CN113046769A - 一种高效电催化还原二氧化碳的方法 - Google Patents

一种高效电催化还原二氧化碳的方法 Download PDF

Info

Publication number
CN113046769A
CN113046769A CN201911369228.7A CN201911369228A CN113046769A CN 113046769 A CN113046769 A CN 113046769A CN 201911369228 A CN201911369228 A CN 201911369228A CN 113046769 A CN113046769 A CN 113046769A
Authority
CN
China
Prior art keywords
layer
carbon dioxide
cathode
electrolysis unit
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201911369228.7A
Other languages
English (en)
Inventor
卢连妹
官万兵
王建新
杨钧
刘武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201911369228.7A priority Critical patent/CN113046769A/zh
Publication of CN113046769A publication Critical patent/CN113046769A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明提供了一种高效电催化还原二氧化碳的方法,采用直流电源、电解单元、以及用于加热电解单元的加热装置,其中电解单元采用以阴极为支撑的中空对称结构的固体氧化物电解单元,具有机械强度大、抗氧化还原能力强、稳定性高等优势。将二氧化碳通入电解单元的阴极支撑层的中空孔道,空气通入电解池单元的阳极侧,通过将电解池单元加热至700℃以上,开启直流电流,能直接将二氧化碳电催化还原为一氧化碳。该方法操作条件简单易控、高效、清洁、能够实现二氧化碳长期稳定地电解转化。

Description

一种高效电催化还原二氧化碳的方法
技术领域
本发明属于电化学催化技术及高温固态氧化物电解技术领域,具体涉及一种高效电催化还原二氧化碳的方法。
背景技术
二十一世纪以来,全球经济迅猛发展,使地球逐渐成为一个紧密联系的地球村。然而,在社会的快速发展进程中,工业生产、交通运输、用电等对能源的需求也在不断增加。与此同时,自十九世纪开始,人类大量使用化石资源,如煤、石油、天然气等,这些化石燃料是不可再生资源,并且在燃烧过程中产生了大量二氧化碳和污染物,温室气体使得全球气候变化、冰川消融,以及海平面上升。因此,在日益增长的能源需求与环境恶化的双重压力下,寻找新的清洁能源,改变目前现有的以化石燃料为主的能源格局,减少温室气体与污染物的排放迫在眉睫。
一种方法是利用清洁可再生能源产生的电力,通过电化学催化方法将二氧化碳转化为一氧化碳,进而利用费托反应生成能量值更高的燃料或化工产品,如甲烷、甲醇、乙醇、乙烯等。该方法对减少大气中现有的二氧化碳和提高可再生能源的利用具有十分重要的意义。
电化学催化转化二氧化碳主要有两种途径:一种是低温溶液电催化方法(小于373K),另一种是高温固体氧化物电催化转化(大于873K)法。低温溶液电催化方法存在较多问题:二氧化碳分子中碳氧双键稳定而不易电解转化、二氧化碳在溶液中溶解度较低而使电流密度较低;并且,在溶液中可能会发生析氢反应,从而降低理想产物的法拉第效率。因此,目前多采用高温固体氧化物电催化转化二氧化碳,其中固体氧化物电解池(SolidOxide Electrolysis Cell,SOEC)由于其高效、清洁、安全等优点近年来被广泛研究,目前使用较为广泛的固体氧化物电解池结构主要有管式和平板式。
管式SOEC几何结构高度对称,因此机械强度大,热稳定性高。并且,管式SOEC结构密封面积较小,密封相对容易,且便于组装,容易通过串联或并联组装成电池堆。但是,管式结构电流收集路径较长,集流不均匀,原料不能充分利用,故体积功率密度和比表面功率密度较小,且制作成本较高。
平板式SOEC结构由于较短的电流收集路径和较高的体积功率密度和比表面功率密度已经被广泛应用。平板式SOEC较管式结构制备工艺简单的多,成本低。然而,传统的平板式SOEC宏观结构不对称,在加热过程中由于热膨胀系数不匹配容易出现基体翘曲,导致其抗氧化还原的性能较差,当燃料极金属被氧化5%时,电池就会发生碎裂,这样就导致电池的储能能量密度极低且难以实现循环,且密封相对困难。
专利文献CN 110387554 A公开一种电解系统,其中的SOEC以支撑电极层为中心呈上下对称结构,工作状态时将二氧化碳和水的混合气体自支撑电极层的孔道入口通入支撑电极层的孔道,二氧化碳和水发生电解,在孔道出口获得包含CO与H2的合成气体。该电解方法中二氧化碳和水发生共电解,并非单纯的二氧化碳电解,因此容易导致二氧化碳电解不充分,电解运行不稳定,难以实现二氧化碳的高效稳定地电解转化。
发明内容
针对上述技术现状,本发明提供一种高效电催化还原二氧化碳的方法,采用直流电源、电解单元,以及用于加热电解单元的加热装置;
所述电解单元是固体氧化物电解单元;所述电解单元以阴极为支撑层,呈上下分布结构,即,所述电解单元中,阳极层、电解质层以及活性阴极层沿厚度方向上下层叠;活性阴极层包括第一活性阴极层与第二活性阴极层,第一活性阴极层位于阴极支撑层的上表面,第二活性阴极层位于阴极支撑层的下表面;电解质层包括第一电解质层与第二电解质层,第一电解质层位于活性阴极层的上表面,第二电解质层位于活性阴极层的下表面;阳极层包括第一阳极层与第二阳极层,第一阳极层位于第一电解质层的上表面,第二阳极层位于第二电解质层的下表面;并且,阴极支撑层设置用于燃料气体流通的中空孔道;
所述第一阳极层与第二阳极层通过连接件导电连接,所述阴极支撑层、第一活性阴极层与第二活性阴极层通过集流件导电连接;直流电源的正极与所述连接件导电连接,负极与所述集流件导电连接;
加热装置加热所述电解单元至一定温度;空气通入电解单元的第一阳极层与第二阳极层,CO2通入阴极支撑层的中空孔道;直流电源开启,对电解单元通电,二氧化碳在电解单元中发生电化学催化还原反应生成CO。
作为优选,电解单元的温度在700℃以上,进一步优选为700~900℃。
作为优选,在电解二氧化碳过程中,结合电解单元材料与电解性,控制电解电压在0~2V区间内,进一步优选为1~2V。
作为优选,第一电解质层与第一阳极层之间优选设置第一阻挡层,第二电解质层与第二阳极层之间优选设置第二阻挡层。
当阴极支撑层中包含镍催化成分时,作为优选,在阴极支撑层的中空孔道通入还原性保护气体,包括但不限于H2和/或CO,以保证阴极的还原气氛以防止镍被氧化。作为优选,还原性保护气体的体积含量为5%~30%。
所述加热装置不限,包括箱式电阻炉等。
作为优选,所述第一电解质层材料为YSZ、SSZ、LSGM等,厚度优选为1μm~15μm。
作为优选,所述第二电解质层材料为YSZ、SSZ、LSGM等,厚度优选为1μm~15μm。
作为优选,所述阴极支撑层材料为Ni-YSZ、LSM-YSZ、LSCF-YSZ等,阴极支撑层厚度优选为2~50mm。
作为优选,所述第一活性阴极层厚度为5μm~100μm。
作为优选,所述第二活性阴极层厚度为5μm~100μm。
作为优选,所述第一阳极层材料为LSM、LSCF、BSFC等,厚度优选5μm~100μm。
作为优选,所述第二阳极层材料为LSM、LSCF、BSFC等,厚度优选5μm~100μm。
作为优选,所述第一阻挡层材料为GDC、ScSz等,厚度优选为1μm~5μm。
作为优选,所述第二阻挡层材料为GDC、ScSz等,厚度优选为1μm~5μm。
本发明采用中空对称结构的固体氧化物电解单元,将空气通入第一阳极层与第二阳极层,CO2直接通入阴极支撑层,经扩散至第一活性阴极层与第二活性阴极层进行电化学催化还原反应得到CO,反应原理如下:
在外加电压作用下CO2发生电解产生CO和氧离子,氧离子通过电解质从燃料极侧传输至氧气极侧,氧离子在氧气极失去电子生产氧气,具体反应方程为:
阳极:O2—2e-=1/2O2
阴极:CO2+2e-=CO+O2-
总反应:CO2=CO+1/2O2
因此,本发明中CO2转化简单易控,产生的CO选择性好,CO2转化率高,可以达到35%以上,甚至达到40%以上,并且转化稳定性高,产生的CO通过后续化学反应即可得到液态烃或碳氢化合物。
附图说明
图1是本发明实施例1中的中空对称结构的固体氧化物电解单元的结构示意图。
图2是本发明实施例1中电催化还原二氧化碳的系统结构示意图。
图3是本发明实例1中电催化还原二氧化碳的电解曲线。
图4是本发明实例1中电催化还原二氧化碳的电解曲线。
具体实施方式
下面结合实施例与附图对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
图1中的附图标记为:1-阴极支撑层;2-第一活性阴极层;3-第二活性阴极层;4-第一电解质层;5-第二电解质层;6-第一阻挡层;7-第二阻挡层;8-第一阳极层;9-第二阳极层;10-中空孔道。
实施例1:
中空对称结构的固体氧化物电解单元如图1所示,由阴极、阳极以及电解质组成,以阴极为支撑层,呈上下分布结构,即阳极层、电解质层以及活性阴极层沿厚度方向上下层叠;活性阴极层包括第一活性阴极层2与第二活性阴极层3,第一活性阴极层2位于阴极支撑层1的上表面,第二活性阴极层3位于阴极支撑层1的下表面;电解质层包括第一电解质层4与第二电解质层5,第一电解质层4位于第一活性阴极层的上表面,第二电解质5位于第二活性阴极层3的下表面;阻挡层包括第一阻挡层6与第二阻挡层7,第一阻挡层6位于第一电解质层4的上表面,第二阻挡层7位于第二电解质层5的下表面;阳极层包括第一阳极层8与第二阳极层9,第一阳极层8位于第一阻挡层6的上表面,第二阳极层9位于第二阻挡层7的下表面;并且,阴极支撑层设置用于燃料气体流通的中空孔道。
其中,电解单元的有效面积为70cm2,第一电解质层与第一电解质层的厚度均为10μm,第一活性阴极层与第二活性阴极层的厚度均为20μm,第一阳极层与第二阳极层的厚度均为20μm,第一阻挡层与第二阻挡层的厚度均为3μm。
利用该电解单元电催化还原二氧化碳的过程如下:
(1)如图2中所示,将该电解单元放入箱式电阻炉中,程序控温升热至750℃;通过H2还原后电解单元的开路电压约为1V;
(2)在电解单元的阴极支撑层的进气管通入CO2与H2的混合气体,其中CO2与H2的气体体积比为3:1,第一阳极层与第二阳极层的进气管通入一定量的空气;
待电解单元内部达到热力学平衡后,即开路电压在混合气体通入后稳定在0.85V~0.92V区间,将直流电源的电流正极线导电连接在第一阳极层的进气管A点,该进气管与第一阳极层导电连接,并且与第二阳极层导电连接;将直流电源的电流负极线连接在阴极支撑层的进气管B点,该进气管连接阴极集流件,该阴极集流件连接阴极支撑层、第一活性阴极层与第二活性阴极层;电压采集线的正极连接在第二阳极层的进气管C点,电压采集线的负极连接在阴极支撑层的出气管D点;
直流电源开启,对电解单元提供-0.3A/cm2的电解电流密度进行恒流电解二氧化碳,电解一定时间后的电解曲线如图3所示,使用气相色谱测定电解单元阴极支撑层的气道出口处,获得尾气中CO、H2、CO2的混合气比例为34.1%、15.5%、50.6%,二氧化碳转化率达到40.3%。
实施例2:
本实施例中,电解单元的结构与实施例1中的电解单元的结构完全相同。
本实施例中,利用电解系统对CO2电解的方法与实施例1中基本相同,所不同的是:在步骤(2)中,在电解单元的阴极支撑层的进气管通入CO2与CO的混合气体,其中CO2与CO的气体体积比为3:1;电解相同时间后的电解曲线如图4所示,使用气相色谱测定电解单元支撑层的气道出口处,获得尾气中CO、CO2的混合气比例为50.1%、49.9%,扣除通入的CO保护气,可以得到由电解产生的二氧化碳转化率达到38.8%。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种高效电催化还原二氧化碳的方法,其特征是:采用直流电源、电解单元、以及用于加热电解单元的加热装置;
所述电解单元为固体氧化物电解单元;
所述电解单元以阴极为支撑层,呈上下分布结构,即,所述电解单元中,阳极层、电解质层以及活性阴极层沿厚度方向上下层叠;活性阴极层包括第一活性阴极层与第二活性阴极层,第一活性阴极层位于阴极支撑层的上表面,第二活性阴极层位于阴极支撑层的下表面;电解质层包括第一电解质层与第二电解质层,第一电解质层位于活性阴极层的上表面,第二电解质层位于活性阴极层的下表面;阳极层包括第一阳极层与第二阳极层,第一阳极层位于第一电解质层的上表面,第二阳极层位于第二电解质层的下表面;并且,阴极支撑层设置用于燃料气体流通的中空孔道;
所述第一阳极层与第二阳极层通过连接件导电连接,所述阴极支撑层、第一活性阴极层与第二活性阴极层通过集流件导电连接;直流电源的正极与所述连接件相连,负极与所述集流件导电连接;
加热装置加热所述电解单元至一定温度;空气通入所述电解单元的第一阳极层与第二阳极层,CO2通入阴极支撑层的中空孔道;直流电源开启,对所述电解单元通电,二氧化碳在电解单元中发生电化学催化还原反应生成CO。
2.如权利要求1所述的高效电催化还原二氧化碳的方法,其特征是:所述电解单元的温度在700℃以上。
3.如权利要求1所述的高效电催化还原二氧化碳的方法,其特征是:所述电解单元的温度为700~900℃。
4.如权利要求1所述的高效电催化还原二氧化碳的方法,其特征是:在电解二氧化碳过程中,控制电解电压在0~2V区间内。
5.如权利要求4所述的高效电催化还原二氧化碳的方法,其特征是:控制电解电压为1~2V。
6.如权利要求1所述的高效电催化还原二氧化碳的方法,其特征是:第一电解质层与第一阳极层之间设置第一阻挡层,第二电解质层与第二阳极层之间设置第二阻挡层。
7.如权利要求1所述的高效电催化还原二氧化碳的方法,其特征是:当阴极支撑层中包含镍催化成分时,在阴极支撑层的中空孔道通入还原性保护气体,以防止镍被氧化。
8.如权利要求7所述的高效电催化还原二氧化碳的方法,其特征是:还原性保护气体的体积含量为5%~30%。
9.如权利要求7所述的高效电催化还原二氧化碳的方法,其特征是:还原性保护气体包H2和/或CO。
10.如权利要求1至9中任一权利要求所述的高效电催化还原二氧化碳的方法,其特征是:CO2二氧化碳的转化率达到35%以上。
CN201911369228.7A 2019-12-26 2019-12-26 一种高效电催化还原二氧化碳的方法 Withdrawn CN113046769A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911369228.7A CN113046769A (zh) 2019-12-26 2019-12-26 一种高效电催化还原二氧化碳的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911369228.7A CN113046769A (zh) 2019-12-26 2019-12-26 一种高效电催化还原二氧化碳的方法

Publications (1)

Publication Number Publication Date
CN113046769A true CN113046769A (zh) 2021-06-29

Family

ID=76505555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911369228.7A Withdrawn CN113046769A (zh) 2019-12-26 2019-12-26 一种高效电催化还原二氧化碳的方法

Country Status (1)

Country Link
CN (1) CN113046769A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116526684A (zh) * 2023-06-30 2023-08-01 中国科学院宁波材料技术与工程研究所 一种电能储能装置及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201446646A (zh) * 2013-03-26 2014-12-16 哈爾德杜薩公司 於固態氧化物電解電池中,由co製備co之方法
KR20150117605A (ko) * 2014-04-10 2015-10-20 국립대학법인 울산과학기술대학교 산학협력단 일산화탄소를 생성하는 고체 산화물 전해 셀 및 그 제조 방법
CN106033819A (zh) * 2015-03-10 2016-10-19 中国科学院宁波材料技术与工程研究所 一种平板型电极支撑的陶瓷电解质电池及其制备方法
JP2018505958A (ja) * 2014-12-10 2018-03-01 ハルドール・トプサー・アクチエゼルスカベット 超高純度一酸化炭素の製造方法
CN207418869U (zh) * 2017-11-20 2018-05-29 齐齐哈尔大学 小型二氧化碳高温电解池装置
CN109037698A (zh) * 2017-06-08 2018-12-18 中国科学院宁波材料技术与工程研究所 一种可储能的高温固态氧化物燃料电池
CN109755622A (zh) * 2017-11-08 2019-05-14 中国科学院宁波材料技术与工程研究所 一种中空对称的双阴极高温固态燃料电池堆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201446646A (zh) * 2013-03-26 2014-12-16 哈爾德杜薩公司 於固態氧化物電解電池中,由co製備co之方法
KR20150117605A (ko) * 2014-04-10 2015-10-20 국립대학법인 울산과학기술대학교 산학협력단 일산화탄소를 생성하는 고체 산화물 전해 셀 및 그 제조 방법
JP2018505958A (ja) * 2014-12-10 2018-03-01 ハルドール・トプサー・アクチエゼルスカベット 超高純度一酸化炭素の製造方法
CN106033819A (zh) * 2015-03-10 2016-10-19 中国科学院宁波材料技术与工程研究所 一种平板型电极支撑的陶瓷电解质电池及其制备方法
CN109037698A (zh) * 2017-06-08 2018-12-18 中国科学院宁波材料技术与工程研究所 一种可储能的高温固态氧化物燃料电池
CN109755622A (zh) * 2017-11-08 2019-05-14 中国科学院宁波材料技术与工程研究所 一种中空对称的双阴极高温固态燃料电池堆
CN207418869U (zh) * 2017-11-20 2018-05-29 齐齐哈尔大学 小型二氧化碳高温电解池装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YIXIANG SHI ET AL.: "Experimental characterization and modeling of the electrochemical reduction of CO2 in solid oxide electrolysis cells", 《ELECTROCHIMICA ACTA》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116526684A (zh) * 2023-06-30 2023-08-01 中国科学院宁波材料技术与工程研究所 一种电能储能装置及系统
CN116526684B (zh) * 2023-06-30 2024-04-05 中国科学院宁波材料技术与工程研究所 一种电能储能装置及系统

Similar Documents

Publication Publication Date Title
Foit et al. Power‐to‐syngas: an enabling technology for the transition of the energy system?
Kumar et al. Hydrogen production by PEM water electrolysis–A review
CN109921060B (zh) 一种基于固体氧化物电池的储电及制合成气的系统和方法
Zhan et al. Syngas production by coelectrolysis of CO2/H2O: the basis for a renewable energy cycle
Im-orb et al. Flowsheet-based model and exergy analysis of solid oxide electrolysis cells for clean hydrogen production
Meda et al. Generation of green hydrogen using self-sustained regenerative fuel cells: Opportunities and challenges
US10145018B2 (en) Method for operating an SOEC-type stack reactor for producing methane in the absence of available electricity
Liu et al. Elevated-temperature bio-ethanol-assisted water electrolysis for efficient hydrogen production
CN113913846A (zh) 一种电解水制氢制氧反应装置
CN110690855A (zh) 一种基于氢储能的新型净零能耗建筑的能源系统
Giddey et al. Polymer electrolyte membrane technologies integrated with renewable energy for hydrogen production
US11955676B2 (en) Integrated reformer, reactor, and control system for efficient hydrogen production from hydrocarbon
Nelabhotla et al. Power-to-gas for methanation
Nguyen et al. Reversible fuel cells
Khan et al. Cost and technology readiness level assessment of emerging technologies, new perspectives, and future research directions in H 2 production
CN111206256B (zh) 基于生物质多级利用的生物炭电化学重整制氢方法
CN113046769A (zh) 一种高效电催化还原二氧化碳的方法
Sun et al. A Na-ion direct formate fuel cell converting solar fuel to electricity and hydrogen
Dong et al. Ion-conducting ceramic membranes for renewable energy technologies
Metz et al. Producing hydrogen through electrolysis and other processes
Ozcan et al. Recent advances, challenges, and prospects of electrochemical water-splitting technologies for net-zero transition
He et al. Electrochemical hydrogen production
Zolghadri et al. Co-electrolysis process for syngas production
Li et al. Sustainable energy ecosystem based on Power to X technology
Yang et al. Optimal MEA structure and operating conditions for fuel cell reactors with hydrogen peroxide and power cogeneration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20210629