CN113061260B - 一种稀土金属卟啉框架材料及其制备方法与应用方法 - Google Patents

一种稀土金属卟啉框架材料及其制备方法与应用方法 Download PDF

Info

Publication number
CN113061260B
CN113061260B CN202110295377.4A CN202110295377A CN113061260B CN 113061260 B CN113061260 B CN 113061260B CN 202110295377 A CN202110295377 A CN 202110295377A CN 113061260 B CN113061260 B CN 113061260B
Authority
CN
China
Prior art keywords
framework material
rare earth
htcpp
metallic
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110295377.4A
Other languages
English (en)
Other versions
CN113061260A (zh
Inventor
周小平
李丹
龙子昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN202110295377.4A priority Critical patent/CN113061260B/zh
Publication of CN113061260A publication Critical patent/CN113061260A/zh
Application granted granted Critical
Publication of CN113061260B publication Critical patent/CN113061260B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • B01J35/39
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/02Chemical warfare substances, e.g. cholinesterase inhibitors
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/28Organic substances containing oxygen, sulfur, selenium or tellurium, i.e. chalcogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/37Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/38Lanthanides other than lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/70Complexes comprising metals of Group VII (VIIB) as the central metal
    • B01J2531/72Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种稀土金属卟啉框架材料及其制备方法与应用,所述稀土金属卟啉框架材料,其通式为M‑HTCPP‑Ln;其中,M为金属铁或者金属钴或者金属镍或者金属锰或者金属锌,Ln为金属镧或者金属铕或者金属钆或者金属铈。本发明提供的稀土金属卟啉框架材料具有优异的催化性能,在一定光照条件下产生大量单线态氧,将硫芥模拟物快速地选择性氧化成绿色环保的亚砜化合物,具有很高的选择性,很好的热稳定性,可以批量放大合成,重复性好,同时合成工艺流程简单,可操作性强,具有广阔的应用前景。

Description

一种稀土金属卟啉框架材料及其制备方法与应用方法
技术领域
本发明属于光催化技术领域,具体涉及一种稀土金属卟啉框架材料及其制备方法与应用方法。
背景技术
芥子油双(2-氯乙基)硫化物(表示为HD)曾作为化学武器广泛用于第一次世界大战后期,HD作为战争毒剂,最显著的毒性就是使接触者皮肤起疱、糜烂并坏死。通过将HD选择性地氧化为亚砜是一种温和且环保的方法。在各种氧化剂中,单线态氧(1O2)尤为突出,是一种温和氧化剂,因此,开发能高效产生1O2以及快速降解HD的新型光催化剂是一项紧迫而又具有挑战性的工作。
金属有机框架材料(Metal-Organic Frameworks,MOFs)是由金属离子和有机配体自组装构成的配位框架材料,此类结构的物质不仅可能同时含有金属和有机配体的特性,还可能含有金属和有机配体均没有的新性能。作为一种新兴由于金属有机框架的结构的可调整性和永久孔隙率,具有广泛的化学和物理特性,在气体存储和分离,药物递送或催化有着广泛的应用。同时,许多基于卟啉的MOFs在一定条件下能产生单线态氧1O2,利用这一特点,它们被用于生物医学以及癌症治疗。对于合成MOF,卟啉的连接基团已有深入的研究。其中,4-5,10,15,20-四(4-羧基苯基)卟啉(H6TCPP)作为多羧酸配体,而稀土离子对硬供体原子和含有氧配体具有高度亲和力,所以稀土卟啉MOF能合成各种各样的结构,同时又具有许多有趣的特性。但目前还没有一种光催化CEES反应效率较好的金属有机框架材料。
发明内容
针对上述背景,本发明的目的在于提供一种稀土金属卟啉框架材料。
本发明另一目的在于提供上述稀土金属卟啉框架材料的制备方法。
本发明再一目的在于提供上述稀土金属卟啉框架材料在光催化氧化硫芥物种的应用。
为实现上述目的,本发明提供如下技术方案:
一种稀土金属卟啉框架材料,其通式为M-HTCPP-Ln,其中,M为金属铁、金属钴、金属镍、金属锰或金属锌,Ln为金属镧、金属铕、金属钆或金属铈。
优选地,当所述M为金属铁,Ln为金属镧时,所述稀土金属卟啉框架材料的分子式为C48H28LaN4FeO10
一种制备所述稀土金属卟啉框架材料的方法,具体为:将H6TCPP配体、金属盐和镧系金属混合后,再加入DMF和盐酸水溶液,进行加热反应完成后即得到稀土金属卟啉框架材料。
所述H6TCPP、金属盐与镧系金属的摩尔比为0.012:0.01:0.008~0.02;优选为0.012:0.01:0.085~0.012。
所述金属盐为FeCl2·4H2O、CoCl2·4H2O、NiCl2·6H2O、MnCl2·4H2O、ZnCl2·4H2O。
所述镧系金属为La2(C2O4)3·10H2O、Gd2(C2O4)3·10H2O、Eu2(C2O4)3·10H2O、CeCl3·7H2O。
所述H6TCPP与DMF的摩尔体积比为0.012mmol:2~3mL;优选为0.012mmol:2mL;所述H6TCPP与盐酸水溶液的摩尔体积比为0.012mmol:2~3mL;优选为0.012mmol:3mL。
所述加热反应的温度为130~160℃,时间为24~72小时,优选地,所述加热反应的温度为150℃,时间为50小时。
所述稀土金属卟啉框架材料在光催化氧化硫芥物种中的应用。
一种使用所述稀土金属卟啉框架材料光催化氧化硫芥物种的方法,具体为将M-HTCPP-Ln与硫芥物种混合后,置于蓝色LED灯下,进行光催化降解。
与现有成果相比,本发明具有如下有益效果:
1、本发明成功合成的金属有机框架材料,其中,根据单晶衍射表明,金属有机框架材料Fe-HTCPP-La的晶体属于单斜晶系,空间群为C2/c。根据SXRD分析及Fe-HTCPP-La的单晶结构图可知,La是八配位的,与来自四个TCPP配体的羧酸基团的一个O配位,与来自1个H6TCPP配体的羧酸基团的两个O配位,还与两个水分子的O配位,配体H6TCPP金属中心为Fe。晶胞参数为:
Figure BDA0002984135020000031
Figure BDA0002984135020000032
α=γ=90°,β=99.642(3)°,
Figure BDA0002984135020000033
2、本发明提供一套能大量合成新型稀土卟啉MOF的方法,且得到的金属有机框架材料具有很好的热稳定性,可以批量放大合成,重复性好,同时合成工艺流程简单。
3、本发明中,M-HTCPP-Ln材料在一定条件下能快速高效产生单线态氧1O2和超氧阴离子自由基O2 ·—,继而快速氧化硫芥模拟物,具有很高的选择性。
附图说明
图1为实施例1制备的M-HTCPP-Ln的粉末XRD衍射图;
图2为实施例1制备的M-HTCPP-Ln的粉末XRD衍射图;
图3为实施例1制备的M-HTCPP-Ln的粉末XRD衍射图;
图4为实施例1制备的M-HTCPP-Ln的粉末XRD衍射图;
图5为实施例1制备的TCPP-Ln的粉末XRD衍射图;
图6为实施例1制备的Fe-HTCPP-La的热分析图;
图7为实施例1制备的Fe-HTCPP-La的稳定性图;
图8为实施例1制备的Fe-HTCPP-La的框架图;
图9为实施例1制备的Fe-HTCPP-La的框架图;
图10为实施例1制备的Fe-HTCPP-La的框架图;
图11为实施例1制备的Fe-HTCPP-La的框架图;
图12为实施例1制备的Fe-HTCPP-La二氧化碳吸附等温线;
图13为实施例1制备的Fe-HTCPP-La的电子自旋共振谱捕获单线态氧图;
图14为实施例1制备的Fe-HTCPP-La的电子自旋共振谱捕获超氧阴离子自由基图;
图15为实施例1中监测Fe-HTCPP-La作为催化剂时光催化反应的1H NMR图;
图16为实施例2中光催化反应前后的Fe-HTCPP-La的粉末XRD衍射图;
图17为实施例2中光催化反应Fe-HTCPP-La可重复性测试图;
具体实施方式
下面结合具体实施例和附图,对本发明进行详细说明。本发明中H6TCPP的化学名称为4-5,10,15,20-四(4-羧基苯基)卟啉,DMF的化学名称为N,N-二甲基甲酰胺,CEES的化学名称为2-氯乙基乙基硫醚,CEESO的化学名称为1-氯-2-(乙磺酰基)乙烷。
实施例1
Fe-HTCPP-La的制备:
将配体H6TCPP(0.012mmol)、FeCl2·4H2O(0.01mmol)和La2(C2O4)3·10H2O(0.012mmol)加入到硬质玻璃管中,然后添加DMF(2mL)和0.8N盐酸水溶液(3mL),封装后将混合物放在烘箱里加热,在150℃下放置50小时,以5℃/h的速率冷却至室温。开管后,过滤收集晶体,用20mL DMF洗涤3次、20mL甲醇洗涤3次,干燥,即得到金属有机框架材料,记为Fe-HTCPP-La。
实施例2
Co-HTCPP-La的制备:
将配体H6TCPP(0.012mmol)、CoCl2·4H2O(0.01mmol)和La2(C2O4)3·10H2O(0.01mmol)加入到硬质玻璃管中,然后添加DMF(2mL)和0.8N盐酸水溶液(3mL),封装后将混合物放在烘箱里加热,在150℃下放置50小时,以5℃/h的速率冷却至室温。开管后,过滤收集晶体,用20mL DMF洗涤3次、20mL甲醇洗涤3次,干燥,即得到金属有机框架材料,记为Co-HTCPP-La。
实施例3
Ni-HTCPP-La的制备:
将配体H6TCPP(0.012mmol)、NiCl2·6H2O(0.01mmol)和La2(C2O4)3·10H2O(0.015mmol)加入到硬质玻璃管中,然后添加DMF(2mL)和0.8N盐酸水溶液(2mL),封装后将混合物放在烘箱里加热,在150℃下放置50小时,以5℃/h的速率冷却至室温。开管后,过滤收集晶体,用20mL DMF洗涤3次、20mL甲醇洗涤3次,干燥,即得到金属有机框架材料,记为Ni-HTCPP-La。
实施例4
Mn-HTCPP-La的制备:
将配体H6TCPP(0.012mmol)、MnCl2·4H2O(0.01mmol)和La2(C2O4)3·10H2O(0.015mmol)加入到硬质玻璃管中,然后添加DMF(2mL)和0.8N盐酸水溶液(2mL),封装后将混合物放在烘箱里加热,在150℃下放置50小时,以5℃/h的速率冷却至室温。开管后,过滤收集晶体,用20mL DMF洗涤3次、20mL甲醇洗涤3次,干燥,即得到金属有机框架材料,记为Mn-HTCPP-La。
实施例5
Zn-HTCPP-La的制备:
将配体H6TCPP(0.012mmol)、ZnCl2·4H2O(0.01mmol)和La2(C2O4)3·10H2O(0.009mmol)加入到硬质玻璃管中,然后添加DMF(2mL)和0.8N盐酸水溶液(3mL),封装后将混合物放在烘箱里加热,在150℃下放置50小时,以5℃/h的速率冷却至室温。开管后,过滤收集晶体,用20mL DMF洗涤3次、20mL甲醇洗涤3次,干燥,即得到金属有机框架材料,记为Zn-HTCPP-La。
实施例6
Fe-HTCPP-Eu的制备:
将配体H6TCPP(0.012mmol)、FeCl2·4H2O(0.01mmol)和Eu2(C2O4)3·10H2O(0.009mmol)加入到硬质玻璃管中,然后添加DMF(2mL)和0.8N盐酸水溶液(3mL),封装后将混合物放在烘箱里加热,在150℃下放置50小时,以5℃/h的速率冷却至室温。开管后,过滤收集晶体,用20mL DMF洗涤3次、20mL甲醇洗涤3次,干燥,即得到金属有机框架材料,记为Fe-HTCPP-Eu。
实施例7
Fe-HTCPP-Gd的制备:
将配体H6TCPP(0.012mmol)、FeCl2·4H2O(0.01mmol)和Gd2(C2O4)3·10H2O(0.009mmol)加入到硬质玻璃管中,然后添加DMF(2mL)和0.8N盐酸水溶液(3mL),封装后将混合物放在烘箱里加热,在150℃下放置50小时,以5℃/h的速率冷却至室温。开管后,过滤收集晶体,用20mL DMF洗涤3次、20mL甲醇洗涤3次,干燥,即得到金属有机框架材料,记为Fe-HTCPP-Gd。
实施例8
Ni-HTCPP-Eu的制备:
将配体H6TCPP(0.012mmol)、NiCl2·6H2O(0.01mmol)和Eu2(C2O4)3·10H2O(0.009mmol)加入到硬质玻璃管中,然后添加DMF(2mL)和0.8N盐酸水溶液(3mL),封装后将混合物放在烘箱里加热,在150℃下放置50小时,以5℃/h的速率冷却至室温。开管后,过滤收集晶体,用20mL DMF洗涤3次、20mL甲醇洗涤3次,干燥,即得到金属有机框架材料,记为Ni-HTCPP-Eu。
实施例9
Ni-HTCPP-Gd的制备:
将配体H6TCPP(0.012mmol)、NiCl2·6H2O(0.01mmol)和Gd2(C2O4)3·10H2O(0.008mmol)加入到硬质玻璃管中,然后添加DMF(2mL)和0.8N盐酸水溶液(3mL),封装后将混合物放在烘箱里加热,在150℃下放置50小时,以5℃/h的速率冷却至室温。开管后,过滤收集晶体,用20mL DMF洗涤3次、20mL甲醇洗涤3次,干燥,即得到金属有机框架材料,记为Ni-HTCPP-Gd。
实施例10
Ni-HTCPP-Ce的制备:
将配体H6TCPP(0.012mmol)、NiCl2·6H2O(0.01mmol)和CeCl3·7H2O(0.011mmol)加入到硬质玻璃管中,然后添加DMF(2mL)和0.8N盐酸水溶液(3mL),封装后将混合物放在烘箱里加热,在150℃下放置50小时,以5℃/h的速率冷却至室温。开管后,过滤收集晶体,用20mLDMF洗涤3次、20mL甲醇洗涤3次,干燥,即得到金属有机框架材料,记为Ni-HTCPP-Ce。
实施例11
Zn-HTCPP-Eu的制备:
将配体H6TCPP(0.012mmol)、ZnCl2·4H2O(0.01mmol)和Eu2(C2O4)3·10H2O(0.0085mmol)加入到硬质玻璃管中,然后添加DMF(2mL)和0.8N盐酸水溶液(3mL),封装后将混合物放在烘箱里加热,在150℃下放置50小时,以5℃/h的速率冷却至室温。开管后,过滤收集晶体,用20mL DMF洗涤3次、20mL甲醇洗涤3次,干燥,即得到金属有机框架材料,记为Zn-HTCPP-Eu。
实施例12
Co-HTCPP-Ce的制备:
将配体H6TCPP(0.012mmol)、CoCl2·4H2O(0.01mmol)和CeCl3·7H2O(0.009mmol)加入到硬质玻璃管中,然后添加DMF(2mL)和0.8N盐酸水溶液(3mL),封装后将混合物放在烘箱里加热,在150℃下放置50小时,以5℃/h的速率冷却至室温。开管后,过滤收集晶体,用20mLDMF洗涤3次、20mL甲醇洗涤3次,干燥,即得到金属有机框架材料,记为Co-HTCPP-Ce。
对比例1
TCPP-La的制备:
将配体H6TCPP(0.01mmol)和La2(C2O4)3·10H2O(0.009mmol)加入到硬质玻璃管中,然后添加DMF(3mL)和0.8N盐酸水溶液(2mL),封装后将混合物放在烘箱里加热,在150℃下放置50小时,以5℃/h的速率冷却至室温。开管后,过滤收集晶体,用20mL DMF洗涤3次、20mL甲醇洗涤3次,干燥,即得到金属有机框架材料,记为TCPP-La。
对比例2
TCPP-Ce的制备:
将配体H6TCPP(0.01mmol)、CeCl3·7H2O(0.012mmol)加入到硬质玻璃管中,然后添加DMF(3mL)和0.8N盐酸水溶液(2mL),封装后将混合物放在烘箱里加热,在150℃下放置50小时,以5℃/h的速率冷却至室温。开管后,过滤收集晶体,用20mL DMF洗涤3次、20mL甲醇洗涤3次,干燥,即得到金属有机框架材料,记为TCPP-Ce。
对上述实施例制备得到的M-HTCPP-Ln进行了如下表征:
(1)粉末X-射线衍射表征纯度
粉末衍射数据收集在bruker D8 advance衍射仪上完成,仪器的操作电压为40KV,电流为40mA,使用石墨单色化的铜靶X射线(Cu Kα,
Figure BDA0002984135020000081
),在5°到50°范围内连续扫描完成。单晶结构粉末衍射谱模拟转化使用Mercury软件。图1-4为M-HTCPP-Ln的粉末衍射图,图5为TCPP-Ln的粉末衍射图,从图1-5可知,合成的M-HTCPP-Ln(M=Fe,Co,Ni,Mn,Zn,Ln=La,Eu,Gd,Ce)、TCPP-Ln(Ln=La,Ce)分别与模拟的M-HTCPP-Ln、TCPP-Ln出峰位置相吻合,证明本申请已成功合成出了M-HTCPP-Ln和TCPP-Ln。
(2)热稳定性分析及化学稳定性分析
为了验证本发明制备的M-HTCPP-Ln具备很好的热稳定性和化学稳定性,在METTLER TOLEDO TGA 2上完成热重分析测试。见图6,从图中可知,M-HTCPP-Ln在400℃后骨架开始分解,表明M-HTCPP-Ln具有比较高的热稳定性。图7给出了本发明制备的Fe-HTCPP-La在各种常见溶剂和水中浸泡3d后的PXRD衍射图,从图7中可知材料有良好的溶剂稳定性和水稳定性。
(3)晶体结构的测定
在显微镜下选取合适大小的单晶,其中,选取Fe-HTCPP-La的单晶,在日本理学公司的XtaLab PRO单晶X-射线衍射仪上进行(Cu Kα,
Figure BDA0002984135020000082
),射线通过石墨单色器单色。数据处理使用衍射仪的程序CrysAlisPro.1;结构使用直接法解出初始模型,然后用基于F2的最小二乘法精修结构。所有的非氢原子都进行各项异性精修,用理论加氢的方法确定氢原子的位置。客体分子处于高度无序状态,使用PLATON软件的SQEEZE程序处理。
实施例制得的Fe-HTCPP-La的晶体属于单斜晶系,空间群为C2/c。根据SXRD分析及Fe-HTCPP-La的单晶结构图如图8-11可知,La是八配位的,与来自四个TCPP配体的羧酸基团的一个O配位,与来自1个TCPP配体的羧酸基团的两个O配位,还与两个水分子的O配位,配体TCPP金属中心为Fe。晶胞参数为:
Figure BDA0002984135020000091
α=γ=90°,β=100.428(2)°,
Figure BDA0002984135020000092
Fe-HTCPP-La的晶体学衍射点数据收集与结构精修的部分参数如表1所示。
表1 Fe-HTCPP-La的晶体学数据
Figure BDA0002984135020000093
Figure BDA0002984135020000101
aR1=∑(||F0|-|Fc||)/∑|F0|;bwR2=[∑w(F0 2-Fc 2)2/∑w(F0 2)2]1/2
图12为Fe-HTCPP-La二氧化碳吸附等温线,从图中可知,Fe-HTCPP-L具有一般的比表面积(BET=270.4cm2 g-1)和孔隙率。
应用实施例M-HTCPP-Ln用于光催化氧化硫芥模拟物
(1)将获得的晶体用DMF和甲醇分别洗涤三次,浸泡在甲醇溶液中,每天交换溶液三次,三天后过滤M-HTCPP-Ln并将其置于真空干燥箱中80℃活化12h以除去材料中的客体分子。(2)M-HTCPP-Ln(2.0mg,0.2mmol)分散在密封玻璃反应器中加入0.5mL MeOH。用氧气吹扫15min后,添加向玻璃反应器中添加CEES(0.2mmol)和0.5mL MeOH。密封后,将其暴露在蓝色LED灯下,反应一段时间后,用注射器吸取反应液,并用有机相的滤头过滤反应液,并通过气相-质谱联用仪测试进行监测测量,测试是在德国Agilent公司7890B气相-质谱联用仪上完成的,检测器为FID,载气为氦气、流速为1mL/min,进样器温度为250℃、AUX-2温度为250℃、离子源为230℃、四极杆为150℃、柱温为300℃。测试结果显示如图15,在反应0min时,体系中只有CEES;在反应5min时,反应体系中CEES已完全选择性转化为CEESO。
表2催化剂催化CEES反应的在不同条件下的催化时间
Figure BDA0002984135020000102
Figure BDA0002984135020000111
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (9)

1.一种稀土金属卟啉框架材料,其特征在于:所述稀土金属卟啉框架材料通式为M-HTCPP -Ln,其中,M为金属铁,Ln为金属镧,所述稀土金属卟啉框架材料的分子式为C48H28LaN4FeO10
2.一种如权利要求1所述的稀土金属卟啉框架材料的制备方法,其特征在于,包括如下步骤:将H6TCPP配体、金属盐和镧系金属混合后,再加入DMF和盐酸水溶液,进行加热反应完成后即得到稀土金属卟啉框架材料。
3.根据权利要求2所述的方法,其特征在于:所述TCPP、金属盐与镧系金属的摩尔比为0.012:0.01:0.008~0.02。
4.根据权利要求2所述的方法,其特征在于:所述TCPP、金属盐与镧系金属的摩尔比为0.012:0.01:0.085~0.012。
5.根据权利要求2所述的方法,其特征在于:所述金属盐为FeCl2·4H2O,所述镧系金属为La2(C2O4)3·10H2O。
6.根据权利要求2所述的方法,其特征在于:所述H6TCPP与DMF的摩尔体积比为0.012mmol:2~3mL;所述H6TCPP与盐酸水溶液的摩尔体积比为0.01 2mmol:2~3 mL。
7.根据权利要求2所述的方法,其特征在于:所述加热反应的温度为130~160℃,时间为24~72小时。
8.权利要求1所述稀土金属卟啉框架材料在光催化氧化2-氯乙基乙基硫醚中的应用。
9.一种使用权利要求1所述稀土金属卟啉框架材料催化氧化2-氯乙基乙基硫醚的方法,其特征在于具体为:将M-HTCPP-Ln与2-氯乙基乙基硫醚混合后,置于蓝色LED灯下,进行光催化降解。
CN202110295377.4A 2021-03-19 2021-03-19 一种稀土金属卟啉框架材料及其制备方法与应用方法 Active CN113061260B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110295377.4A CN113061260B (zh) 2021-03-19 2021-03-19 一种稀土金属卟啉框架材料及其制备方法与应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110295377.4A CN113061260B (zh) 2021-03-19 2021-03-19 一种稀土金属卟啉框架材料及其制备方法与应用方法

Publications (2)

Publication Number Publication Date
CN113061260A CN113061260A (zh) 2021-07-02
CN113061260B true CN113061260B (zh) 2022-04-29

Family

ID=76562346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110295377.4A Active CN113061260B (zh) 2021-03-19 2021-03-19 一种稀土金属卟啉框架材料及其制备方法与应用方法

Country Status (1)

Country Link
CN (1) CN113061260B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114736209B (zh) * 2022-03-23 2023-04-11 江苏大学 一种卟啉锌铕磷簇材料及其制备方法和用途
CN116751369B (zh) * 2023-07-31 2024-03-01 广东省第二人民医院(广东省卫生应急医院) 锰掺杂金属卟啉框架材料及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098417A1 (en) * 2001-06-06 2002-12-12 Brookhaven Science Associates Novel metalloporphyrins and their uses as radiosensitizers for radiation therapy
CN107469079B (zh) * 2017-07-21 2020-06-26 湖北大学 一种t1-mri成像引导下的光动治疗剂制备方法
CN108264579B (zh) * 2018-01-05 2020-05-05 云南师范大学 一种含大环稀土配合物的水凝胶材料、制备方法及应用

Also Published As

Publication number Publication date
CN113061260A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
Yuan et al. Metallosalen-based crystalline porous materials: Synthesis and property
Xu et al. Exchange reactions in metal-organic frameworks: New advances
Nepal et al. Sustained water oxidation by a catalyst cage-isolated in a metal–organic framework
Israr et al. High yield synthesis of Ni-BTC metal–organic framework with ultrasonic irradiation: role of polar aprotic DMF solvent
Chen et al. Highly efficient visible-light-driven CO 2 reduction to formate by a new anthracene-based zirconium MOF via dual catalytic routes
CN113061260B (zh) 一种稀土金属卟啉框架材料及其制备方法与应用方法
Wu et al. Copper (I) iodide cluster-based lanthanide organic frameworks: synthesis and application as efficient catalysts for carboxylative cyclization of propargyl alcohols with CO 2 under mild conditions
Tshuma et al. Cyclometalation of lanthanum (iii) based MOF for catalytic hydrogenation of carbon dioxide to formate
Ghorbanloo et al. Heterogeneous catalysis with a coordination modulation synthesized MOF: morphology-dependent catalytic activity
Bhunia et al. Salen‐Based Coordination Polymers of Manganese and the Rare‐Earth Elements: Synthesis and Catalytic Aerobic Epoxidation of Olefins
Long et al. Chemical conversion of CO2 into cyclic carbonates using a versatile and efficient all-in-one catalyst integrated with DABCO ionic liquid and MIL-101 (Cr)
Zhu et al. Two chelating-amino-functionalized lanthanide metal–organic frameworks for adsorption and catalysis
Zhang et al. Two series of pH-dependent lanthanide complexes showing solvent-induced single crystal to single crystal transformation, sorption and luminescence properties
Aryanejad et al. A nanoscale Cu-metal organic framework with Schiff base ligand: Synthesis, characterization and investigation catalytic activity in the oxidation of alcohols
Sabaghi et al. Fabrication of a new heterogeneous tungstate-based on the amino-functionalized metal-organic framework as an efficient catalyst towards sonochemical oxidation of alcohols under green condition
Lv et al. A highly robust cluster-based indium (iii)–organic framework with efficient catalytic activity in cycloaddition of CO 2 and Knoevenagel condensation
Vlasyuk et al. Effect of different synthesis approaches on structural and thermal properties of lanthanide (III) metal–organic frameworks based on the 1H-Pyrazole-3, 5-Dicarboxylate linker
Lin et al. From 1D to 3D lanthanide coordination polymers constructed with pyridine-3, 5-dicarboxylic acid: synthesis, crystal structures, and catalytic properties
Zhang et al. A new synthetic strategy of Aluminium (III)-porphyrin-based conjugated microporous polymers with efficient CO2 catalytic conversion at ambient conditions
Qin et al. In situ cleavage and rearrangement synthesis of an easy-to-obtain and highly stable Cu (II)-based MOF for efficient heterogeneous catalysis of carbon dioxide conversion
CN113578275A (zh) 一种用于NOx气体去除的锰钴二元金属基MOF吸附剂及其制备方法
Liu et al. A highly stable metal–organic framework with cubane-like clusters for the selective oxidation of aryl alkenes to aldehydes or ketones
Bezaatpour et al. Low-pressure CO2 fixation with epoxides via a new modified nano crystalline NH2-MIL-101 (Cr) in Solvent-free and cocatalyst free condition
Li et al. An efficient and recyclable Cu@ UiO-67-BPY catalyst for the selective oxidation of alcohols and the epoxidation of olefins
Lu et al. A microporous chromium-organic framework fabricated via solvent-assisted metal metathesis for C 2 H 2/CO 2 separation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant