CN113042030A - 一种自然条件下降解废水中有机污染的柔性薄膜 - Google Patents

一种自然条件下降解废水中有机污染的柔性薄膜 Download PDF

Info

Publication number
CN113042030A
CN113042030A CN202110351144.1A CN202110351144A CN113042030A CN 113042030 A CN113042030 A CN 113042030A CN 202110351144 A CN202110351144 A CN 202110351144A CN 113042030 A CN113042030 A CN 113042030A
Authority
CN
China
Prior art keywords
catalytic material
under natural
degrading organic
tio
natural conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110351144.1A
Other languages
English (en)
Other versions
CN113042030B (zh
Inventor
刘琼
罗行
张斗
胡权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202110351144.1A priority Critical patent/CN113042030B/zh
Publication of CN113042030A publication Critical patent/CN113042030A/zh
Application granted granted Critical
Publication of CN113042030B publication Critical patent/CN113042030B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/36Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及材料技术领域,具体涉及一种自然条件下降解废水中有机污染的柔性薄膜。具体技术方案为:一种自然条件下降解废水中有机污染的柔性薄膜,包括催化材料、分散剂和交联剂。本发明所提供的降解废水中有机污染的柔性薄膜,能够避免纯粉体催化材料进行催化降解处理污水的过程中,粉体难以回收,容易造成污染;同时,薄膜的设计,也有效的解决了回收问题,避免了二次污染的问题。

Description

一种自然条件下降解废水中有机污染的柔性薄膜
技术领域
本发明涉及材料技术领域,具体涉及一种自然条件下降解废水中有机污染的柔性薄膜。
背景技术
目前处理有机污染的相关薄膜的设计主要有:1.纳米复合膜,利用金属骨架烧结构成微孔结构,以过滤的方式净化海水,实现脱盐;2.多孔陶瓷膜等,都是利用过滤的原理,进行脱盐等海水或者污水处理。此外,还有采用固体薄膜材料通过光催化降解污水中罗丹明B的装置设计与应用。
第一种方法利用微孔过滤处理污水,本质上并没有将污染处理,只是分离开来,并且大多局限在脱盐应用领域;
第二种方法通过化学方法在玻璃基底上生长光催化剂,再应用于降解污水中的有机污染罗丹明B,以玻璃为基底,原材料成本高,运输成本高,灵活度低,在实际应用中污水体量大,玻璃容易碎裂,造成二次污染,污水大多具有颜色而导致对光有一定的吸收,玻璃必须保持放在污水表面才能达到最佳光电转换效率,而污水的高度并非一成不变,水蒸发,水循环,都会使得液面高度发生变化,此时玻璃需要相应的变动,操作复杂。
发明内容
针对现有技术的不足,本发明提供了一种自然条件下降解废水中有机污染的柔性薄膜,能够避免纯粉体催化材料进行催化降解处理污水的过程中,粉体难以回收,容易造成污染;同时,薄膜的设计,也有效的解决了回收问题,避免了二次污染。
为实现以上目的,本发明通过以下技术方案予以实现:
本发明公开了一种自然条件下降解废水中有机污染的柔性薄膜,包括催化材料、分散剂和交联剂。
优选的,所述分散剂为二甲基甲酰胺,所述交联剂为聚丙烯腈;所述催化材料为光电催化材料、压电催化材料或光电-压电复合催化材料。
优选的,所述催化材料与交联剂的质量比为1:2~6,催化材料和交联剂总和与分散剂的质量体积比为10~25%,w/v。
优选的,所述催化材料为粉体材料,粒径为100nm~5μm。
优选的,所述光电催化材料为TiO2、WO3、BiVO4、CdS、g-C3N4、黑磷、金属卤化物、钙钛矿型钽铌酸盐中的任意一种,所述金属卤化物为BiOCl、BiOI和PbI2中的任意一种。
优选的,所述压电催化材料为BaTiO3、ZnO、PZT、Bi4NbO8X(X=Cl、Br)、Bi4Ti3O12、MoS2、WS2、WSe2、BiOIO3中的任意一种。
优选的,所述光电-压电复合催化材料为BiVO4-Bi0.5Na0.5TiO3复合材料。
优选的,所述BiVO4-Bi0.5Na0.5TiO3复合材料的制备方法为:
(1)Bi0.5Na0.5TiO3纳米球的制备
将Ti(OC4H9)4、Bi(NO3)3·5H2O及NaOH分散在水中,磁力搅拌至溶液彻底混合均匀后,在反应釜中水热生长Bi0.5Na0.5TiO3纳米球;
(2)将制备好的Bi0.5Na0.5TiO3纳米球加入到Bi(NO3)3·5H2O、NH4VO3和CO(NH2)2中,调节pH=1,搅拌后,在反应釜中合成BiVO4-Bi0.5Na0.5TiO3复合材料。
相应的,一种自然条件下降解废水中有机污染的柔性薄膜的制备方法,将催化材料分散在分散剂和交联剂中,搅拌均匀后,以静电纺丝的方法,将催化材料与交联剂纺成柔性薄膜;
所述静电纺丝在静电纺丝设备中进行,在静电纺丝设备中的注射器和圆柱滚筒上施加1.2~1.7kV电压,注射速率为1mL/h。
相应的,一种自然条件下降解废水中有机污染的柔性薄膜在降解罗丹明B中的应用。
本发明具备以下有益效果:
1.本发明所公开的柔性薄膜的制备方法适用于任何不溶于有交联剂的粉体催化材料,对环境要求低,浓度和厚度都可控,生产方便。对于纯粉体催化材料进行催化降解处理污水的过程中,粉体难以回收,容易造成污染,而该薄膜的设计,解决了回收问题,避免了二次污染;此外,薄膜能够直接利用自然界中可再生的机械波和光能,环保无污染。
2.本发明将压电和光电材料进行结合,利用压电与光电材料复合形成的异质结,提高电子空穴的分离率,提高电子寿命,从而提升催化性能。比起以玻璃作为基底材料,薄膜在原材料成本以及运输成本上都急剧的降低。同时,该薄膜在纺丝过程中分散剂DMF会挥发掉,只剩下聚丙烯腈和催化材料,而聚丙烯腈是一种密度比水小且亲水的有机物,薄膜会自发浮在废水表面,无需像玻璃一样需要随液面高度调节其自身位置。
附图说明
图1为静电纺丝的流程示意图;
图2为纺丝时间为14h时柔性薄膜的厚度图;
图3为催化材料为光电-压电复合催化材料时,所制备的柔性薄膜的电镜扫描图;
图4为柔性薄膜在罗丹明B中的循环测试实验图;
图5为催化材料为光电-压电复合催化材料时,对罗丹明B的降解效果图;
图6为不同催化材料和纺丝时间所对应的对罗丹明B的降解效果图;
图7为Bi0.5Na0.5TiO3纳米球的扫描电镜图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
若未特别指明,实施举例中所用的技术手段为本领域技术人员所熟知的常规手段。
一、本发明公开了一种自然条件下降解废水中有机污染的柔性薄膜,包括催化材料、分散剂和交联剂。催化材料与交联剂的质量比为1:2~6,催化材料和交联剂总和与分散剂的质量体积比为10~25%,w/v。
其中,分散剂为二甲基甲酰胺(DMF),交联剂为聚丙烯腈;催化材料为光电催化材料、压电催化材料或光电-压电复合催化材料。催化材料为粉体材料,粒径为100nm~5μm。
进一步的,光电催化材料为TiO2、WO3、BiVO4、CdS、g-C3N4、黑磷、金属卤化物、钙钛矿型钽铌酸盐中的任意一种。其中,金属卤化物为BiOCl、BiOI和PbI2中的任意一种。
压电催化材料为BaTiO3、ZnO、PZT(锆钛酸铅)、Bi4NbO8X(X=Cl、Br)、Bi4Ti3O12、MoS2、WS2、WSe2、BiOIO3中的任意一种。
光电-压电复合催化材料为BiVO4-Bi0.5Na0.5TiO3复合材料,且BiVO4-Bi0.5Na0.5TiO3复合材料的制备方法为:
(1)Bi0.5Na0.5TiO3纳米球的制备
Ti(OC4H9)4与Bi(NO3)3·5H2O按照0.5~2:1的摩尔浓度比作为反应前驱体,并添加一定量的矿化物NaOH调节溶液的pH至8~18,磁力搅拌2h至溶液彻底混合均匀后,转移至聚四氟乙烯反应釜中水热生长Bi0.5Na0.5TiO3纳米球。其中,Ti(OC4H9)4与Bi(NO3)3·5H2O比值不一样,生长形成的钛酸铋钠(NBT)的晶型不一样,当Ti(OC4H9)4/Bi(NO3)3·5H2O≤2时,水热反应制备的产物为尺寸范围为200nm~2μm的圆球状形貌NBT纳米晶;当Ti(OC4H9)4/Bi(NO3)3·5H2O>2时,则NBT纳米晶产物的形貌为线状。
具体为:采用水热法,以5.6mL Ti(OC4H9)4、3.88g Bi(NO3)3·5H2O及14.4g NaOH作为反映前驱体,分散在80mL水溶液中,磁力搅拌2h至溶液彻底混合均匀后,转移至聚四氟乙烯反应釜中水热生长Bi0.5Na0.5TiO3纳米球;在反应釜中,160℃反应24h,冷却至室温,分别用去离子水、无水乙醇洗涤3~5次,60℃下烘干24h,即得Bi0.5Na0.5TiO3纳米球,记作BNT,其扫描电镜图见图7(a)所示。
(2)以Bi0.5Na0.5TiO3纳米球为纳米球,继续采用水热法在Bi0.5Na0.5TiO3纳米球表面生长BiVO4构成核壳型复合材料。具体为:以0.1455gBi(NO3)3·5H2O、0.0351g NH4VO3和0.018g CO(NH2)2作为前驱体,溶解在80mL去离子水中充分搅拌1h得到前驱体溶液,用HNO3调节pH=1;将步骤(1)合成的2.12g Bi0.5Na0.5TiO3纳米球经过多次洗涤烘干后置于前驱体溶液中,搅拌30min~1h后,转移至聚四氟乙烯反应釜中,在180℃下水热反应12h合成BiVO4-Bi0.5Na0.5TiO3复合材料。其中,Bi(NO3)3·5H2O、NH4(VO3)和CO(NH2)2的摩尔比为1:1:1~2。反应釜中反应温度为160~200℃,反应时间为6~24h;Bi0.5Na0.5TiO3纳米球与前驱体溶液的比值为1~5%,w/v。
二、本发明公开了一种自然条件下降解废水中有机污染的柔性薄膜的制备方法,将催化材料分散在分散剂和交联剂中,搅拌均匀后,以静电纺丝的方法,将催化材料与交联剂纺成柔性薄膜;其中,静电纺丝在静电纺丝设备中进行,在静电纺丝设备中的注射器和圆柱滚筒上施加1.2~1.7kV电压,注射速率为1mL/h。静电纺丝的流程见图1所示,图中BVO为BiVO4,BNT为Bi0.5Na0.5TiO3,PAN为聚丙烯腈。
具体为:将催化材料0.652g分散在20mL分散剂(DMF)中,然后加入3.260g交联剂(聚丙烯腈),在80℃下充分搅拌30min分散均匀,随后转移至静电纺丝设备的注射器中,通过在注射器和圆柱滚筒上施加1.2~1.7kV(此处选择电压1.7kV)电压,以1mL/h的注射速率,将溶液从注射器尖端压出的液体在电压的作用下以丝线的形式飞向圆柱形滚筒,在滚筒上的丝线不断堆叠,最终形成一张薄膜,薄膜的沉积时间为14h。参考图2所示,当催化材料为BiVO4-Bi0.5Na0.5TiO3复合材料时,按照上述方法制备的柔性薄膜的厚度约为435μm;本发明中,柔性薄膜的厚度,可通过纺丝时间进行改变。图3是静电纺丝合成钒酸铋-钛酸铋钠光电-压电复合薄膜材料的结构扫描电镜图,图中,中间的颗粒物是呈粉体的催化材料,旁边是交联剂丝线。
三、本发明公开了一种自然条件下降解废水中有机污染的柔性薄膜在降解罗丹明B中的应用。
具体为:将制备得到的柔性薄膜0.1275g铺展在50mL 10mg/L的罗丹明B溶液中,在1.5AM光照强度和28kHz的超声振动下,反应100min后降解率能够达到80%。并且,将该柔性薄膜依次置于5瓶相同浓度的罗丹明B试剂中,循环测试5次。结果显示,其降解率稳定在80%左右,证明本发明制备的柔性薄膜具有良好的稳定性,可以循环使用,具体见图4所示,图4为BiVO4-Bi0.5Na0.5TiO3复合材料制成的薄膜的降解效果。
下面结合具体的实施例对本发明进行进一步的阐述。
实施例1不同的催化材料制成的柔性薄膜对罗丹明B的降解效果
按照上述方法一公开的催化材料,用上述方法二制备柔性薄膜,然后,按照上述方法三做对罗丹明B的降解实验。对催化剂的选择以及对罗丹明B的降解效果见下表1所示。当催化材料为BiVO4-Bi0.5Na0.5TiO3复合材料时,对罗丹明B的降解效果见图5所示。
表1不同催化材料对罗丹明B的降解效果
Figure BDA0003002181700000061
实施例2光电-压电复合催化材料对罗丹明B的降解机理
光电-压电复合催化材料(BiVO4-Bi0.5Na0.5TiO3复合材料)在振动和太阳光的作用下,电子吸收能量,激发跃迁到导带,与空穴分离,产生电子-空穴对。空穴和电子分别与溶液中的水反应产生羟基自由基和超氧根自由基,反应式如下:
Bi0.5Na0.5TiO3@BiVO4+机械能+太阳能→Bi0.5Na0.5TiO3@BiVO4(h++e-) (1)
O2+e-→·O2 - (2)
H2O+h+→·OH+H+ (3)
OH-+h+→·OH (4)
2H++·O2 -+e-→H2O2 (5)
H2O2→2·OH (6)
产生的羟基自由基和超氧根自由基不断的攻击罗丹明B有机物中的碳链,裂解、氧化,最后生成CO2、H2O、NO3 -、NH4 +
罗丹明B降解的反应式如下:
Figure BDA0003002181700000071
实施例3催化材料的含量和柔性薄膜厚度对降解效果的影响
通过控制不同催化材料的含量和纺丝时间,来验证对罗丹明B的降解效果,具体参数见下表2所示。结果详见图6所示(图6为由BiVO4-Bi0.5Na0.5TiO3复合材料制备的柔性薄膜的降解效果),结果显示,从图a和图b中可以看出,在催化材料含量相同的情况下,纺丝时间越长柔性薄膜越后,而柔性薄膜厚度的变化,对罗丹明B的降解效果并无明显的影响,说明柔性薄膜的厚度对罗丹明B的降解效果影响不大。从图b和图c中可以看出,在纺丝时间相同,而催化材料含量不同的情况下,催化材料含量越高,对罗丹明B的降解效果越好。
表2不同催化材料的含量和纺丝时间
组别 催化材料的含量 纺丝时间
1 12% 7h
2 12% 14h
3 20% 14h
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (10)

1.一种自然条件下降解废水中有机污染的柔性薄膜,其特征在于:包括催化材料、分散剂和交联剂。
2.根据权利要求1所述的一种自然条件下降解废水中有机污染的柔性薄膜,其特征在于:所述分散剂为二甲基甲酰胺,所述交联剂为聚丙烯腈;所述催化材料为光电催化材料、压电催化材料或光电-压电复合催化材料。
3.根据权利要求1所述的一种自然条件下降解废水中有机污染的柔性薄膜,其特征在于:所述催化材料与交联剂的质量比为1:2~6,催化材料和交联剂总和与分散剂的质量体积比为10~25%,w/v。
4.根据权利要求2所述的一种自然条件下降解废水中有机污染的柔性薄膜,其特征在于:所述催化材料为粉体材料,粒径为100nm~5μm。
5.根据权利要求4所述的一种自然条件下降解废水中有机污染的柔性薄膜,其特征在于:所述光电催化材料为TiO2、WO3、BiVO4、CdS、g-C3N4、黑磷、金属卤化物、钙钛矿型钽铌酸盐中的任意一种,所述金属卤化物为BiOCl、BiOI和PbI2中的任意一种。
6.根据权利要求4所述的一种自然条件下降解废水中有机污染的柔性薄膜,其特征在于:所述压电催化材料为BaTiO3、ZnO、PZT、Bi4NbO8X(X=Cl、Br)、Bi4Ti3O12、MoS2、WS2、WSe2、BiOIO3中的任意一种。
7.根据权利要求4所述的一种自然条件下降解废水中有机污染的柔性薄膜,其特征在于:所述光电-压电复合催化材料为BiVO4-Bi0.5Na0.5TiO3复合材料。
8.根据权利要求7所述的一种自然条件下降解废水中有机污染的柔性薄膜,其特征在于:所述BiVO4-Bi0.5Na0.5TiO3复合材料的制备方法为:
(1)Bi0.5Na0.5TiO3纳米球的制备
将Ti(OC4H9)4、Bi(NO3)3·5H2O及NaOH分散在水中,磁力搅拌至溶液彻底混合均匀后,在反应釜中水热生长Bi0.5Na0.5TiO3纳米球;
(2)将制备好的Bi0.5Na0.5TiO3纳米球加入到Bi(NO3)3·5H2O、NH4VO3和CO(NH2)2中,调节pH=1,搅拌后,在反应釜中合成BiVO4-Bi0.5Na0.5TiO3复合材料。
9.一种自然条件下降解废水中有机污染的柔性薄膜的制备方法,其特征在于:将催化材料分散在分散剂和交联剂中,搅拌均匀后,以静电纺丝的方法,将催化材料与交联剂纺成柔性薄膜;
所述静电纺丝在静电纺丝设备中进行,在静电纺丝设备中的注射器和圆柱滚筒上施加1.2~1.7kV电压,注射速率为1mL/h。
10.一种自然条件下降解废水中有机污染的柔性薄膜在降解罗丹明B中的应用。
CN202110351144.1A 2021-03-31 2021-03-31 一种自然条件下降解废水中有机污染的柔性薄膜 Active CN113042030B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110351144.1A CN113042030B (zh) 2021-03-31 2021-03-31 一种自然条件下降解废水中有机污染的柔性薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110351144.1A CN113042030B (zh) 2021-03-31 2021-03-31 一种自然条件下降解废水中有机污染的柔性薄膜

Publications (2)

Publication Number Publication Date
CN113042030A true CN113042030A (zh) 2021-06-29
CN113042030B CN113042030B (zh) 2022-04-08

Family

ID=76516723

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110351144.1A Active CN113042030B (zh) 2021-03-31 2021-03-31 一种自然条件下降解废水中有机污染的柔性薄膜

Country Status (1)

Country Link
CN (1) CN113042030B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113842949A (zh) * 2021-09-29 2021-12-28 西安理工大学 一种m-MoSe2/PVDF/h-WSe2双异质结柔性压电触媒的制备方法
CN114602482A (zh) * 2022-03-14 2022-06-10 北京工业大学 一种铋层结构压电异质结催化剂及其制备方法
CN114849744A (zh) * 2022-05-20 2022-08-05 陕西科技大学 一种BaTiO3/BiOIO3复合材料及其制备方法和应用
CN115138395A (zh) * 2022-07-18 2022-10-04 黑龙江工业学院 一种黑磷基光催化复合材料的制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110194304A1 (en) * 2008-05-13 2011-08-11 Research Triangle Institute Porous and non-porous nanostructures and application thereof
CN105709836A (zh) * 2016-03-21 2016-06-29 武汉理工大学 一种柔性易回收的毡状Zn1-xCdxSPAN光催化剂及其制备方法
US20160301024A1 (en) * 2014-09-25 2016-10-13 Boe Technology Group Co., Ltd. Organic electroluminescent device, method of preparing same, display substrate, and display apparatus
CN109576903A (zh) * 2018-10-29 2019-04-05 南京理工大学 FeCo普鲁士蓝/聚丙烯腈薄膜的制备方法
CN111082701A (zh) * 2019-12-18 2020-04-28 太原理工大学 一种基于层间电场效应的柔性纳米发电机设计方法
CN111592077A (zh) * 2020-05-09 2020-08-28 哈尔滨工业大学 一种多孔亚氧化钛-碳纳米纤维电极的制备方法及其应用
CN112371177A (zh) * 2020-11-13 2021-02-19 南京晓庄学院 一种掺杂压电催化材料的柔性多孔复合材料及其制备
CN112452165A (zh) * 2020-12-07 2021-03-09 南京林业大学 一种Ag/AgBr/AgVO3复合纳米纤维过滤膜及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110194304A1 (en) * 2008-05-13 2011-08-11 Research Triangle Institute Porous and non-porous nanostructures and application thereof
US20160301024A1 (en) * 2014-09-25 2016-10-13 Boe Technology Group Co., Ltd. Organic electroluminescent device, method of preparing same, display substrate, and display apparatus
CN105709836A (zh) * 2016-03-21 2016-06-29 武汉理工大学 一种柔性易回收的毡状Zn1-xCdxSPAN光催化剂及其制备方法
CN109576903A (zh) * 2018-10-29 2019-04-05 南京理工大学 FeCo普鲁士蓝/聚丙烯腈薄膜的制备方法
CN111082701A (zh) * 2019-12-18 2020-04-28 太原理工大学 一种基于层间电场效应的柔性纳米发电机设计方法
CN111592077A (zh) * 2020-05-09 2020-08-28 哈尔滨工业大学 一种多孔亚氧化钛-碳纳米纤维电极的制备方法及其应用
CN112371177A (zh) * 2020-11-13 2021-02-19 南京晓庄学院 一种掺杂压电催化材料的柔性多孔复合材料及其制备
CN112452165A (zh) * 2020-12-07 2021-03-09 南京林业大学 一种Ag/AgBr/AgVO3复合纳米纤维过滤膜及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XINGANG XU ET AL.: "Piezo-photocatalytic Activity of Bi0.5Na0.5TiO3@TiO2 Composite Catalyst with Heterojunction for Degradation of Organic Dye Molecule", 《J. PHYS. CHEM. C》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113842949A (zh) * 2021-09-29 2021-12-28 西安理工大学 一种m-MoSe2/PVDF/h-WSe2双异质结柔性压电触媒的制备方法
CN113842949B (zh) * 2021-09-29 2023-08-22 西安理工大学 一种m-MoSe2/PVDF/h-WSe2双异质结柔性压电触媒的制备方法
CN114602482A (zh) * 2022-03-14 2022-06-10 北京工业大学 一种铋层结构压电异质结催化剂及其制备方法
CN114602482B (zh) * 2022-03-14 2023-12-29 北京工业大学 一种铋层结构压电异质结催化剂及其制备方法
CN114849744A (zh) * 2022-05-20 2022-08-05 陕西科技大学 一种BaTiO3/BiOIO3复合材料及其制备方法和应用
CN115138395A (zh) * 2022-07-18 2022-10-04 黑龙江工业学院 一种黑磷基光催化复合材料的制备方法和应用

Also Published As

Publication number Publication date
CN113042030B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
CN113042030B (zh) 一种自然条件下降解废水中有机污染的柔性薄膜
Kallawar et al. Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater: A comprehensive review on synthesis methods, performance as photocatalyst and challenges
Djellabi et al. A review of advances in multifunctional XTiO3 perovskite-type oxides as piezo-photocatalysts for environmental remediation and energy production
Wang et al. Energy and environmental catalysis driven by stress and temperature-variation
Yang et al. Enhanced tribocatalytic degradation using piezoelectric CdS nanowires for efficient water remediation
US20200071186A1 (en) Linear Porous Titanium Dioxide Material And Preparation And Use Thereof
CN108380233B (zh) 磷掺杂氮化碳/氮化碳同型异质结光催化剂及其制备方法和应用
Ding et al. Piezo-photocatalytic flexible PAN/TiO2 composite nanofibers for environmental remediation
CN111592077B (zh) 一种多孔亚氧化钛-碳纳米纤维电极的制备方法及其应用
Zhang et al. Ferroelectric polarization effect on the photocatalytic activity of Bi0. 9Ca0. 1FeO3/CdS S-scheme nanocomposites
Chen et al. A new S-scheme heterojunction of 1D ZnGa2O4/ZnO nanofiber for efficient photocatalytic degradation of TC-HCl
CN107983353B (zh) 一种TiO2-Fe2O3复合粉体的制备方法及其应用
Shen et al. Synthesis and photocatalytic degradation ability evaluation for rhodamine B of ZnO@ SiO2 composite with flower-like structure
Singh et al. Enhanced dye adsorption and rapid photocatalysis of candle soot coated BaTiO3 ceramics
Zhou et al. In situ fabrication of Bi 2 Ti 2 O 7/TiO 2 heterostructure submicron fibers for enhanced photocatalytic activity
Hu et al. Anionic/cationic synergistic action of insulator BaCO3 enhanced the photocatalytic activities of graphitic carbon nitride
KR20200062049A (ko) 중공사형 광촉매 및 이의 제조방법
Lee et al. Complementary conjugated piezo-phototronic polarized blue TiO2-KNN for piezophotocatalytic degradation of tetracycline enhanced under gentle oscillatory hydrodynamic disturbances
CN105498552B (zh) 一种半导体氧化物改性的导电滤膜及其制备方法和应用
Yuan et al. Preparation and piezoelectric assisted photocatalytic degradation of BaTiO3/SrTiO3 nanocomposites
Chen et al. Engineering the growth of TiO 2 nanotube arrays on flexible carbon fibre sheets
Amiri et al. Efficient purification of wastewater by applying mechanical force and BaCO 3/TiO 2 and BaTiO 3/TiO 2 piezocatalysts
KR101094670B1 (ko) 기판 고정형 이산화티타늄 나노선 및 그 제조방법 그리고 기판 고정형 이산화티타늄 나노선을 이용한 수처리방법
CN116850796A (zh) 一种超亲水光催化自清洁陶瓷复合膜及其制备方法与应用
Zhou et al. Engineering Strategies to Enhance the Piezoelectric Catalytic Performance of Inorganic Fibers in Water Treatment and Energy Regeneration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant