石墨烯进行球磨2h,后加入铜粉再球磨1h),转速为300r/min的工艺对混合粉进行液氮低温球磨。
(2)按质量百分比称取余量铜块,进行中频感应熔炼,待熔体形成并静置2-3min后,将0.8%的润湿剂镁和球磨混合粉加入铜熔体,熔铸成石墨烯Cu-Fe合金棒。
(3)将石墨烯Cu-Fe合金棒在1040℃保温6h后水淬,然后在850℃热轧,热轧过程温度控制在780℃以上,热轧棒在室温下进行多道次冷拔获得冷变形应变量为6的石墨烯形变Cu-Fe原位复合材料。
(4)将冷变形应变量为6的石墨烯形变Cu-Fe原位复合材料在450℃保温3小时,然后随炉冷却至室温,获得高电导率石墨烯形变Cu-Fe原位复合材料。
本实施例制备的形变Cu-12Fe原位复合材料的抗拉强度919MPa,电导率73.4%IACS,延伸率4.1%。
实施例四
(1)按质量百分比分别称取铁粉14%、石墨烯1.2%和铜粉4%,采用球料质量比值为30,球磨时间为3h(先对铁粉和石墨烯进行球磨2h,后加入铜粉再球磨1h),转速为350r/min的工艺对混合粉进行液氮低温球磨。
(2)按质量百分比称取余量铜块,进行中频感应熔炼,待熔体形成并静置2-3min后,将0.9%的润湿剂镁和球磨混合粉加入铜熔体,熔铸成石墨烯Cu-Fe合金棒。
(3)将石墨烯Cu-Fe合金棒在1080℃保温6h后水淬,然后在850℃热轧,热轧过程温度控制在780℃以上,热轧棒在室温下进行多道次冷拔获得冷变形应变量为6的石墨烯形变Cu-Fe原位复合材料。
(4)将冷变形应变量为6的石墨烯形变Cu-Fe原位复合材料在500℃保温4小时,然后随炉冷却至室温,获得高电导率石墨烯形变Cu-Fe原位复合材料。
本实施例制备的形变Cu-14Fe原位复合材料的抗拉强度986MPa,电导率73.9%IACS,延伸率4.2%。
对比例一
制备工艺与实施例四基本相同,所不同的是步骤(1)中不添加石墨烯,最终得到的Cu-14Fe原位复合材料的抗拉强度、电导率和延伸率分别仅为789MPa、51.2%IACS和3.7%。
图1和图2分别示出了实施例四和对比例一制得的Cu-14Fe原位复合材料的基体EDS分析。可以看出,石墨烯Cu-14Fe合金基体中的含Fe质量百分数明显低于无石墨烯Cu-14Fe合金,表明石墨烯的加入可有效抑止基体中Fe原子的固溶,从而显著提高材料的电导率。
以上所述仅是本发明的优选实施例,应当指出,对于本领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出多种改进和变型,这些改进和变型也应视为在本发明的保护范围之内。

Claims (6)

1.一种高电导率形变Cu-Fe系原位复合材料的制备方法,其特征在于,包括以下步骤:
(1)采用惰性气氛保护对石墨烯、铁粉和铜粉进行液氮低温球磨,使石墨烯对铁粉进行有效包覆,制备适合石墨烯Cu-Fe系合金熔铸的混合粉;
(2)采用中频感应熔炼炉熔融电解铜块,并在熔融过程中加入球磨混合粉和适量润湿剂,促使混合粉末有效分散,通过石墨模浇铸石墨烯Cu-Fe系合金铸锭;
(3)将浇铸的石墨烯Cu-Fe系合金铸锭进行预备热处理、热轧和多道次冷拔变形,制备具有原位生成的纳米级纤维强化石墨烯Cu-Fe系原位复合材料;
(4)对最终变形的石墨烯Cu-Fe系原位复合材料进行时效处理,调控其电导率、强度和塑韧性。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)和(2)中,石墨烯Cu-Fe系合金的配方成分质量组成为:铁粉为8-14%,粒径为2-5μm;石墨烯为铁粉的1/12-1/8,径向平均尺寸为5-12μm;铜粉为石墨烯与铁粉总量的1/4-1/2,粒径为40-50μm;润湿剂为0.5-1%;铜块为余量。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,液氮低温球磨在氩气气氛保护下进行;球料质量比值为15-30;球磨时间为2-3h,其中先对铁粉和石墨烯进行球磨1.5-2.5h,后加入铜粉再球磨0.5-1h;转速为250-350r/min。
4.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,预备热处理温度为960-1080℃,时间为2-8h,冷却方式为水淬;热轧起始温度为850℃,热轧过程温度控制在780℃以上;冷拔变形在室温下进行。
5.根据权利要求1所述的制备方法,其特征在于,步骤(4)中,最终时效处理温度为250-700℃,时间为0-6h,冷却方式为随炉冷却。
6.一种高电导率形变Cu-Fe系原位复合材料,由权利要求1-5之一所述的制备方法制得。
CN202110320756.4A 2021-03-25 2021-03-25 一种高电导率形变Cu-Fe系原位复合材料的制备方法 Active CN113073227B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110320756.4A CN113073227B (zh) 2021-03-25 2021-03-25 一种高电导率形变Cu-Fe系原位复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110320756.4A CN113073227B (zh) 2021-03-25 2021-03-25 一种高电导率形变Cu-Fe系原位复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN113073227A true CN113073227A (zh) 2021-07-06
CN113073227B CN113073227B (zh) 2022-02-01

Family

ID=76611598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110320756.4A Active CN113073227B (zh) 2021-03-25 2021-03-25 一种高电导率形变Cu-Fe系原位复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN113073227B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116024453A (zh) * 2022-12-30 2023-04-28 酒泉职业技术学院(甘肃广播电视大学酒泉市分校) 一种稀土微合金化CuFe原位复合材料配方及其制备工艺

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709400A (zh) * 2009-12-11 2010-05-19 江西省科学院应用物理研究所 硼、银、稀土元素添加Cu-Fe原位复合材料及其制备方法
CN101775520A (zh) * 2010-02-25 2010-07-14 江西省科学院应用物理研究所 一种利用磁场处理制备高性能Cu-Fe形变原位复合材料的方法
CN105063405A (zh) * 2015-06-25 2015-11-18 中国航空工业集团公司北京航空材料研究院 一种铜基烯合金的制备方法
CN105112710A (zh) * 2015-06-25 2015-12-02 中国航空工业集团公司北京航空材料研究院 一种铜基烯合金
CN105364068A (zh) * 2015-10-19 2016-03-02 天津大学 一种三维石墨烯原位包覆铜复合材料的制备方法
CN106591622A (zh) * 2016-12-30 2017-04-26 宁波墨西科技有限公司 一种石墨烯‑碳纳米管复合改性铜铁合金及其制备方法
CN106702195A (zh) * 2017-01-12 2017-05-24 苏州思创源博电子科技有限公司 一种石墨烯铜复合导体的制备方法
CN106756207A (zh) * 2016-12-01 2017-05-31 南昌工程学院 一种高强高导形变Cu‑Cr‑Ag原位复合材料的短流程制备方法
CN108330312A (zh) * 2018-03-06 2018-07-27 昆明理工大学 一种金属包覆的石墨烯增强金属基复合材料的制备方法
CN110125385A (zh) * 2019-04-15 2019-08-16 中国航发北京航空材料研究院 一种基于原位合成的石墨烯铜基复合材料的制备方法
CN110238380A (zh) * 2019-04-24 2019-09-17 中国科学院山西煤炭化学研究所 一种石墨烯增强高速列车制动闸片材料及其制备方法
CN110923662A (zh) * 2019-10-30 2020-03-27 北京碳垣新材料科技有限公司 石墨烯-金属复合料的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709400A (zh) * 2009-12-11 2010-05-19 江西省科学院应用物理研究所 硼、银、稀土元素添加Cu-Fe原位复合材料及其制备方法
CN101775520A (zh) * 2010-02-25 2010-07-14 江西省科学院应用物理研究所 一种利用磁场处理制备高性能Cu-Fe形变原位复合材料的方法
CN105063405A (zh) * 2015-06-25 2015-11-18 中国航空工业集团公司北京航空材料研究院 一种铜基烯合金的制备方法
CN105112710A (zh) * 2015-06-25 2015-12-02 中国航空工业集团公司北京航空材料研究院 一种铜基烯合金
CN105364068A (zh) * 2015-10-19 2016-03-02 天津大学 一种三维石墨烯原位包覆铜复合材料的制备方法
CN106756207A (zh) * 2016-12-01 2017-05-31 南昌工程学院 一种高强高导形变Cu‑Cr‑Ag原位复合材料的短流程制备方法
CN106591622A (zh) * 2016-12-30 2017-04-26 宁波墨西科技有限公司 一种石墨烯‑碳纳米管复合改性铜铁合金及其制备方法
CN106702195A (zh) * 2017-01-12 2017-05-24 苏州思创源博电子科技有限公司 一种石墨烯铜复合导体的制备方法
CN108330312A (zh) * 2018-03-06 2018-07-27 昆明理工大学 一种金属包覆的石墨烯增强金属基复合材料的制备方法
CN110125385A (zh) * 2019-04-15 2019-08-16 中国航发北京航空材料研究院 一种基于原位合成的石墨烯铜基复合材料的制备方法
CN110238380A (zh) * 2019-04-24 2019-09-17 中国科学院山西煤炭化学研究所 一种石墨烯增强高速列车制动闸片材料及其制备方法
CN110923662A (zh) * 2019-10-30 2020-03-27 北京碳垣新材料科技有限公司 石墨烯-金属复合料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蒋蓉蓉等: "原位化学还原石墨烯增强铜基复合材料制备及性能研究", 《热加工工艺》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116024453A (zh) * 2022-12-30 2023-04-28 酒泉职业技术学院(甘肃广播电视大学酒泉市分校) 一种稀土微合金化CuFe原位复合材料配方及其制备工艺

Also Published As

Publication number Publication date
CN113073227B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
US10460849B2 (en) Lightweight, high-conductivity, heat-resistant, and iron-containing aluminum wire, and preparation process thereof
CN105609155B (zh) 一种高导电率硬铝导线单丝及其制备方法
CN108220662B (zh) 一种碳微合金化Cu-Fe系材料及制备方法
CN107012356B (zh) 一种含石墨烯的高强度高导电铜基合金坯料及其制备方法
CN109022896A (zh) 一种具有电磁波屏蔽性能的高强高导耐热Cu-Fe-Y-Mg合金材料及其制备方法
CN111549253B (zh) 一种稀土铜铁合金及制备方法和应用
CN102864344A (zh) 一种电缆用稀土铝合金导体及其制造方法
CN104164589B (zh) 一种高强耐磨铜合金及其制备方法
CN111349820A (zh) 一种高导电率耐热Al-Zr-Er合金导线材料及其制备方法
CN106676334A (zh) 高强度高电导率铝钪合金及其制备方法和用途
CN102851527A (zh) 一种铜银镁合金接触线及其制备方法
CN112251627A (zh) 一种高强高导Cu-Sc合金及其制备方法
CN104805335A (zh) 低电阻率铝合金杆
CN113073227B (zh) 一种高电导率形变Cu-Fe系原位复合材料的制备方法
CN104911408A (zh) 一种硬铝导线单丝及其制备方法
CN108198646B (zh) 一种铝包铝合金线及其制备方法
CN113073223B (zh) 一种石墨烯形变Cu-Cr系原位复合材料的制备方法
CN101525731B (zh) Cu-Fe原位复合铜基材料及其制备方法
CN112210692A (zh) 一种铍青铜长导轨及其制造方法
CN113913643B (zh) 一种Cu-Fe-Re原位复合强化铜合金材料及其制备方法
CN114959350A (zh) 一种高性能Cu-Hf-RE合金及其制备方法
CN113502423A (zh) 一种高塑性、高强度铸造铍铝合金及其制备方法
CN105177347A (zh) 一种适合于锡磷青铜合金的含稀土复合变质剂
CN114990376B (zh) 一种三元高强高导铜合金及其制备方法
CN116024453A (zh) 一种稀土微合金化CuFe原位复合材料配方及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant