CN113070090A - 一种十二面体单原子铁类Fenton催化剂及其制备与应用 - Google Patents

一种十二面体单原子铁类Fenton催化剂及其制备与应用 Download PDF

Info

Publication number
CN113070090A
CN113070090A CN202110363464.9A CN202110363464A CN113070090A CN 113070090 A CN113070090 A CN 113070090A CN 202110363464 A CN202110363464 A CN 202110363464A CN 113070090 A CN113070090 A CN 113070090A
Authority
CN
China
Prior art keywords
catalyst
iron
preparation
monatomic
dodecahedral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110363464.9A
Other languages
English (en)
Inventor
孔令涛
张开胜
杨武
刘锦淮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN202110363464.9A priority Critical patent/CN113070090A/zh
Publication of CN113070090A publication Critical patent/CN113070090A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种十二面体单原子铁类Fenton催化剂的制备方法及其应用。本发明是将乙酰丙酮铁、六水合硝酸锌、二甲基咪唑溶于甲醇,超声溶解并搅拌均匀,将得到的反应混合物转入反应釜中,通过溶剂热反应制备出由MOFs负载的铁基材料前驱体,然后在氩氛围下高温煅烧得到具有大比表面积的十二面体单原子铁催化剂,并将其应用于异相芬顿反应中,实现对磺胺类抗生素的高效降解。该催化剂具有好的循环使用性能、宽的pH适用范围(3~8),以及制备方法简单等特点,具有较高的应用价值,可用于抗生素废水的处理。

Description

一种十二面体单原子铁类Fenton催化剂及其制备与应用
技术领域
发明涉及一种纳米尺度的单原子铁催化剂及其制备方法和应用,该催化剂能通过活化过氧化氢实现对废水中磺胺类抗生素的高效去除,属于环境保护及处理的技术领域。
背景技术
水生环境中的抗生素残留物引起广泛关注,因为它们可能引起抗生素抗性细菌(ARB)和抗生素抗性基因(ARG),由于它们对水生生态系统和人类健康的危害,它们被认为是新型的水污染物。磺胺类由于价格低廉且性能稳定而属于世界范围内广泛使用的一类抗生素,而对磺胺类抗生素污染物的处理是现有水处理技术的一大挑战,去除效率低。与其他磺胺类抗生素相比,磺胺嘧啶在污水厂污染物中具有很高的检出频率(近100%)和高浓度(高达216ng/L)。除了相关细菌耐药性的传播外,磺胺嘧啶的广泛使用还可能带来相关的毒性风险。根据全球化学品统一分类和标签制度发布的标准,磺胺嘧啶被归类为剧毒有机污染物。因此,必须解决抗生素排入环境之前的污染问题,以控制ARB和ARG的传播途径。
目前用于处理污水中抗生素等有机污染物的方法较多,主要包括物理吸附、生化法、高级氧化法等。然而物理方法仅使抗生素污染物发生相的变化而无法使其分解变得无害;生化法需要很长时间,常用于处理低浓度的污染物且难以实现抗生素的降解。高级氧化技术通过产生氧化性极强的活性自由基,能够将机化合物大分子降解成为低毒或无毒的小分子物质,直至最终降解成为二氧化碳和水等无机物质。因此,目前高级氧化法被认为是去除水中有机物的最有效方法之一。铁基材料成本低廉,无毒,催化活性好,对于废水中的抗生素的去除具有明显的优势。
发明内容
本发明的目的是提供一种纳米尺度的十二面体单原子铁类Fenton催化剂及其制备方法,并将其应用于降解水中磺胺类抗生素。
本发明所提供的纳米尺度的十二面体单原子铁类Fenton催化剂,平均比表面积为600~800m2/g,平均孔径为2~3nm,十二面体结构的尺寸为300~600nm,是微孔介孔混合存在的结构。
本发明所要提供的纳米尺度的十二面体单原子铁类Fenton催化剂的制备方法,采用以下步骤:
(1)铁盐、锌盐、二甲基咪唑溶于甲醇中,超声,搅拌,得到棕红色溶液。
(2)将得到棕红色溶液转移到反应釜中,溶剂热反应3~5h,反应温度为100~150℃。
(3)冷却至室温后,将得到的棕红色沉淀收集起来,然后用N,N二甲基甲酰胺和甲醇清洗,真空干燥,得到由MOFs(金属有机骨架)负载的铁基材料前驱体。
(4)将得到的前驱体研磨成粉末之后放入管式炉中,在氩气氛围中,900-950℃高温煅烧2-4h,冷却即可得到纳米尺度的十二面体单原子铁类Fenton催化剂。
本发明上述所述的制备方法中,优选的,步骤(1)所述的铁盐为乙酰丙酮铁,锌盐为六水合硝酸锌。
本发明上述的制备方法中,优选的,步骤(1)的搅拌转速为500~900r/min,搅拌时间为0.5~2h;超声10~30min。
本发明上述所述的制备方法中,优选的,步骤(1)中铁盐、锌盐、二甲基咪唑的摩尔比为1:5-15:20-60,更优选为1:8-12:30-50,最优选为1:10:40。
本发明上述所述的制备方法中,优选的,超声,搅拌,离心均在室温下进行。
本发明上述所述的制备方法中,优选的,真空干燥温度为50~90℃,干燥时间为10~20h。
本发明所提供的纳米尺度的十二面体单原子铁类Fenton催化剂可在磺胺类抗生素降解中应用。进一步的,所述催化剂可应用于磺胺类抗生素的异相芬顿降解。所述磺胺类抗生素包括但不限于磺胺嘧啶、磺胺二甲嘧啶、磺胺甲恶唑、磺胺异恶唑、磺胺间甲氧嘧啶等等。
本发明所提供的纳米尺度的十二面体单原子铁类Fenton催化剂在对磺胺嘧啶的降解应用时,可采用下述方法步骤:
将纳米尺度的十二面体单原子铁类Fenton催化剂均匀分散在含有磺胺嘧啶的待处理水样中,加入过氧化氢作为氧化剂,降解时间为60~100min,过滤去除固体催化剂,得到处理后的水;优选的,所述待处理的水体pH值为3~7。
本发明的纳米尺度的十二面体单原子铁类Fenton催化剂可实现对磺胺类抗生素的高效降解。该催化剂具有好的循环使用性能、宽的pH适用范围(3~8),以及制备方法简单等特点,具有较高的应用价值,可用于磺胺类抗生素废水的处理。
附图说明
图1为本发明专利方法下制备出的一种纳米尺度的十二面体单原子铁催化剂的扫描电子显微镜(SEM)、透射电子显微镜(TEM)、环形暗场扫描电镜(HAADF)及元素分布图,用以更好地观察本专利方法下合成的催化剂的微观形貌,可看到材料中的孤立存在的Fe单原子。右下角比例尺:(a)500nm,(b)50nm,(c)2nm。
图2为本发明专利方法下制备的一种纳米尺度的十二面体单原子铁催化剂的BET吸脱附曲线和孔径分布曲线谱图,说明材料具有较大的比表面积,具有较好的吸附性能。
图3为本发明专利方法下制备的一种纳米尺度的十二面体单原子铁类Fenton催化剂的线性扫描伏安曲线,由曲线可确定材料的起始电位与半波电位,进而可以确定材料的氧化还原活性,从数据可知催化剂有较好的催化活性,说明本专利方法下所合成的催化剂能够催化降解有机污染物。
图4为本发明制备出的一种纳米尺度的十二面体单原子铁类Fenton催化剂降解磺胺嘧啶的浓度随时间变化图。图中Fe-ISAs@CN为按本专利方法合成制备的单原子催化剂;CN为相同方法但未加Fe源得到的对比材料。
具体实施方式
下面结合具体的实施方法对本发明做详细的阐述,但本发明的实质内容并不仅限于下述实施例所述。如无特别说明,所述方法均为常规方法,所述材料均能从公开商业途径获得,本领域内的技术人员应当知晓任何基于本发明实质内容的简单变换或替代均属于本发明所要求的保护范围。
下述实施例中,采用FEI-Quanta 200型扫描电子显微镜(SEM)、HR-TEM,TalosF200X型透射电子显微镜(TEM)及JEM-ARM200F型环形暗场扫描电镜(HAADF)表征催化剂的形貌;使用Micromeritics ASAP 2020M对催化剂进行氮气吸脱附比表面积分析及粒径与孔径分布分析;使用PINE型盘环电极装置(RDE)对样品进行分析;使用UV-2550型紫外-可见光分光光度计检测处理水样中的磺胺嘧啶的浓度。
实施例1
步骤1:乙酰丙酮铁、六水合硝酸锌、二甲基咪唑溶于60mL甲醇中,其中,二甲基咪唑的摩尔浓度为0.4mol/L;六水合硝酸锌的摩尔浓度为0.1mol/L;乙酰丙酮铁的摩尔浓度为0.01mol/L,超声15min,搅拌1h,得到棕红色溶液。
步骤2:将上述棕红色溶液转移到100mL反应釜中并放入烘箱中溶剂热反应4h,反应温度为120℃。
步骤3:将上述反应得到的溶液离心分离,并用甲醇和N,N二甲基甲酰胺各洗三次,真空60℃干燥12h,得到MOFs负载的前驱体材料。
步骤4:将得到的前驱体研磨成粉末之后放入管式炉中,在氩气气氛保护下,经过930℃的高温煅烧3h,随炉冷却即可得到纳米尺度的十二面体单原子铁催化剂Fe-ISAs@CN。
将上述纳米尺度的十二面体单原子铁催化剂经SEM、TEM、HAADF表征其形貌及元素分布,可以看出是十二面体纳米材料且各元素均匀分布(图1);采用Micromeritics ASAP2020M分析仪在氮气氛围测得催化剂比表面积为727.66m2/g,平均孔径为2.164nm。吸脱附曲线和孔径分布曲线如图2;通过RDE分析了材料的氧化还原活性,确定了在氧化还原过程中转移的电子为3.8(如图3)。
本实验得到的纳米尺度的十二面体单原子铁催化剂被应用于水中磺胺嘧啶的降解(Fe-ISAs@CN/H2O2):称取上述制备的纳米尺度的十二面体单原子铁催化剂5mg加入到50mL水样中,水样中的H2O2浓度10mM、磺胺嘧啶浓度为10mg/L。在25℃,pH=3条件下进行反应,在摇床中充分震荡,在特定的时间取样并使用滤头过滤,通过紫外-可见光分光光度计检测水溶液中磺胺嘧啶的含量(图4),反应时间为60min时,去除效率达到91%。将上述反应后溶液中的催化剂过滤后重复使用,其他条件不变,5次后磺胺嘧啶的去除率仍可达到82%。
图4中,-H2O2:以H2O2进行降解磺胺嘧啶的对比实验;-CN:以未加Fe源的材料作为催化剂降解磺胺嘧啶的对比实验;-Fe-ISAs@CN:以本发明得到的催化剂进行降解磺胺嘧啶的对比实验;-CN/H2O2:添加H2O2以未加Fe源的对比材料作为催化剂进行降解磺胺嘧啶的对比实验;-Fe-ISAs@CN/H2O2:添加H2O2且以本发明催化剂进行降解磺胺嘧啶的实验。
实施例2
步骤1:乙酰丙酮铁、六水合硝酸锌、二甲基咪唑溶于60mL甲醇中,其中,二甲基咪唑的摩尔浓度为0.4mol/L;六水合硝酸锌的摩尔浓度为0.1mol/L;乙酰丙酮铁的摩尔浓度为0.01mol/L,超声15min,搅拌1h,得到棕黄色溶液。
步骤2:将上述棕红色溶液转移到100mL反应釜中并放入烘箱中溶剂热反应4小时,反应温度为120℃。
步骤3:将上述反应得到的溶液离心分离,并用甲醇和N,N二甲基甲酰胺各洗三次,真空60℃干燥12h,得到MOFs负载的前驱体材料。
步骤4:将得到的前驱体研磨成粉末之后放入管式炉中,在氩气气氛保护下,经过900℃的高温煅烧3h,冷却即可得到纳米尺度的十二面体单原子铁催化剂。
本实验得到的纳米尺度的十二面体单原子铁催化剂被应用于水中磺胺甲恶唑的降解:称取上述制备的纳米尺度的十二面体单原子铁催化剂5mg加入到50mL水样中,水样中H2O2浓度10mM、磺胺甲恶唑浓度为10mg/L。在25℃,pH=6.5条件下进行反应,在摇床中充分震荡,在特定的时间取样并使用滤头过滤,通过紫外-可见光分光光度计检测水溶液中磺胺甲恶唑的含量,反应时间为60min时,去除效率达到80%。将上述反应后溶液中的催化剂过滤后重复使用,其他条件不变,5次后磺胺嘧啶的去除率仍可达到76%。

