CN113045042A - 一种四元多价垃圾渗滤液处理剂的制备方法 - Google Patents

一种四元多价垃圾渗滤液处理剂的制备方法 Download PDF

Info

Publication number
CN113045042A
CN113045042A CN202110295049.4A CN202110295049A CN113045042A CN 113045042 A CN113045042 A CN 113045042A CN 202110295049 A CN202110295049 A CN 202110295049A CN 113045042 A CN113045042 A CN 113045042A
Authority
CN
China
Prior art keywords
magnesium
manganese
aluminum
iron
quaternary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110295049.4A
Other languages
English (en)
Other versions
CN113045042B (zh
Inventor
黄涛
宋东平
周璐璐
张树文
徐娇娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Institute of Technology
Original Assignee
Changshu Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Institute of Technology filed Critical Changshu Institute of Technology
Priority to CN202110295049.4A priority Critical patent/CN113045042B/zh
Publication of CN113045042A publication Critical patent/CN113045042A/zh
Application granted granted Critical
Publication of CN113045042B publication Critical patent/CN113045042B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开了一种四元多价垃圾渗滤液处理剂的制备方法,将二价锰盐、镁盐、铁盐、铝盐混合得到锰镁铁铝试剂,再将其溶于水中得到锰镁铁铝溶液;然后将锰镁铁铝溶液进行低温等离子体照射处理得到锰镁铁铝活性溶液;最后将锰镁铁铝活性溶液与碱液混合,静置陈化,烘干,即得四元多价垃圾渗滤液处理剂。本发明制备的四元多价材料可有效处置垃圾渗滤液中99%以上COD、98%以上氨氮及99%以上重金属污染物;四元多价材料对垃圾渗液的处置工艺简单,共混搅拌半小时再静置分离,即可完成对垃圾渗滤液的处理,处置周期非常短。

Description

一种四元多价垃圾渗滤液处理剂的制备方法
技术领域
本发明涉及垃圾渗滤液处理剂的制备方法,尤其涉及一种四元多价垃圾渗滤液处理剂的制备方法。
背景技术
在厌氧及潮湿环境下,填埋在地底下的垃圾易在厌氧微生物作用下发酵生成大量垃圾渗滤液。垃圾渗滤液对环境危害较大,含有高浓度有机污染物、大量氨氮和无机盐及少量重金属。垃圾渗滤液会对周边土壤及水体生态环境造成严重破坏。针对垃圾渗滤液的处理主要包括物理化学处理技术、生物处理技术和膜法处理技术。在实际操作中,通常复合使用三种技术,以实现对垃圾渗滤液的高效处置,如使用纳滤或超滤膜耦合反渗透去除渗滤液中的盐分,然后通过微生物厌氧和好氧工序实现对垃圾渗滤液中有机污染物和氨氮的去除。总体而言,目前针对垃圾渗液的处置工艺复杂,包含步骤较多,工况稳定性差,处置周期长。
发明内容
发明目的:针对以上问题,本发明提出一种四元多价垃圾渗滤液处理剂的制备方法,所制备的处理剂可实现对垃圾渗滤液的高效处理,且处置过程简单。
技术方案:本发明所述的一种四元多价垃圾渗滤液处理剂的制备方法,将二价锰盐、镁盐、铁盐、铝盐混合得到锰镁铁铝试剂,再将其溶于水中得到锰镁铁铝溶液;然后将锰镁铁铝溶液进行低温等离子体照射处理得到锰镁铁铝活性溶液;最后将锰镁铁铝活性溶液与碱液混合,静置陈化,烘干,即得四元多价垃圾渗滤液处理剂。
其中,所述二价锰盐、镁盐、铁盐、铝盐中锰、镁、铁、铝的摩尔比为2.5~17.5:5~25:5~45:100;所述二价锰盐为氯化锰,镁盐为氯化镁,铁盐为氯化铁,铝盐为氯化铝。需要说明的是,二价锰盐也可为硫酸锰,镁盐也可为硫酸镁,铁盐也可为硫酸亚铁、硫酸铁或氯化亚铁,铝盐也可为硫酸铝,并不仅限于本发明的实施例。
所述水与锰镁铁铝试剂的液固比为0.5~2.5:1。
所述低温等离子体照射的作用时间为0.5~4.5小时,作用电压为5~55kV,作用功率为5~75kW,作用气氛为氯气和氧气混合气体,氯气和氧气体积比为0.15~0.75:1,进一步优选为0.2~0.6:1
所述碱液与锰镁铁铝活性溶液的体积比为9~52:100,进一步优选为10~50:100。
所述碱液为氢氧化钠水溶液。需要说明的是,碱液也可选择氢氧化钾水溶液、碳酸钠水溶液或碳酸钾水溶液,并不仅限于本发明的实施例。
所述静置陈化时间为6~24小时,烘干温度为50~250℃。
在低温等离子体放电过程中,氯气和氧气可在放电通道中发生电离和解离生成氧自由基、氯自由基、氯氧自由基、臭氧等物质。氧自由基、氯自由基、氯氧自由基、臭氧起到三方面作用:一是可与锰镁铁铝溶液中的二价锰离子反应生成三价和四价锰氧化物及六价锰酸盐和七价高锰酸盐;二是可与锰镁铁铝溶液中的三价铁离子反应生成高铁酸盐;三是可诱发铝离子发生水解聚合生成聚合铝。氧自由基和臭氧可诱发镁离子形成氢氧化镁沉淀。将碱液与锰镁铁铝活性溶液混合后,搅拌过程中氢氧根诱发铝进一步发生聚合,并诱发聚合铝与溶液中未反应的镁离子、铁离子结合生成聚合氯铝铁镁和铁镁双元层状氢氧化物沉淀。在搅拌过程中,三价和四价锰氧化物及六价锰酸盐、七价高锰酸盐、高铁酸盐、氢氧化铝与聚合铝和聚合氯铝铁镁充分混合,六价锰酸盐和七价高锰酸盐还可与铁离子反应生成铁锰氢氧化物。随着搅拌持续进行,最终形成三价和四价锰氧化物、六价锰酸盐、七价高锰酸盐、高铁酸盐、氢氧化铝、聚合铝、聚合氯铝铁镁、铁镁双元层状氢氧化物沉淀、铁锰氢氧化物充分混合的四元多价物质。
将本发明制备的四元多价垃圾渗滤液处理剂与垃圾渗滤液混合后,处理剂中的聚合铝和聚合氯铝铁镁形成矾花并通过网捕卷扫作用将垃圾渗滤液中的有机污染物、氨氮污染物及重金属污染物吸附到处理剂表面。有机污染物在接触到锰氧化物、六价锰酸盐、七价高锰酸盐及高铁酸盐后发生矿化反应转化为二氧化碳和水。而部分氨氮污染物在接触到锰氧化物、六价锰酸盐、七价高锰酸盐及高铁酸盐后被转化为硝酸盐,部分氨氮污染物吸附并迁移在铁镁双元层状氢氧化物沉淀层间。重金属污染物则吸附在氢氧化铝、聚合铝、聚合氯铝铁镁、铁镁双元层状氢氧化物沉淀及铁锰氢氧化物等物质上。
有益效果:与现有技术相比,本发明制备的四元多价材料可有效处置垃圾渗滤液中99%以上COD、98%以上氨氮及99%以上重金属污染物;四元多价材料对垃圾渗液的处置工艺简单,共混搅拌半小时再静置分离,即可完成对垃圾渗滤液的处理,处置周期非常短。
附图说明
图1是本发明的流程图。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明。
需要说明的是,本发明的垃圾渗滤液取自连云港市海州区青城山生活垃圾卫生填埋场。该批次垃圾渗滤液中COD的质量浓度为1289mg/L,氨氮的浓度为881mg/L,所含重金属离子为9.14mg/L铅离子(Pb2+)和25.38mg/L镉离子(Cd2+)。
实施例1
Mn、Mg、Fe、Al摩尔比对四元多价垃圾渗滤液处理剂性能影响
四元多价垃圾渗滤液处理剂的制备:如图1所示,按照Mn、Mg、Fe、Al摩尔比2.5:5:5:100、10:5:5:100、17.5:5:5:100、2.5:15:5:100、10:15:5:100、17.5:15:5:100、2.5:25:5:100、10:25:5:100、17.5:25:5:100、2.5:5:25:100、10:5:25:100、17.5:5:25:100、2.5:15:25:100、10:15:25:100、17.5:15:25:100、2.5:25:25:100、10:25:25:100、17.5:25:25:100、2.5:5:45:100、10:5:45:100、17.5:5:45:100、2.5:15:45:100、10:15:45:100、17.5:15:45:100、2.5:25:45:100、10:25:45:100、17.5:25:45:100分别称取氯化锰、氯化镁、氯化铁、氯化铝,混合,得到锰镁铁铝试剂,按照水与锰镁铁铝试剂液体固液比0.5:1(mL:mg)将二者混合,搅拌至氯化锰、氯化镁、氯化铁、氯化铝完全溶解,得到锰镁铁铝溶液,对锰镁铁铝溶液进行低温等离子体放电0.5小时,得到锰镁铁铝活性溶液,其中低温等离子体放电电压为5kV,作用功率为5kW,作用气氛为氯气和氧气混合气体,氯气和氧气体积比为0.2:1,配制浓度为0.5mol/L的氢氧化钠水溶液,按照氢氧化钠水溶液与锰镁铁铝活性溶液体积比10:100将二者混合,搅拌1小时,静置陈化6小时,50℃条件下烘干,即得四元多价垃圾渗滤液处理剂。
垃圾渗滤液处置试验:将20g上述制备的四元多价垃圾渗滤液处理剂加入到垃圾渗滤液中,120rpm条件下搅拌30分钟,静置沉淀,固液分离,即得处理后的垃圾渗滤液。
COD浓度检测及COD去除率的计算:垃圾渗滤液中化学需氧量COD的浓度按照国家标准《水质化学需氧量的测定重铬酸盐法》(GB 11914-1989)进行测定;COD去除率按照公式(1)计算,其中RCOD为COD去除率,c0和ct分别为垃圾渗滤液在处理前和处理后的COD浓度(mg/L)。
Figure BDA0002984018980000031
氨氮浓度检测及氨氮去除率计算:垃圾渗滤液中氨氮的浓度按照《水质氨氮的测定水杨酸分光光度法》(HJ536-2009)进行测定;氨氮去除率按照公式(2)计算,其中RN为氨氮去除率,cN0和cNt分别为垃圾渗滤液在处理前和处理后的氨氮浓度(mg/L)。
Figure BDA0002984018980000032
重金属离子浓度检测及去除率计算:垃圾渗滤液中铅和镉两种重金属离子浓度按照《水质32种元素的测定电感耦合等离子体发射光谱法》(HJ 776-2015)测定;重金属M离子(M:Pb和Cd)去除率按照公式(3)计算,其中RM为重金属离子去除率,cM0和cMt分别为垃圾渗滤液在处理前和处理后的重金属M离子浓度(mg/L)。
Figure BDA0002984018980000033
垃圾渗滤液中COD、氨氮和重金属离子去除率的试验结果见表1。
表1Mn、Mg、Fe、Al摩尔比对四元多价垃圾渗滤液处理剂性能影响
Figure BDA0002984018980000041
由表1可看出,当Mn、Mg、Fe、Al摩尔比2.5~17.5:5~25:5~45:100时,在低温等离子体放电过程中,氯气和氧气可在放电通道中发生电离和解离生成氧自由基、氯自由基、氯氧自由基、臭氧等物质。氧自由基、氯自由基、氯氧自由基、臭氧可与锰镁铁铝溶液中的二价锰离子反应生成三价和四价锰氧化物及六价锰酸盐和七价高锰酸盐;氧自由基、氯自由基、氯氧自由基、臭氧可与锰镁铁铝溶液中的亚铁离子或三价铁离子反应生成高铁酸盐;氧自由基和臭氧可诱发镁离子形成氢氧化镁沉淀;氧自由基、氯自由基、氯氧自由基、臭氧可诱发铝离子发生水解聚合生成聚合铝。将碱液与锰镁铁铝活性溶液混合后,搅拌过程中氢氧根诱发铝进一步发生聚合,并诱发聚合铝与溶液中未反应的镁离子、铁离子结合生成聚合氯铝铁镁和铁镁双元层状氢氧化物沉淀。在搅拌过程中,三价和四价锰氧化物及六价锰酸盐、七价高锰酸盐、高铁酸盐、氢氧化铝与聚合铝、聚合氯铝铁镁、铁镁双元层状氢氧化物沉淀充分混合,六价锰酸盐和七价高锰酸盐还可与铁离子反应生成铁锰氢氧化物。随着搅拌持续进行,最终形成三价和四价锰氧化物、六价锰酸盐、七价高锰酸盐、高铁酸盐、氢氧化铝、聚合铝、聚合氯铝铁镁、铁镁双元层状氢氧化物沉淀、铁锰氢氧化物充分混合的四元多价物质。最终,COD去除率均大于96%,氨氮去除率均大于93%,重金属铅和镉去除率均大于97%。因此,在Mn、Mg、Fe、Al摩尔比选定的比例范围,所制备的四元多价垃圾渗滤液处理剂具有较为优异的性能。
实施例2
氯气和氧气体积比对四元多价垃圾渗滤液处理剂性能影响
四元多价垃圾渗滤液处理剂的制备:按照Mn、Mg、Fe、Al摩尔比10:15:25:100分别称取氯化锰、氯化镁、氯化铁、氯化铝,混合,得到锰镁铁铝试剂,按照水与锰镁铁铝试剂液体固液比1.5:1(mL:mg)将二者混合,搅拌至氯化锰、氯化镁、氯化铁、氯化铝完全溶解,得到锰镁铁铝溶液,对锰镁铁铝溶液进行低温等离子体放电2.5小时,得到锰镁铁铝活性溶液,其中低温等离子体放电电压为30kV,作用功率为40kW,作用气氛为氯气和氧气混合气体,氯气和氧气体积比分别为0.05:1、0.1:1、0.15:1、0.2:1、0.4:1、0.6:1、0.65:1、0.7:1、0.75:1,配制浓度为4mol/L的氢氧化钠水溶液,按照氢氧化钠水溶液与锰镁铁铝活性溶液体积比30:100将二者混合,搅拌2小时,静置陈化15小时,150℃条件下烘干,即得四元多价垃圾渗滤液处理剂。
垃圾渗滤液处置试验、COD浓度检测及COD去除率的计算、氨氮浓度检测及氨氮去除率计算、重金属离子浓度检测及去除率计算均同实施例1。
垃圾渗滤液中COD、氨氮和重金属离子去除率的试验结果见表2。
表2 氯气和氧气体积比对四元多价垃圾渗滤液处理剂性能影响
Figure BDA0002984018980000061
由表2可看出,当氯气和氧气体积比小于0.2:1(如表2中,氯气和氧气体积比=0.15:1、0.1:1、0.05:1时以及表2中未列举的更低比值),氯气较少,在低温等离子体放电过程中氯自由基和氯氧自由基生成量减少,使得三价和四价锰氧化物及六价锰酸盐和七价高锰酸盐、高铁酸盐、聚合铝生成量均减少,导致COD去除率、氨氮去除率、重金属铅和镉去除率均随着氯气和氧气体积比减少显著降低。当氯气和氧气体积比等于0.2~0.6:1(如表2中,氯气和氧气体积比=0.2:1、0.4:1、0.6:1时),在低温等离子体放电过程中,氯气和氧气可在放电通道中发生电离和解离生成氧自由基、氯自由基、氯氧自由基、臭氧等物质。氧自由基、氯自由基、氯氧自由基、臭氧可与锰镁铁铝溶液中的二价锰离子反应生成三价和四价锰氧化物及六价锰酸盐和七价高锰酸盐;氧自由基、氯自由基、氯氧自由基、臭氧可与锰镁铁铝溶液中的亚铁离子或三价铁离子反应生成高铁酸盐;氧自由基和臭氧可诱发镁离子形成氢氧化镁沉淀;氧自由基、氯自由基、氯氧自由基、臭氧可诱发铝离子发生水解聚合生成聚合铝。最终,COD去除率均大于98%,氨氮去除率均大于96%,重金属铅和镉去除率均大于99%。当氯气和氧气体积比大于0.6:1(如表2中,氯气和氧气体积比=0.65:1、0.7:1、0.75:1时以及表2中未列举的更高比值),COD去除率、氨氮去除率、重金属铅和镉去除率均随着氯气和氧气体积比进一步增加变化不显著。因此,综合而言,结合效益与成本,当氯气和氧气体积比等于0.2~0.6:1时,最有利于提高四元多价垃圾渗滤液处理剂性能。
实施例3
氢氧化钠水溶液与锰镁铁铝活性溶液体积比对四元多价垃圾渗滤液处理剂性能影响
四元多价垃圾渗滤液处理剂的制备∶按照Mn、Mg、Fe、Al摩尔比10:15:25:100分别称取氯化锰、氯化镁、氯化铁、氯化铝,混合,得到锰镁铁铝试剂,按照水与锰镁铁铝试剂液体固液比2.5:1(mL:mg)将二者混合,搅拌至氯化锰、氯化镁、氯化铁、氯化铝完全溶解,得到锰镁铁铝溶液,对锰镁铁铝溶液进行低温等离子体放电4.5小时,得到锰镁铁铝活性溶液,其中低温等离子体放电电压为55kV,作用功率为75kW,作用气氛为氯气和氧气混合气体,氯气和氧气体积比为0.4:1,配制浓度为7.5mol/L的氢氧化钠水溶液,按照氢氧化钠水溶液与锰镁铁铝活性溶液体积比5:100、7:100、9:100、10:100、30:100、50:100、52:100、55:100、60:100分别将二者混合,搅拌3小时,静置陈化24小时,250℃条件下烘干,即得四元多价垃圾渗滤液处理剂。
垃圾渗滤液处置试验、COD浓度检测及COD去除率的计算、氨氮浓度检测及氨氮去除率计算、重金属离子浓度检测及去除率计算均同实施例1。
垃圾渗滤液中COD、氨氮和重金属离子去除率的试验结果见表3。
表3 氢氧化钠水溶液与锰镁铁铝活性溶液体积比对四元多价垃圾渗滤液处理剂性能影响
Figure BDA0002984018980000071
由表3可看出,当氢氧化钠水溶液与锰镁铁铝活性溶液体积比小于10:100(如表3中,氢氧化钠水溶液与锰镁铁铝活性溶液体积比=9:100、7:100、5:100时以及表3中未列举的更低比值),氢氧化钠水溶液较少,氢氧化铝、聚合铝、聚合氯铝铁镁、铁镁双元层状氢氧化物沉淀、铁锰氢氧化物生成量降低,导致COD去除率、氨氮去除率、重金属铅和镉去除率均随着碱液与锰镁铁铝活性溶液体积比减少显著降低。当氢氧化钠水溶液与锰镁铁铝活性溶液体积比等于10~50:100(如表3中,氢氧化钠水溶液与锰镁铁铝活性溶液体积比=10:100、30:100、50:100),将氢氧化钠水溶液与锰镁铁铝活性溶液混合后,搅拌过程中氢氧根诱发铝进一步发生聚合,并诱发聚合铝与溶液中未反应的镁离子、铁离子结合生成聚合氯铝铁镁和铁镁双元层状氢氧化物沉淀。在搅拌过程中,三价和四价锰氧化物及六价锰酸盐、七价高锰酸盐、高铁酸盐、氢氧化铝与聚合铝、聚合氯铝铁镁、铁镁双元层状氢氧化物沉淀充分混合,六价锰酸盐和七价高锰酸盐还可与铁离子反应生成铁锰氢氧化物。随着搅拌持续进行,最终形成三价和四价锰氧化物、六价锰酸盐、七价高锰酸盐、高铁酸盐、氢氧化铝、聚合铝、聚合氯铝铁镁、铁镁双元层状氢氧化物沉淀、铁锰氢氧化物充分混合的四元多价物质。最终,COD去除率均大于99%,氨氮去除率均大于98%,重金属铅和镉去除率均大于99%。当氢氧化钠水溶液与锰镁铁铝活性溶液体积比大于50:100(如表3中,氢氧化钠水溶液与锰镁铁铝活性溶液体积比=52:100、55:100、60:100时以及表3中未列举的更高比值),氢氧化钠水溶液过多,聚合铝和聚合氯铝铁镁生成量显著减少,使得处理剂的污染物吸附效率降低,导致COD去除率、氨氮去除率、重金属铅和镉去除率均随着氢氧化钠水溶液与锰镁铁铝活性溶液体积比进一步增加而显著降低。因此,综合而言,结合效益与成本,当氢氧化钠水溶液与锰镁铁铝活性溶液体积比等于10~50:100时,最有利于提高四元多价垃圾渗滤液处理剂性能。

Claims (10)

1.一种四元多价垃圾渗滤液处理剂的制备方法,其特征在于,将二价锰盐、镁盐、铁盐、铝盐混合得到锰镁铁铝试剂,再将其溶于水中得到锰镁铁铝溶液;然后将锰镁铁铝溶液进行低温等离子体照射处理得到锰镁铁铝活性溶液;最后将锰镁铁铝活性溶液与碱液混合,静置陈化,烘干,即得四元多价垃圾渗滤液处理剂。
2.根据权利要求1所述的四元多价垃圾渗滤液处理剂的制备方法,其特征在于,所述二价锰盐、镁盐、铁盐、铝盐中锰、镁、铁、铝的摩尔比为2.5~17.5:5~25:5~45:100。
3.根据权利要求1所述的四元多价垃圾渗滤液处理剂的制备方法,其特征在于,所述低温等离子体照射的作用时间为0.5~4.5小时,作用电压为5~55kV,作用功率为5~75kW,作用气氛为氯气和氧气混合气体,氯气和氧气体积比为0.15~0.75:1。
4.根据权利要求3所述的四元多价垃圾渗滤液处理剂的制备方法,其特征在于,所述氯气和氧气体积比为0.2~0.6:1。
5.根据权利要求1所述的四元多价垃圾渗滤液处理剂的制备方法,其特征在于,所述碱液与锰镁铁铝活性溶液的体积比为9~52:100。
6.根据权利要求5所述的四元多价垃圾渗滤液处理剂的制备方法,其特征在于,所述碱液与锰镁铁铝活性溶液的体积比为10~50:100。
7.根据权利要求1所述的四元多价垃圾渗滤液处理剂的制备方法,其特征在于,所述二价锰盐为氯化锰,镁盐为氯化镁,铁盐为氯化铁,铝盐为氯化铝。
8.根据权利要求1所述的四元多价垃圾渗滤液处理剂的制备方法,其特征在于,所述碱液为氢氧化钠水溶液。
9.根据权利要求1所述的四元多价垃圾渗滤液处理剂的制备方法,其特征在于,所述水与锰镁铁铝试剂的液固比为0.5~2.5:1。
10.根据权利要求1所述的四元多价垃圾渗滤液处理剂的制备方法,其特征在于,所述静置陈化时间为6~24小时,烘干温度为50~250℃。
CN202110295049.4A 2021-03-19 2021-03-19 一种四元多价垃圾渗滤液处理剂的制备方法 Active CN113045042B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110295049.4A CN113045042B (zh) 2021-03-19 2021-03-19 一种四元多价垃圾渗滤液处理剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110295049.4A CN113045042B (zh) 2021-03-19 2021-03-19 一种四元多价垃圾渗滤液处理剂的制备方法

Publications (2)

Publication Number Publication Date
CN113045042A true CN113045042A (zh) 2021-06-29
CN113045042B CN113045042B (zh) 2022-08-26

Family

ID=76513579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110295049.4A Active CN113045042B (zh) 2021-03-19 2021-03-19 一种四元多价垃圾渗滤液处理剂的制备方法

Country Status (1)

Country Link
CN (1) CN113045042B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797754A (zh) * 2022-03-29 2022-07-29 常熟理工学院 一种利用硼泥制备高效废水吸附剂的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734772A (zh) * 2008-11-14 2010-06-16 北京石油化工学院 处理工业废水的复合絮凝剂及制备方法
CN111995021A (zh) * 2020-08-26 2020-11-27 常熟理工学院 一种聚合氯化镁铝钛混凝剂的制备方法
CN112299518A (zh) * 2020-10-28 2021-02-02 常熟理工学院 一种镁铁锰基高效废水处理剂的制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734772A (zh) * 2008-11-14 2010-06-16 北京石油化工学院 处理工业废水的复合絮凝剂及制备方法
CN111995021A (zh) * 2020-08-26 2020-11-27 常熟理工学院 一种聚合氯化镁铝钛混凝剂的制备方法
CN112299518A (zh) * 2020-10-28 2021-02-02 常熟理工学院 一种镁铁锰基高效废水处理剂的制备方法及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797754A (zh) * 2022-03-29 2022-07-29 常熟理工学院 一种利用硼泥制备高效废水吸附剂的方法

Also Published As

Publication number Publication date
CN113045042B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
CN106882871B (zh) 一种强化厌氧微生物活性的纳米磁铁矿耦合废水处理工艺
CN108046557B (zh) 促进含磷酸盐沉淀的污泥在室温条件下释磷与产气的方法
CN110066082A (zh) 一种同步强化产酸与除磷的污泥厌氧发酵处理方法
CN112299518B (zh) 一种镁铁锰基高效废水处理剂的制备方法及其应用
CN113045042B (zh) 一种四元多价垃圾渗滤液处理剂的制备方法
CN107628703A (zh) 一种去除水中铁锰污染的水处理预氧化技术
CN103357372A (zh) 用于去除水中磷酸盐的铁铝锰复合金属氧化物吸附剂及其制备方法
CN107285440A (zh) 一种基于原位共沉淀反应处理含重金属染料废水的方法
CN205501051U (zh) 一种基于臭氧高级氧化的垃圾渗滤液深度处理系统
Li et al. Efficient electrochemical oxidation of thallium (I) in groundwater using boron-doped diamond anode
CN107265606A (zh) 一种基于高碘酸盐氧化去除有机污染物的方法
CN113772802B (zh) 一种基于锰氧化物修饰的铜锰尖晶石降解水中双酚a的方法
CN110818047B (zh) 一种聚硅铁锰石墨烯絮凝剂的制备方法
Huiping et al. Biosorption equilibrium and kinetics of Au (III) and Cu (II) on magnetotactic bacteria
CN107311401B (zh) 一种去除水中有机物的方法
Zhao et al. A review on new ammonium oxidation alternatives for effective nitrogen removal from wastewater
CN108558086B (zh) 一种去除水中六价硒的组合工艺
CN114426676B (zh) 一种磁性铁基mof微生物载体材料及其制备方法
CN111268807B (zh) 利用土著脱氮微生物菌群脱除稀土浸矿场地残留铵盐淋出液中氨氮的方法
Wang et al. Role of extracellular polymeric substances (EPS) from Pseudomonas putida strain MnB1 in dissolution of natural rhodochrosite
CN117105492B (zh) 一种利用超临界水发生器净化高浓缩垃圾渗滤液的方法及其产品
CN107344748A (zh) 一种利用次生铁矿物活化过一硫酸盐处理反渗透浓缩液的方法
CN113830875B (zh) 一种基于LaCu0.5Mn0.5O3钙钛矿降解水中双酚A的方法
US20240059593A1 (en) METHOD OF PREPARING FeMnCeOx BIOMATERIAL AND METHOD OF TREATING ANTIBIOTIC WASTEWATER
CN113307421B (zh) 一种用于醛类化工废水处理的电化学氧化辅助芬顿氧化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant