CN113046336A - 一种复合酶及其应用 - Google Patents

一种复合酶及其应用 Download PDF

Info

Publication number
CN113046336A
CN113046336A CN202110173578.7A CN202110173578A CN113046336A CN 113046336 A CN113046336 A CN 113046336A CN 202110173578 A CN202110173578 A CN 202110173578A CN 113046336 A CN113046336 A CN 113046336A
Authority
CN
China
Prior art keywords
parts
pulping
complex enzyme
cellulase
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110173578.7A
Other languages
English (en)
Inventor
赖新巧
李情兰
许正茂
韦克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asia Symbol Guangdong Paper Co ltd
Original Assignee
Asia Symbol Guangdong Paper Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Symbol Guangdong Paper Co ltd filed Critical Asia Symbol Guangdong Paper Co ltd
Priority to CN202110173578.7A priority Critical patent/CN113046336A/zh
Publication of CN113046336A publication Critical patent/CN113046336A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01003Triacylglycerol lipase (3.1.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01011Pectinesterase (3.1.1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01015Polygalacturonase (3.2.1.15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/02Carbon-oxygen lyases (4.2) acting on polysaccharides (4.2.2)
    • C12Y402/02002Pectate lyase (4.2.2.2)
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/04Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
    • D21B1/12Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by wet methods, by the use of steam
    • D21B1/30Defibrating by other means
    • D21B1/34Kneading or mixing; Pulpers
    • D21B1/345Pulpers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/02Methods of beating; Beaters of the Hollander type
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/20Methods of refining

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Mechanical Engineering (AREA)
  • Paper (AREA)

Abstract

本发明公开了一种复合酶及其应用,涉及制浆技术领域。所述复合酶,包含以下重量份的组分:果胶酶1‑10份、脂肪酶1‑10份、半纤维素酶3‑15份和纤维素酶65‑95份。本发明还提供了所述复合酶在打浆工艺中的应用,可以降低磨浆能耗,减少设备投资。

Description

一种复合酶及其应用
技术领域
本发明涉及制浆技术领域,尤其是一种复合酶及其应用。
背景技术
漂白硫酸盐化学短纤浆,一般大部分是纤维素,同时含有少量的半纤维素和残留木素及树脂。打浆的目的是,利用机械处理的方法,将纤维细胞壁初生壁破坏、次生壁分丝帚化,增加纤维的结合面积,提高结合作用力。
现在的磨机打浆方案,由于浆料难于打浆,单台磨打浆不能满足要求,设计采用4台RF-4i磨机组成两条打浆线,每条打浆线由2台磨机串联组成,每条磨浆线的最大产能为410bdt/天,磨前初始游离度500ml,磨后游离度330-380ml,磨浆浓度4.5%,每条磨浆线的比能耗分配为第一台磨25kwh/t,第二台磨45kwh/t,总共为70kwh/t。
该打浆技术方案中,存在以下缺点:(1)打浆比能耗高达70kwh/t,按照410bdt/天产量,每条打浆线的电费成本高达RMB9000,能耗高;(2)打浆能耗高,对磨片的磨损速度快,磨片寿命只有2-3个月,每台磨每年需5套磨片,每台磨机每年的备件成本高达RMB100万,备件成本高;(3)每条打浆线设计上需采用2台RF-4i磨机串联,两条打浆线仅磨机设备购买成本达RMB1000万,设备投入大。
发明内容
基于此,本发明的目的在于克服上述现有技术的不足之处而提供一种能够作用在初生壁+次生壁S1层,能更有效释放出打浆的主要作用对象纤维素细胞S2层的复合酶。
为实现上述目的,本发明所采取的技术方案为:一种复合酶,包含以下重量份的组分:果胶酶1-10份、脂肪酶1-10份、半纤维素酶3-15份和纤维素酶65-95份。
本发明通过将果胶酶、脂肪酶、半纤维素酶和纤维素酶复配成一定活性的复合酶,四种酶协同作用在初生壁+次生壁S1层,以便更有效释放出打浆的主要作用对象S2层。
在植物纤维细胞的结构中,初生壁含有木素和半纤维素,不吸水但能够透水,不易润涨;同时初生壁的纤维素程不规则的网状排列。初生壁的化学组成和纤维素排列会阻碍纤维内壁的细纤维化;次生壁S1层纤维与纤维轴向呈70-90°角不规则缠绕状态,并且该层纤维的结晶度较高,抗化学和机械破坏能力较高。因此,在纤维酶的选型上,选择果胶酶、脂肪酶、半纤维素酶、纤维素酶的酶组分,复配成一定活性的纤维酶。
优选地,所述的复合酶,包含以下重量份的组分:果胶酶1-7份、脂肪酶1-7份、半纤维素酶5-12份和纤维素酶70-95份。进一步优选地,所述的复合酶,包含以下重量份的组分:果胶酶2-5份、脂肪酶2-5份、半纤维素酶7-10份和纤维素酶80-89份。最优选地,所述的复合酶,包含以下重量份的组分:果胶酶3份、脂肪酶3份、半纤维素酶10份和纤维素酶84份。
发明人通过大量创造性试验,探究了果胶酶、脂肪酶、半纤维素酶、纤维素酶的最佳复配比例,在上述组分范围内,得到的复合酶的效果较好。
优选地,针对漂白后的化学浆,细胞中大部分为纤维素(约85%)和半纤维素(约14%),剩余少量为残留的木素及树脂,选择各种酶的活性范围为:果胶酶的酶活1000-3000IU,脂肪酶的酶活1000-3000IU,半纤维素酶的酶活3000-6000IU,纤维素酶的酶活30000-45000IU,本发明所用果胶酶、脂肪酶、半纤维素酶、纤维素酶均为市售。
此外,本发明还提供了所述的复合酶在打浆工艺中的应用。
优选地,所述的复合酶在打浆工艺中的应用,包括如下步骤:
(1)将浆料运输到碎浆机,在碎浆机中加入复合酶,得到混合浆料A;
(2)将步骤(1)中得到的混合浆料A输送至储浆塔,在储浆塔中进行反应,一段时间后输送至磨浆机进行磨浆,得到打浆后的浆料。
优选地,所述步骤(1)中,复合酶的添加量为0.05-1.5kg/吨绝干浆,碎浆机的主电机转速为1500rpm,转子转速为235rpm,碎浆时间为2min。
具体复合酶的添加量在实际生产线中,根据浆料进行调整。
优选地,所述步骤(2)中,在储浆塔中的反应时间为3-5h,反应温度为45-55℃。
添加纤维酶后,由于纤维的初生壁、次生壁S1层的木素、半纤维素及部分纤维素已被纤维酶处理了3.5小时,部分结合键已被打开,次生壁的S2层纤维素得到更加充分润涨及暴露,机械打浆更加容易分丝帚化。
相对于现有技术,本发明的有益效果为:(1)在达到相同的磨后游离度条件下,纤维酶用量为0.09kg/t绝干浆时,打浆电耗降低10%以上;(2)磨片寿命由2-3个月提高到4个月;(3)原来每条打浆线需要2台RF-4i磨机串联打浆,两条打浆线共需投资4台磨机;(4)经过纤维酶3.5小时的降解作用,纤维细胞的初生壁、次生壁S1层被酶水解作用破坏,纤维更充分润涨,因此每条打浆线仅用一台磨机打浆即可达到要求(5)经酶处理后的浆料打浆难度降低,原先每条打浆线配置两台磨机串联打浆,可降低配置为每条打浆线为一台磨机;同时,为满足产量的要求,原先由两条两台磨机串联打浆线增加为三条单台磨机并联打浆线总磨机数量减少一台。
附图说明
图1为未添加复合酶的打浆工艺流程图;
图2为添加本申请提供的复合酶的打浆工艺流程图;
图3为两种工艺下磨后纤维电镜图;
其中,图(a)为未添加复合酶磨浆后纤维电镜图;图(b)为添加实施例3的复合酶磨浆后纤维电镜图。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合附图和具体实施例对本发明作进一步说明。
本申请设置实施例1-10,按图2的工艺流程、在相同的比能耗条件下,选用高强度漂白阔叶木浆,具体实施例1-10复合酶的组分和重量份选择如下:
表1具体实施例1-10重量份选择
Figure BDA0002940215160000041
按照表1进行组分称量后,实施例所述的复合酶在打浆工艺中的应用,包括如下步骤:
(1)将浆料运输到碎浆机,在碎浆机中加入复合酶,复合酶的添加量为0.09kg/吨绝干浆,得到混合浆料A;
(2)将步骤(1)中得到的混合浆料A输送至储浆塔,在储浆塔中进行反应,反应时间为3.5h,反应温度为50℃,输送至磨浆机进行磨浆,得到打浆后的浆料。
同时,本申请设置对比例,对比例1-9的酶活等与实施例3完全相同,具体对比例1-9设置如下,对比例9是不采用复合酶处理,采用图1的生产线进行磨浆,得到打浆后的浆料:
表2具体对比例重量份选择
Figure BDA0002940215160000042
试验例1浆料性能检测
检测过程及标准
纤维分析:取磨后浆样,稀释到0.1%浓度,用L&W FINBER TESTER912分析纤维的长度、宽度和细小纤维含量;游离度:取磨后浆样,按加拿大标准游离度(CSF)检测方法检测游离度,表示浆样滤水能力大小,结果以加拿大标准游离度测管流出水的体积(ml)来表示;抗张指数:取磨后浆样,按设计定量60g/m2抄片,按照GB/T 12914-2018恒速拉伸法(20mm/min)测量纸张的抗张强度,然后除以定量得到抗张指数;内结合强度:取磨后浆样,按设计定量60g/m2抄片,按照GB/T 26203-2010纸和纸板内结合强度的测定标准检测内结合强度。
透气度:取磨后浆样,按设计定量60g/m2抄片,采用L&W AUTOLINE 400设备检测透气度。
检测结果:检测结果如表3所示:
表3具体实施例1-10的性能检测结果
Figure BDA0002940215160000051
表4具体实施例1-10的效果评估
Figure BDA0002940215160000052
Figure BDA0002940215160000061
表5具体对比例的性能检测结果
Figure BDA0002940215160000062
Figure BDA0002940215160000071
表6具体对比例的效果评估
效果评估
对比例1 降低2份果胶酶配比,透气度有所上升
对比例2 缺少果胶酶,游离度和透气度上升,抗张指数下降
对比例3 降低2份脂肪酶配比,透气度有所上升,抗张指数下降
对比例4 缺少脂肪酶,游离度和透气度上升,抗张指数、内结合下降
对比例5 与实施例1效果相近,酶作用效果偏强,细小纤维含量偏高
对比例6 与实施例1效果相近,酶作用效果过于强烈,细小纤维含量高
对比例7 酶作用效果偏弱,与空白组较为接近
对比例8 酶作用效果偏弱,与空白组较为接近
对比例9 空白组
由表3和表4的数据可知,实施例1-10和对比例1-8均是采用图2的新型产线进行磨浆,对比例9是不用复合酶处理,采用图1的产线进行磨浆,实施例1,细小纤维的含量偏高,游离度和透气度偏低,说明配方中纤维素酶含量过高,酶的作用过于强烈,对纤维的破坏作用强,造成过度打浆;实施例3,细小纤维含量低,抗张指数和内结合强度指标最优,游离度和透气度适中,该配方的效果最优;实施例2-5,细小纤维含量不高,抗张、内结合强度适中,效果较好;实施例6-10,逐步提高了果胶酶和脂肪酶的含量,降低纤维素酶的含量,抗张指数和内结合强度逐步降低,透气度逐步升高,对磨浆的作用逐步减弱,复合酶的效果降低。从图3中,用染色剂染色后、800倍显微镜下观察纤维的形态,图(a)中空白组纤维的分丝帚化程度低于图(b)中实施例3纤维的分丝帚化程度。
而对比实施例1-10和对比例1-8均是采用图2的磨浆产线,对比例1-8采用的复合酶减少其中的一种酶配比或缺少其中一种酶。对比例1-4,分别降低、缺少果胶酶和脂肪酶的配比,抗张指数有了一定程度的下降;对比例5和6,减少或者缺少半纤维素酶配比,造成纤维素酶配比变相上升,效果与实施例1较为接近,复合酶的效果作用过于激烈;对比例7和8,减少或者缺少纤维素酶配比,效果趋向于空白组,复合酶的作用过于轻微,不利于磨浆效果提高。
试验例2
将实施例3制备得到的复合酶应用到漂白硫酸盐化学短纤浆的打浆工艺中,磨机打浆方案如表5所示,打浆工艺流程图如图2所示;现在的磨机打浆方案,具体磨机打浆方案如表5所示,打浆工艺流程图如图1所示:
表5磨机打浆方案
Figure BDA0002940215160000081
目前使用的磨浆方案,由于浆料难于打浆,单台磨打浆不能满足要求,设计采用4台RF-4i磨机组成两条打浆线,每条打浆线由2台磨机串联组成。添加纤维酶后的打浆工艺,由于纤维的初生壁、次生壁S1层的木素、半纤维素及部分纤维素已被纤维酶处理了3.5小时,部分结合键已被打开,次生壁的S2层纤维素得到更加充分润涨及暴露,机械打浆更加容易分丝帚化。因此,可停用一台磨机,采用三台磨机并联打浆,打浆浓度提高到5.2%,单台磨机通过量提高30%,总体能耗降低10%。且由于打浆能耗降低10%左右,磨片的磨损速度降低。按照10mm的磨齿磨损量更换标准,磨片的寿命提高到4个月左右。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (8)

1.一种复合酶,其特征在于,包含以下重量份的组分:果胶酶1-10份、脂肪酶1-10份、半纤维素酶3-15份和纤维素酶65-95份。
2.如权利要求1所述的复合酶,其特征在于,包含以下重量份的组分:果胶酶1-7份、脂肪酶1-7份、半纤维素酶5-12份和纤维素酶70-95份。
3.如权利要求2所述的复合酶,其特征在于,包含以下重量份的组分:果胶酶2-5份、脂肪酶2-5份、半纤维素酶7-10份和纤维素酶80-89份。
4.如权利要求3所述的复合酶,其特征在于,包含以下重量份的组分:果胶酶3份、脂肪酶3份、半纤维素酶10份和纤维素酶84份。
5.一种如权利要求1-4任一项所述的复合酶在打浆工艺中的应用。
6.如权利要求5所述的复合酶在打浆工艺中的应用,其特征在于,包括如下步骤:
(1)将浆料运输到碎浆机,在碎浆机中加入复合酶,得到混合浆料A;
(2)将步骤(1)中得到的混合浆料A输送至储浆塔,在储浆塔中进行反应,一段时间后输送至磨浆机进行磨浆,得到打浆后的浆料。
7.如权利要求6所述的复合酶在打浆工艺中的应用,其特征在于,所述步骤(1)中,复合酶的添加量为0.05-1.5kg/吨绝干浆,碎浆机的主电机转速为1500rpm,转子转速为235rpm,碎浆时间为2min。
8.如权利要求6所述的复合酶在打浆工艺中的应用,其特征在于,所述步骤(2)中,在储浆塔中的反应时间为3-5h,反应温度为45-55℃。
CN202110173578.7A 2021-02-07 2021-02-07 一种复合酶及其应用 Pending CN113046336A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110173578.7A CN113046336A (zh) 2021-02-07 2021-02-07 一种复合酶及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110173578.7A CN113046336A (zh) 2021-02-07 2021-02-07 一种复合酶及其应用

Publications (1)

Publication Number Publication Date
CN113046336A true CN113046336A (zh) 2021-06-29

Family

ID=76508950

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110173578.7A Pending CN113046336A (zh) 2021-02-07 2021-02-07 一种复合酶及其应用

Country Status (1)

Country Link
CN (1) CN113046336A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA758488A (en) * 1967-05-09 C. Jenness Lyle Process for treating paper pulp
CN102978986A (zh) * 2012-11-27 2013-03-20 天津智展科技有限公司 生物酶制备纸浆的方法
CN103031297A (zh) * 2012-12-21 2013-04-10 青岛蔚蓝生物集团有限公司 一种漂白浆磨浆用复合酶及其应用工艺
CN105505902A (zh) * 2014-09-30 2016-04-20 李一凡 一种漂白浆磨浆用复合酶及其应用工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA758488A (en) * 1967-05-09 C. Jenness Lyle Process for treating paper pulp
CN102978986A (zh) * 2012-11-27 2013-03-20 天津智展科技有限公司 生物酶制备纸浆的方法
CN103031297A (zh) * 2012-12-21 2013-04-10 青岛蔚蓝生物集团有限公司 一种漂白浆磨浆用复合酶及其应用工艺
CN105505902A (zh) * 2014-09-30 2016-04-20 李一凡 一种漂白浆磨浆用复合酶及其应用工艺

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
叶申凤 等: "生物酶预处理对高得率浆磨浆能耗及成浆质量的影响", 《黑龙江造纸》 *
柳海燕: "生物酶在制浆造纸中的应用", 《黑龙江造纸》 *
赵玉林 等: "半纤维素酶在制浆造纸工业的应用研究进展", 《中国造纸学报》 *

Similar Documents

Publication Publication Date Title
US11390995B2 (en) Cannabis fiber, absorbent cellulosic structures containing cannabis fiber and methods of making the same
US10718088B2 (en) Enzymatic pre-treatment of market pulp to improve fiber drainage and physical properties
EP1984561B1 (en) Method for the manufacturing of microfibrillated cellulose
Gonzalez et al. Suitability of rapeseed chemithermomechanical pulp as raw material in papermaking
CN110172852B (zh) 造纸用植物纤维的处理方法
CN113481741B (zh) 一种菌草化机浆及其制备方法和应用
CN105624138B (zh) 一种生活用纸打浆促进纤维改性的复合酶制剂及其制备方法和应用
CN113846515A (zh) 一种遇水易分散的纸张及其制备方法
CN113046336A (zh) 一种复合酶及其应用
CN110593010B (zh) 一种瓦楞原纸的制备方法
CN101654884B (zh) 一种在低浓设备中实现中浓磨浆的方法
Tao et al. Effects of xylanase pretreatment on the quality of refiner mechanical mulberry branch fibers
Moser et al. Structural aspects on the manufacturing of cellulose nanofibers from wood pulp fibers
CN111472197B (zh) 一种occ高浓打浆的制浆生产及其造纸方法和再生纸
CN115094662A (zh) 一种牛卡纸及其制备方法
CN115110333A (zh) 一种利用生物酶增强节能的全废纸牛皮卡纸生产方法
CN108374292A (zh) 一种利用特效复合生物酶制剂制备化机浆的生产工艺
CN101760989B (zh) 一种高不透明度、透气度和撕裂指数混合浆及其制备的文化用纸
CN106049157A (zh) 一种造纸高浓的磨浆方法
CN101760986B (zh) 一种高松厚度、透气度和撕裂指数混合浆及其制备的文化用纸
Khatuii et al. Improving Strength Properties of Recycled Paper by adding Virgin Jute Pulps
Wu et al. Application of enzymes for the reduction of PFI revolutions in the secondary pulping process and characteristics of thermomechanical pulp
CN114687251A (zh) 一种提高普通箱板纸耐破强度的方法
Makubo The effect of cellobiohydrolase I on low consistency refining and handsheet properties
Yue et al. A New Method for the Pulping of Aspen Branch Wood

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210629