Claims (10)

1.一种十二面体单原子铁类Fenton催化剂,平均比表面积为600~800m2/g,平均孔径为2~3nm,十二面体结构的尺寸为300~600nm。
2.一种十二面体单原子铁类Fenton催化剂的制备方法,其特征在于,包括以下步骤:
(1)铁盐、锌盐、二甲基咪唑溶于甲醇中,超声,搅拌,得到棕红色溶液;
(2)将棕红色溶液转移到反应釜中,100~150℃下反应3~5h;
(3)冷却至室温后,将得到的棕红色沉淀用N,N二甲基甲酰胺和甲醇分别清洗,真空干燥,得到铁基材料前驱体;
(4)将得到的前驱体研磨成粉末之后放入管式炉中,在氩气氛围下,900-950℃的高温煅烧2-4h,得到纳米尺度的十二面体单原子铁催化剂。
3.根据权利要求2所述的制备方法,其特征在于,步骤(1)中的铁盐为乙酰丙酮铁,锌盐为六水合硝酸锌。
4.根据权利要求2所述的制备方法,其特征在于,步骤(1)中所述的铁盐、锌盐、二甲基咪唑的摩尔比为1:5-15:20-60。
5.根据权利要求4所述制备的方法,其特征在于,所述的铁盐、锌盐、二甲基咪唑的摩尔比为1:8-12:30-50。
6.根据权利要求2所述的制备方法,其特征在于,步骤(3)所述的真空干燥温度为50~90℃,干燥时间为10~20h。
7.权利要求1所述的或者由权利要求2~6任一项所述制备方法得到的纳米尺度的十二面体单原子铁催化剂在磺胺类抗生素降解中的应用。
8.根据权利要求7所述应用,其特征在于,所述催化剂在磺胺类抗生素的异相类芬顿降解中应用。
9.根据权利要求8所述应用,其特征在于,采用下述方法步骤:
将纳米尺度的十二面体单原子铁催化剂均匀分散在含磺胺嘧啶的待处理水样中,加入过氧化氢作为氧化剂,降解时间为60~100min,过滤去除固体催化剂,得到处理后的净化水。
10.根据权利要求9所述应用,其特征在于,所述待处理水体的pH值为3~7。
CN202110363464.9A 2021-04-02 2021-04-02 一种十二面体单原子铁类Fenton催化剂及其制备与应用 Pending CN113070090A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110363464.9A CN113070090A (zh) 2021-04-02 2021-04-02 一种十二面体单原子铁类Fenton催化剂及其制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110363464.9A CN113070090A (zh) 2021-04-02 2021-04-02 一种十二面体单原子铁类Fenton催化剂及其制备与应用

Publications (1)

Publication Number Publication Date
CN113070090A true CN113070090A (zh) 2021-07-06

Family

ID=76615043

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110363464.9A Pending CN113070090A (zh) 2021-04-02 2021-04-02 一种十二面体单原子铁类Fenton催化剂及其制备与应用

Country Status (1)

Country Link
CN (1) CN113070090A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113529103A (zh) * 2021-07-28 2021-10-22 常州大学 一种制备高载量过渡金属单原子催化剂的方法
CN114618590A (zh) * 2022-01-19 2022-06-14 华东理工大学 一种铁基MOFs硫化锰复合材料的制备方法,由此得到的复合材料及其应用
CN115120613A (zh) * 2022-05-18 2022-09-30 山东鲁西药业有限公司 一种炉甘石粉的制备方法及应用
CN115430428A (zh) * 2022-10-11 2022-12-06 中建生态环境集团有限公司 一种生物炭负载铁原子簇催化剂及其制备方法
CN115785475A (zh) * 2022-12-25 2023-03-14 深圳市勇粒生物科技有限公司 抗菌金属有机框架材料及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150031908A1 (en) * 2013-07-23 2015-01-29 Northwestern University Metallated metal-organic frameworks
CN105110423A (zh) * 2015-09-08 2015-12-02 同济大学 碳气凝胶负载双金属有机骨架电芬顿阴极及其制备方法
CN105692858A (zh) * 2014-11-28 2016-06-22 中国科学院大连化学物理研究所 类芬顿进程降解污水中有机污染物的方法
US20170326536A1 (en) * 2016-05-13 2017-11-16 King Fahd University Of Petroleum And Minerals Metal organic frameworks as catalysts and hydrocarbon oxidation methods thereof
US20200197901A1 (en) * 2018-10-25 2020-06-25 Uti Limited Partnership Metal organic framework (mof) composite materials, methods, and uses thereof
CN111790445A (zh) * 2019-04-08 2020-10-20 山东百斯特环保研究院有限公司 一种双氧水异相催化氧化废水中cod的催化剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150031908A1 (en) * 2013-07-23 2015-01-29 Northwestern University Metallated metal-organic frameworks
CN105692858A (zh) * 2014-11-28 2016-06-22 中国科学院大连化学物理研究所 类芬顿进程降解污水中有机污染物的方法
CN105110423A (zh) * 2015-09-08 2015-12-02 同济大学 碳气凝胶负载双金属有机骨架电芬顿阴极及其制备方法
US20170326536A1 (en) * 2016-05-13 2017-11-16 King Fahd University Of Petroleum And Minerals Metal organic frameworks as catalysts and hydrocarbon oxidation methods thereof
US20200197901A1 (en) * 2018-10-25 2020-06-25 Uti Limited Partnership Metal organic framework (mof) composite materials, methods, and uses thereof
CN111790445A (zh) * 2019-04-08 2020-10-20 山东百斯特环保研究院有限公司 一种双氧水异相催化氧化废水中cod的催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU YANG ET AL.: "Enhanced Fenton-like degradation of sulfadiazine by single atom iron materials fixed on nitrogen-doped porous carbon", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113529103A (zh) * 2021-07-28 2021-10-22 常州大学 一种制备高载量过渡金属单原子催化剂的方法
CN114618590A (zh) * 2022-01-19 2022-06-14 华东理工大学 一种铁基MOFs硫化锰复合材料的制备方法,由此得到的复合材料及其应用
CN115120613A (zh) * 2022-05-18 2022-09-30 山东鲁西药业有限公司 一种炉甘石粉的制备方法及应用
CN115120613B (zh) * 2022-05-18 2023-09-29 山东鲁西药业有限公司 一种炉甘石粉的制备方法及应用
CN115430428A (zh) * 2022-10-11 2022-12-06 中建生态环境集团有限公司 一种生物炭负载铁原子簇催化剂及其制备方法
CN115785475A (zh) * 2022-12-25 2023-03-14 深圳市勇粒生物科技有限公司 抗菌金属有机框架材料及其制备方法与应用
CN115785475B (zh) * 2022-12-25 2023-10-31 深圳市勇粒生物科技有限公司 抗菌金属有机框架材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
Ming et al. Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation
CN113070090A (zh) 一种十二面体单原子铁类Fenton催化剂及其制备与应用
Mehdizadeh et al. Rapid microwave fabrication of new nanocomposites based on Tb-Co-O nanostructures and their application as photocatalysts under UV/Visible light for removal of organic pollutants in water
Xing et al. Preparation of TiO2/activated carbon composites for photocatalytic degradation of RhB under UV light irradiation
Huy et al. SnO2/TiO2 nanotube heterojunction: The first investigation of NO degradation by visible light-driven photocatalysis
Ma et al. Sepiolite nanofiber-supported platinum nanoparticle catalysts toward the catalytic oxidation of formaldehyde at ambient temperature: efficient and stable performance and mechanism
Zhang et al. Oxygen vacancy-rich mesoporous ZrO2 with remarkably enhanced visible-light photocatalytic performance
Xue et al. Synergy between surface adsorption and photocatalysis during degradation of humic acid on TiO2/activated carbon composites
Yuan et al. Facile synthesis of sewage sludge-derived mesoporous material as an efficient and stable heterogeneous catalyst for photo-Fenton reaction
Raju et al. Poly 3-Thenoic acid sensitized, Copper doped anatase/brookite TiO2 nanohybrids for enhanced photocatalytic degradation of an organophosphorus pesticide
Zhuang et al. Improved photocatalytic property of peony-like InOOH for degrading norfloxacin
Panahi et al. TmVO4/Fe2O3 nanocomposites: sonochemical synthesis, characterization, and investigation of photocatalytic activity
Mohamed et al. Characterization and Catalytic Properties of Nano-Sized Au Metal Catalyst on Titanium Containing High Mesoporous Silica (Ti-HMS) Synthesized by Photo-Assisted Deposition and Impregnation Methods.
Chen et al. Salt-assisted synthesis of hollow Bi2WO6 microspheres with superior photocatalytic activity for NO removal
Wu et al. Construct interesting CuS/TiO2 architectures for effective removal of Cr (VI) in simulated wastewater via the strong synergistic adsorption and photocatalytic process
Madima et al. Fabrication of magnetic recoverable Fe3O4/TiO2 heterostructure for photocatalytic degradation of rhodamine B dye
Zhao et al. MOFs-derived MnOx@ C nanosheets for peroxymonosulfate activation: Synergistic effect and mechanism
Bagherzadeh et al. A study of the DR23 dye photocatalytic degradation utilizing a magnetic hybrid nanocomposite of MIL-53 (Fe)/CoFe2O4: Facile synthesis and kinetic investigations
CN109248680B (zh) 一种低能耗化学场驱动的有机污染物降解催化剂及其应用
Bargozideh et al. Magnetic BiFeO 3 decorated UiO-66 as ap–n heterojunction photocatalyst for simultaneous degradation of a binary mixture of anionic and cationic dyes
Sun et al. Activated carbon supported CuSnOS catalyst with an efficient catalytic reduction of pollutants under dark condition
Navgire et al. β-Cyclodextrin supported MoO 3–CeO 2 nanocomposite material as an efficient heterogeneous catalyst for degradation of phenol
Ren et al. Effective mineralization of p-nitrophenol by catalytic ozonation using Ce-substituted La1‒xCexFeO3 catalyst
Zhang et al. A comparative study of different diatomite-supported TiO2 composites and their photocatalytic performance for dye degradation
Wang et al. High efficiency photocatalytic degradation of indoor formaldehyde by Ag/g-C3N4/TiO2 composite catalyst with ZSM-5 as the carrier

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination