CN113051656B - 一种飞机增升装置刚度控制方法 - Google Patents

一种飞机增升装置刚度控制方法 Download PDF

Info

Publication number
CN113051656B
CN113051656B CN201911366030.3A CN201911366030A CN113051656B CN 113051656 B CN113051656 B CN 113051656B CN 201911366030 A CN201911366030 A CN 201911366030A CN 113051656 B CN113051656 B CN 113051656B
Authority
CN
China
Prior art keywords
spanwise
airfoil structure
positions
joints
lift device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911366030.3A
Other languages
English (en)
Other versions
CN113051656A (zh
Inventor
郑茂亮
韩思聪
赵占文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVIC First Aircraft Institute
Original Assignee
AVIC First Aircraft Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVIC First Aircraft Institute filed Critical AVIC First Aircraft Institute
Priority to CN201911366030.3A priority Critical patent/CN113051656B/zh
Publication of CN113051656A publication Critical patent/CN113051656A/zh
Application granted granted Critical
Publication of CN113051656B publication Critical patent/CN113051656B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

一种飞机增升装置刚度控制方法,通过翼面结构展向梁上接头的数量和位置控制翼面结构的刚度,将翼面结构沿展向划分为若干个剖面,得到翼面结构的展向、弦向的弯曲扭转刚度参数;将翼面结构简化为一根直梁,该直梁与展向梁重合,将连接在展向梁上的多个接头作为直梁的多个支持点;以增升装置翼面结构展向、弦向变形为优化目标,以支持点支反力差异最小为约束条件,设置直梁支持点位置及数量优化问题的适应度函数,进行优化,得到满足约束条件的支持点位置及数量;该支持点在直梁上的位置和数量即为接头在展向梁上的位置和数量。

Description

一种飞机增升装置刚度控制方法
技术领域
本发明涉及结构强度分析技术领域,特别涉及飞机大弦长超薄铰链式增升装置刚度控制方法。
背景技术
飞机增升装置广泛应用于大型飞机之中以改善飞机的起降性能。增升装置采用铰链式定轴转动,设计空间有一定限制,弦长大、翼型薄是其一大特点,这种布置使结构弦向变形大,刚度指标难以控制,如何在有限设计空间内进行合理支持点布置以达到控制变形目的,成了大弦长(弦长3米以上)超薄(翼型150mm以下)铰链式增升装置设计的一大难点,现有工程算法已不能满足大弦长超薄铰链式增升装置刚度控制要求。
发明内容
本申请的目的在于提供一种以控制结构变形为目标,通过对结构支持点进行位置和数量优化的飞机增升装置刚度控制方法。
通过建立正确有效合理的优化仿真分析模型,运用相关的算法对其进行结构布置及支持点位置优化,得到满足各项约束条件的支持优化布局,进而对优化布局下的结构刚度进行刚度分析,从而获的控制结构刚度的方法。
一种飞机增升装置刚度控制方法,该增升装置包含翼面结构和多个接头,接头连接在翼面结构的展向梁上,已知增升装置结构形式,其特征在于:通过翼面结构展向梁上接头的数量和位置控制翼面结构的刚度,所述接头的数量和位置的计算方法如下:
(1)将翼面结构沿展向划分为若干个剖面,计算出每个剖面的形心、剖面惯性矩,得到翼面结构的展向、弦向的弯曲扭转刚度参数;
(2)将翼面结构简化为一根直梁,该直梁与展向梁重合,将连接在展向梁上的多个接头作为直梁的多个支持点;
(3)将翼面结构的展向、弦向弯曲扭转刚度参数赋予直梁;
(4)将翼面结构的气动载荷采用展向、弦向载荷大小一致的原则等效施加到直梁上:
(5)以增升装置翼面结构展向、弦向变形为优化目标,以支持点支反力差异最小为约束条件,设置直梁支持点位置及数量优化问题的适应度函数,进行优化,得到满足约束条件的支持点位置及数量;该支持点在直梁上的位置和数量即为接头在展向梁上的位置和数量。
所述的步骤5)中适应度函数采用下列公式:
式中:
fmax、fmin——支持点的最大、最小的支反力,
fsum——为支持点上的支反力的和,
umax——梁的最大垂向、弦向变形,
ulim——为设计允许的梁的最大垂向、弦向变形。
本发明的有益效果在于:
1)对大弦长、翼型薄铰链式增生装置创新性地进行结构支持点位置优化;
2)针对优化结构进行精确刚度表征,有效减轻结构重量。
以下结合实施例附图对本申请做进一步详细说明。
附图说明
图1是飞机的铰链式增生装置结构示意图。
图2是翼面结构沿展向划分为若干个剖面示意图。
图3是支持点最大支反力差异与最大变形的关系示意图。
图4是优化后的三个支持点位置示意图。
图中编号说明:1翼面结构、2接头、3展向梁、4剖面
具体实施方式
参见附图,本申请提出的飞机增升装置刚度控制方法,该增升装置包含翼面结构1和多个接头2,接头2连接在翼面结构的展向梁3上,已知增升装置结构形式,通过翼面结构1展向梁3上接头2的数量和位置控制翼面结构1的刚度,所述接头2的数量和位置的计算方法如下:
(1)将翼面结构沿展向划分为若干个剖面4,计算出每个剖面4的形心、剖面4惯性矩,得到翼面结构的展向、弦向的弯曲扭转刚度参数;
(2)将翼面结构简化为一根直梁,该直梁与展向梁重合,将连接在展向梁上的多个接头作为直梁的多个支持点;
(3)将翼面结构的展向、弦向弯曲扭转刚度参数赋予直梁;
(4)将翼面结构的气动载荷采用展向、弦向载荷大小一致的原则等效施加到直梁上:
(5)以增升装置翼面结构展向、弦向变形为优化目标,以支持点支反力差异最小为约束条件,设置直梁支持点位置及数量优化问题的适应度函数,进行优化,得到满足约束条件的支持点位置及数量;该支持点在直梁上的位置和数量即为接头在展向梁上的位置和数量。
所述的步骤5)中适应度函数采用下列公式:
式中:
fmax、fmin——支持点的最大、最小的支反力,
fsum——为支持点上的支反力的和,
umax——梁的最大垂向、弦向变形,
ulim——为设计允许的梁的最大垂向、弦向变形。
某飞机襟翼增升装置,展长7.5米,弦长5.3米,翼型最大高度108mm,绕铰链轴旋转保证襟翼不同打开角度,为典型的大弦长超薄铰链式增升装置。根据本申请的技术方案,对襟翼的翼面结构1沿展向刚度简化分析得知,如果将襟翼的翼面结构1沿展向划分为多个剖面4时,比如7-9个剖面时,其刚度简化趋于均匀化,对支持点位置及数量优化影响2%,故实施例中,将襟翼的翼面结构1沿展向划分为八个剖面4,如图2所示。
依据以上技术方案,将襟翼增升装置接头作为支持点进行数量和位置优化。
作为权函数,用于调整优化目标中支反力和变形两方面占得比例关系。当时,则优化问题简化为不考虑梁的变形,只需满足三个支点上的支反力差异最小;当时,则优化问题简化为不考虑支点上的支反力,只需满足梁的变形最小。
对该优化问题进行求解,在取不同权重系数时,得到在限定梁的最大变形不超过3.5mm时,支点个数最少为3个。
在三支点支持条件下,进行不同权重系数优化,优化结果见图3(图3横坐标为梁的变形,单位毫米,纵坐标为三个支反力差值,单位N)。从中明显看出支反力和变形是一对矛盾的关系,当对变形要求过高时,支反力上的差异就会很大,反之当对支反力要求过高时,变形就会增大。
依据现有结构设计输入条件,梁最大许可变形3.0mm,依据图3结果,给出三个约束点的垂向支反力分别为148518N、132805N和78089N,进而得到三支点布置位置,见图4。
此优化方法及细节等效刚度分析方法准确得到翼面刚度指标,计算精度高,此方法有限减轻结构重量23.2%(4.32Kg)。

Claims (1)

1.一种飞机增升装置刚度控制方法,该增升装置包含翼面结构和多个接头,接头连接在翼面结构的展向梁上,已知增升装置结构形式,其特征在于:通过翼面结构展向梁上接头的数量和位置控制翼面结构的刚度,所述接头的数量和位置的计算方法如下:
(1)将翼面结构沿展向划分为若干个剖面,计算出每个剖面的形心、剖面惯性矩,得到翼面结构的展向、弦向的弯曲扭转刚度参数;
(2)将翼面结构简化为一根直梁,该直梁与展向梁重合,将连接在展向梁上的多个接头作为直梁的多个支持点;
(3)将翼面结构的展向、弦向弯曲扭转刚度参数赋予直梁;
(4)将翼面结构的气动载荷采用展向、弦向载荷大小一致的原则等效施加到直梁上:
(5)以增升装置翼面结构展向、弦向变形为优化目标,以支持点支反力差异最小为约束条件,设置直梁支持点位置及数量优化问题的适应度函数,进行优化,得到满足约束条件的支持点位置及数量;该支持点在直梁上的位置和数量即为接头在展向梁上的位置和数量,所述的步骤5)中适应度函数采用下列公式:
式中:
fmax、fmin——支持点的最大、最小的支反力,
fsum——为支持点上的支反力的和,
umax——梁的最大垂向、弦向变形,
ulim——为设计允许的梁的最大垂向、弦向变形。
CN201911366030.3A 2019-12-26 2019-12-26 一种飞机增升装置刚度控制方法 Active CN113051656B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911366030.3A CN113051656B (zh) 2019-12-26 2019-12-26 一种飞机增升装置刚度控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911366030.3A CN113051656B (zh) 2019-12-26 2019-12-26 一种飞机增升装置刚度控制方法

Publications (2)

Publication Number Publication Date
CN113051656A CN113051656A (zh) 2021-06-29
CN113051656B true CN113051656B (zh) 2023-12-22

Family

ID=76505368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911366030.3A Active CN113051656B (zh) 2019-12-26 2019-12-26 一种飞机增升装置刚度控制方法

Country Status (1)

Country Link
CN (1) CN113051656B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1406240A (en) * 1971-10-20 1975-09-17 Menear M J Aircraft
DE3210206A1 (de) * 1982-03-19 1983-09-29 Haenle, Karl, Dipl.-Ing., 8000 München Flugzeug mit auf- und vortrieb erzeugenden schwingfluegeln
DE102005012744A1 (de) * 2004-06-24 2006-04-06 Räder, Hermann Senkrecht start- und landefähiges Fluggerät mit verstellbarer Schwerpunktlage
CN102902845A (zh) * 2012-09-12 2013-01-30 北京航空航天大学 一种直升机旋翼桨叶剖面设计方法
CN103366070A (zh) * 2013-08-01 2013-10-23 北京航空航天大学 一种可用于直升机和固定翼飞行器的复合材料梁设计方法
CN105109705A (zh) * 2015-08-03 2015-12-02 江西洪都航空工业集团有限责任公司 一种飞机翼面结构刚度计算方法
CN105823688A (zh) * 2016-05-16 2016-08-03 中国航空工业集团公司西安飞机设计研究所 一种翼面前缘曲面结构的承载试验方法
CN105975704A (zh) * 2016-05-13 2016-09-28 中国航空工业集团公司西安飞机设计研究所 一种飞机悬挂接头结构疲劳试验的设计方法
CN109795699A (zh) * 2019-03-15 2019-05-24 中国商用飞机有限责任公司 飞机吊挂接头组件
CN110334427A (zh) * 2019-06-27 2019-10-15 南京航空航天大学 一种基于工程梁理论的tbw布局飞机机翼结构分析方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1406240A (en) * 1971-10-20 1975-09-17 Menear M J Aircraft
DE3210206A1 (de) * 1982-03-19 1983-09-29 Haenle, Karl, Dipl.-Ing., 8000 München Flugzeug mit auf- und vortrieb erzeugenden schwingfluegeln
DE102005012744A1 (de) * 2004-06-24 2006-04-06 Räder, Hermann Senkrecht start- und landefähiges Fluggerät mit verstellbarer Schwerpunktlage
CN102902845A (zh) * 2012-09-12 2013-01-30 北京航空航天大学 一种直升机旋翼桨叶剖面设计方法
CN103366070A (zh) * 2013-08-01 2013-10-23 北京航空航天大学 一种可用于直升机和固定翼飞行器的复合材料梁设计方法
CN105109705A (zh) * 2015-08-03 2015-12-02 江西洪都航空工业集团有限责任公司 一种飞机翼面结构刚度计算方法
CN105975704A (zh) * 2016-05-13 2016-09-28 中国航空工业集团公司西安飞机设计研究所 一种飞机悬挂接头结构疲劳试验的设计方法
CN105823688A (zh) * 2016-05-16 2016-08-03 中国航空工业集团公司西安飞机设计研究所 一种翼面前缘曲面结构的承载试验方法
CN109795699A (zh) * 2019-03-15 2019-05-24 中国商用飞机有限责任公司 飞机吊挂接头组件
CN110334427A (zh) * 2019-06-27 2019-10-15 南京航空航天大学 一种基于工程梁理论的tbw布局飞机机翼结构分析方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"大型客机复合材料襟翼刚度设计技术";王一飞 等;《中国科技信息》(第19期);88-92 *
"大型飞机增升装置技术发展综述";李丽雅;《航空科学技术》;第26卷(第5期);1-10 *
大展弦比复合材料机翼刚心分析与剪裁设计;董永朋;霍世慧;华林;王富生;岳珠峰;;中国机械工程(01);全文 *
大展弦比机翼剖面刚度分析;侯甲栋;冯蕴雯;薛小锋;;航空计算技术(01);全文 *
某支线客机总体方案中增升装置的设计与优化;武明建;朱建辉;肖天航;李正洲;张九阳;闫文吉;;南京航空航天大学学报(03);全文 *

Also Published As

Publication number Publication date
CN113051656A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
CN109885908B (zh) 一种新型羽翅仿生通风扑翼系统及多涡干扰机理分析方法
US5887828A (en) Seamless mission adaptive control surface
CN102458988B (zh) 具有λ盒状机翼结构的飞行器
CN109342009B (zh) 一种大展弦比飞机风洞试验模型保真外形双翼支撑机构及其应用
CN109490114B (zh) 一种全尺寸疲劳试验襟翼载荷加载方法
CN104697761A (zh) 一种可动翼面的随动加载方法
CN110704953B (zh) 一种大展弦比机翼静气弹性能设计敏度的分析方法
CN102221444B (zh) 一种调整机翼风洞吹风模型翼面的装置及调整方法
CN111017248B (zh) 一种飞机机翼的静气动弹性修正方法
CN106043688A (zh) 一种直升机旋翼翼型
CN111348178A (zh) 一种变弯度机翼前缘柔性蒙皮结构及其设计方法
CN102052266B (zh) 基于尖尾缘翼型设计的后加载钝尾缘翼型
EP2183156B1 (en) Aircraft tail assembly
CN113051656B (zh) 一种飞机增升装置刚度控制方法
CN114291249B (zh) 一种变厚度机翼结构
CN102390521B (zh) 一种表面能够产生驻涡的机翼
CN102616367A (zh) 一种高升阻比固定翼飞机配平方法
CN102700710A (zh) 一种直升机旋翼叶间减摆器布局
KR100921574B1 (ko) 헬리콥터의 로터 블레이드 에어포일
CN211618063U (zh) 飞机机翼及飞行器
CN219467988U (zh) 一种新型操纵舵面的配重结构
CN111003148B (zh) 一种单侧全同扰流板的布局方法
CN211391662U (zh) 一种舵面固定装置
CN211391743U (zh) 一种机翼精加工柔性调姿装置
WO1999067130A1 (en) Horizontal stabilizer for rotorcraft

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant