CN113030150A - 柴油机dpf系统快速老化测试法、系统、介质及应用 - Google Patents

柴油机dpf系统快速老化测试法、系统、介质及应用 Download PDF

Info

Publication number
CN113030150A
CN113030150A CN202110244087.7A CN202110244087A CN113030150A CN 113030150 A CN113030150 A CN 113030150A CN 202110244087 A CN202110244087 A CN 202110244087A CN 113030150 A CN113030150 A CN 113030150A
Authority
CN
China
Prior art keywords
temperature
rapid aging
aging
dpf
rapid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110244087.7A
Other languages
English (en)
Other versions
CN113030150B (zh
Inventor
李家琛
葛蕴珊
郝利君
谭建伟
王欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202110244087.7A priority Critical patent/CN113030150B/zh
Publication of CN113030150A publication Critical patent/CN113030150A/zh
Application granted granted Critical
Publication of CN113030150B publication Critical patent/CN113030150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/10Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using catalysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

本发明属于柴油机后处理装置老化测试技术领域,公开了一种柴油机DPF系统快速老化测试法、系统、介质及应用,包括:将柴油机DPF系统实际老化过程中的各温度区间对应的温度‑时间特征按照阿伦尼乌斯公式转化为快速老化循环的多点温度‑时间特性;采集柴油车实际老化信息,基于采集的信息以及柴油机的类型计算多点快速老化温度和对应时间,建立等效快速老化循环;选取各种不同的待老化DPF件,并选取的待老化DPF件进行预处理;基于建立的等效快速老化循环进行台架快速老化试验;并于快速老化后,对各DPF件进行性能评估。本发明可以快速便捷的达到预期老化效果,节省了大量时间、人力和物力;更加贴近DPF实际老化状态,等效效果好。

Description

柴油机DPF系统快速老化测试法、系统、介质及应用
技术领域
本发明属于柴油机后处理装置老化测试技术领域,尤其涉及一种柴油机DPF系统快速老化测试法、系统、介质及应用。
背景技术
目前,颗粒捕集器(DPF)的耐久性是其重要的评价指标,是关乎车辆性能及排放的重要影响因素。老化测试是对催化剂进行一定时间或里程的老化试验后测试其催化转化效率,以检验催化剂耐久性。车用柴油机颗粒捕集器老化试验要求装置在发动机台架上经历几千小时以上的台架老化试验,或整车车队进行至少近二十万公里的道路老化试验,须要耗费巨大的人力、物力和财力。
而现有的各种快速老化方法对发动机类型、测试循环选取等测试条件的选取差异较大,无法对DPF进行标准有效的评价。这对于柴油车的研发及评价造成了极大地不便。因此需要一种通用的能够快速老化DPF的方法。
通过上述分析,现有技术存在的问题及缺陷为:现有的老化测试方法测试条件的选取差异较大,方法繁杂,无法对DPF进行标准有效的评价;同时现有的老化测试方法耗费时间长、人力和物力消耗大。
解决以上问题及缺陷的难度为:由于不同发动机整机厂商直接选用不同配件厂商的DPF装置,使得DPF快速老化方法繁杂,在方法原理层面不统一,无法对所有DPF装置进行有效统一的评价。
解决以上问题及缺陷的意义为:从快速老化原理层面出发,对DPF快速老化方法进行了规范,使得不同DPF装置可以使用统一的快速老化评价体系。
发明内容
针对现有技术存在的问题,本发明提供了一种柴油机DPF系统快速老化测试法、系统、介质及应用。
本发明是这样实现的,一种柴油机DPF系统快速老化测试法,所述柴油机DPF系统快速老化测试法包括:
将柴油机DPF系统实际老化过程中的各温度区间对应的温度-时间特征按照阿伦尼乌斯公式转化为快速老化循环的多点温度-时间特性;由快速老化原理得到标准快速老化参数。
采集柴油车实际老化信息,基于采集的信息以及柴油机的类型计算多点快速老化温度和对应时间,建立等效快速老化循环;对不同柴油车及其后处理DPF装置进行归一化处理。
选取各种不同的待老化DPF件,并选取的待老化DPF件进行预处理;使待测件达到可进行试验的初始条件
基于建立的等效快速老化循环进行台架快速老化试验;并于快速老化后,对各DPF件进行性能评估。
进一步,所述阿伦尼乌斯公式如下:
Figure BDA0002963425620000021
其中,k为速率常数,R为摩尔气体常数;T为热力学温度;Ea为活化能。
进一步,所述基于采集的信息以及柴油机的类型计算多点快速老化温度和对应时间包括:获取采集的信息中包含际老化过程采集的柴油机CDPF后处理器入口温度,并将获取的温度数据进行处理计算,得到柴油机CDPF入口温度-时间特性,基于确定的柴油机CDPF入口温度-时间特性计算快速老化循环的温度-时间循环参数。
进一步,所述将获取的温度数据进行处理计算包括:按照不同温度数据进行分类分组为单元,利用聚类分析进行数据统计分析,得到有代表性CDPF后处理器部件的温度-时间数据谱。
进一步,所述建立等效快速老化循环包括:通过选定有限个特征老化温度点,基于得到的快速老化循环的温度-时间循环参数,计算对应的老化时间,建立快速老化多点温度-时间循环。
进一步,所述老化时间计算方式如下:
Figure BDA0002963425620000031
其中,te表示快速老化温度Tr下的累计老化时间;i表示温度区间序号,1表示最低温度区间的序号,n表示最高温度区间序号;
Figure BDA0002963425620000032
表示快速老化温度Tr下的等效时间;
快速老化温度Tr下的等效时间
Figure BDA0002963425620000033
计算公式如下:
Figure BDA0002963425620000034
其中,Tr表示选定的快速老化温度;
Figure BDA0002963425620000035
表示柴油车CDPF后处理器温度区间i的温度均值;
Figure BDA0002963425620000036
表示
Figure BDA0002963425620000037
温度下统计时间和;Ea表示活化能。
本发明的另一目的在于提供一种计算机设备,所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如下步骤:
将柴油机DPF系统实际老化过程中的各温度区间对应的温度-时间特征按照阿伦尼乌斯公式转化为快速老化循环的多点温度-时间特性;
采集柴油车实际老化信息,基于采集的信息以及柴油机的类型计算多点快速老化温度和对应时间,建立等效快速老化循环;
选取各种不同的待老化DPF件,并选取的待老化DPF件进行预处理;
基于建立的等效快速老化循环进行台架快速老化试验;并于快速老化后,对各DPF件进行性能评估。
本发明的另一目的在于提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如下步骤:
将柴油机DPF系统实际老化过程中的各温度区间对应的温度-时间特征按照阿伦尼乌斯公式转化为快速老化循环的多点温度-时间特性;
采集柴油车实际老化信息,基于采集的信息以及柴油机的类型计算多点快速老化温度和对应时间,建立等效快速老化循环;
选取各种不同的待老化DPF件,并选取的待老化DPF件进行预处理;
基于建立的等效快速老化循环进行台架快速老化试验;并于快速老化后,对各DPF件进行性能评估。
本发明的另一目的在于提供一种颗粒捕集器,所述颗粒捕集器使用所述的柴油机DPF系统快速老化测试法。
本发明的另一目的在于提供一种实施所述柴油机DPF系统快速老化测试法的柴油机DPF系统快速老化测试系统,所述柴油机DPF系统快速老化测试系统包括:
特征转化模块,用于将柴油机DPF系统实际老化过程中的各温度区间对应的温度-时间特征按照阿伦尼乌斯公式转化为快速老化循环的多点温度-时间特性;
等效快速老化循环建立模块,用于采集柴油车实际老化信息,基于采集的信息以及柴油机的类型计算多点快速老化温度和对应时间,建立等效快速老化循环;
预处理模块,用于选取各种不同的待老化DPF件,并选取的待老化DPF件进行预处理;
性能评估模块,用于基于建立的等效快速老化循环进行台架快速老化试验;并于快速老化后,对各DPF件进行性能评估。
结合上述的所有技术方案,本发明所具备的优点及积极效果为:本发明以柴油机系统实际老化过程为基础建立的等效快速老化循环,可以快速便捷的达到预期老化效果,节省了大量时间、人力和物力;可用于柴油车颗粒捕集器快速老化。
本发明可以依据实际老化过程得到不同的等效快速老化循环,更加贴近DPF实际老化状态,等效效果好。本发明可以对不同类型柴油机系统下的DPF快速老化情况进行统一的评价,极大地扩展了快速老化方法的适用范围,有良好的通用性。本发明极大地缩短了柴油机系统的研发和评价周期,是进一步提高DPF耐久性和过滤效率的有效手段。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图做简单的介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的柴油机DPF系统快速老化测试法流程图。
图2是本发明实施例提供的柴油机DPF系统快速老化测试法原理图。
图3是本发明实施例提供的某CDPF实际老化与等效快速老化时间对比示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
针对现有技术存在的问题,本发明提供了一种柴油机DPF系统快速老化测试法、系统、介质及应用,下面结合附图对本发明作详细的描述。
如图1所示,本发明实施例提供的柴油机DPF系统快速老化测试法包括以下步骤:
S101,将柴油机DPF系统实际老化过程中的各温度区间对应的温度-时间特征按照阿伦尼乌斯公式转化为快速老化循环的多点温度-时间特性;
S102,采集柴油车实际老化信息,基于采集的信息以及柴油机的类型计算多点快速老化温度和对应时间,建立等效快速老化循环;
S103,选取各种不同的待老化DPF件,并选取的待老化DPF件进行预处理;
S104,基于建立的等效快速老化循环进行台架快速老化试验;并于快速老化后,对各DPF件进行性能评估。
本发明提供的柴油机DPF系统快速老化测试法业内的普通技术人员还可以采用其他的步骤实施,图1的本发明提供的柴油机DPF系统快速老化测试法仅仅是一个具体实施例而已。
步骤S101中,本发明实施例提供的阿伦尼乌斯公式如下:
Figure BDA0002963425620000061
其中,k为速率常数,R为摩尔气体常数;T为热力学温度;Ea为活化能。
步骤S102中,本发明实施例提供的基于采集的信息以及柴油机的类型计算多点快速老化温度和对应时间包括:
获取采集的信息中包含际老化过程采集的柴油机CDPF后处理器入口温度,并将获取的温度数据进行处理计算,得到柴油机CDPF入口温度-时间特性,基于确定的柴油机CDPF入口温度-时间特性计算快速老化循环的温度-时间循环参数。
本发明实施例提供的将获取的温度数据进行处理计算包括:
按照不同温度数据进行分类分组为单元,利用聚类分析进行数据统计分析,得到有代表性CDPF后处理器部件的温度-时间数据谱。
步骤S102中,本发明实施例提供的建立等效快速老化循环包括:
通过选定有限个特征老化温度点,基于得到的快速老化循环的温度-时间循环参数,计算对应的老化时间,建立快速老化多点温度-时间循环。
本发明实施例提供的老化时间计算方式如下:
Figure BDA0002963425620000062
其中,te表示快速老化温度Tr下的累计老化时间;i表示温度区间序号,1表示最低温度区间的序号,n表示最高温度区间序号;
Figure BDA0002963425620000063
表示快速老化温度Tr下的等效时间;
快速老化温度Tr下的等效时间
Figure BDA0002963425620000064
计算公式如下:
Figure BDA0002963425620000071
其中,Tr表示选定的快速老化温度;
Figure BDA0002963425620000072
表示柴油车CDPF后处理器温度区间i的温度均值;
Figure BDA0002963425620000073
表示
Figure BDA0002963425620000074
温度下统计时间和;Ea表示活化能。
下面结合具体实施例对本发明的技术方案作进一步描述。
实施例1:
1、DPF快速老化理论
催化型DPF(Catalytic DPF,CDPF)是一种以催化再生为再生原理的DPF。目前CDPF技术已成为柴油机控制排气微粒的主要装置。基于CDPF的装置特性,可以通过提高其工作温度,加快其热老化速度。但是,由于各种CDPF的使用场景和技术差异较大,其快速老化方法繁杂,测试条件差异大,缺少可以统一评价的CDPF老化测试方法。本发明从这个角度出发,对DPF的再生和老化机理进行了研究,找到了一种通用于所有CDPF的快速老化方法,可以便捷高效的完成CDPF的老化,为柴油车排放系统的研发和评价提供了有效的手段。
2、DPF再生机理
当颗粒物在DPF内部捕集堆积时,排气背压和颗粒物过滤效率有所不同。当其捕集的颗粒物达到一定程度,背压显著升高,将对发动机的工作性能产生影响。此时,必须将DPF内部沉积的积碳通过氧化燃烧或者其他方式清除,即DPF的再生。DPF的再生依照其是否需要外部提供能量来源,可分为主动再生和被动再生两种方式。
其中,催化再生是常见的被动再生方式,采用这种原理的DPF称为CDPF。目前CDPF技术已成为柴油机控制排气微粒的主要装置。CDPF是在载体表面涂覆能降低颗粒物起燃温度的催化剂的DPF。常见的催化剂包括铂(Pt)、钯(Pd)、钌(Ru)等贵金属催化剂及锂-铬(Li-Cr)氧化物、铈-锆(Ce-Zr)氧化物等金属氧化物催化剂。催化再生一般可将颗粒物的起燃温度降低至200-300℃,在柴油机正常使用时即可实现连续再生。
3、DPF老化机理
DPF老化主要有以下四方面原因:一是高温烧熔,DPF进行再生短时间内产生大量热量,使DPF内部温度急剧升高,从而在局部产生材料烧熔。二是热应力损坏,在DPF工作时,内部局部温度间有差异,进而产生局部热应力,使DPF破裂。三是不可燃物堵塞,DPD再生后会有部分灰分残留,使其再生频率提高,过滤效率下降。四是振动损坏,车辆运行过程中DPF受到振动冲击而损坏。
在DPF耐久期范围内,其老化主要与温度有关。快速老化即通过提高DPF工作温度,使DPF快速达到与车辆排放耐久期结束时的CDPF特性相匹配/相当的水平。高温老化效应遵从阿伦尼乌斯公式(Arrhenius equation,为表征化学反应速率常数随温度变化关系的经验公式),如式(1)所示:
Figure BDA0002963425620000081
式中,k为速率常数,R为摩尔气体常数(0.00831kJ/mol*K);T为热力学温度(K);Ea为活化能(kJ/mol)。柴油车DOC和CDPF的活化能Ea推荐值为18050kJ/mol。由式(1)可知,后处理器催化剂老化温度越高,后处理器老化时间越短。
4、DPF快速老化循环建立方法
依据重型车实际老化过程采集的柴油机CDPF后处理器入口温度并进行处理计算,建立快速老化循环。采集的实际道路排放和排温测试工况点所代表的发动机速度/负载特性应覆盖测试数据中至少80%的发动机速度/负载运行工况。
柴油车实际道路排放测试中柴油机CDPF后处理器入口温度数据处理方法:对实际测试数据,按照不同温度数据进行分类分组为单元(例如,温度单元=5-10%),利用聚类分析完成数据统计分析,获得有代表性CDPF后处理器部件的温度-时间数据谱,即采用实际道路测试工况采集的柴油机CDPF入口温度-时间特性计算快速老化循环的温度-时间循环参数。
基于CDPF后处理器常规老化过程的时间、温度分布特性计算与快速老化温度相对应的等效老化时间,函数关系如下:
Figure BDA0002963425620000091
其中,Tr是选定的快速老化温度(K);
Figure BDA0002963425620000092
为快速老化温度Tr下的等效时间(hr);
Figure BDA0002963425620000093
是实际道路运行测试的柴油车CDPF后处理器温度区间i的温度均值(此处为“催化剂床温”,若无法获得催化剂床温,可利用CDPF后处理器入口温度计算),
Figure BDA0002963425620000094
Figure BDA0002963425620000095
温度下统计时间和。Ea是活化能(kJ/mol),柴油车DOC和CDPF的活化能Ea推荐值18050kJ/mol。
则快速老化温度Tr下的累计时间te表示为:
Figure BDA0002963425620000096
式中,te为快速老化温度Tr下的累计老化时间;i为温度区间序号,其中1是最低温度区间的序号,n为最高温度区间序号。
通过选定有限个特征老化温度点,计算出对应的老化时间,即可设计一个快速老化多点温度-时间循环。对于不同的CDPF,可通过上述方法得到一套可以在同一标准下对比的快速老化方法。
5、老化测试方法:
图2所示为DPF快速老化测试方法的流程。首先将柴油机系统实际老化过程中的各温度区间对应的温度-时间特征按照阿累尼乌斯方程转化为快速老化循环的多点温度-时间特性。再依据该类型柴油机系统的耐久里程规定,计算多点快速老化温度和对应时间以建立等效快速老化循环。之后选取各种不同的待老化DPF件,按DPF制造厂商的要求进行预处理。预处理结束后,依等效循环进行台架快速老化试验。完成快速老化后,对各DPF件进行性能评估。
6、DPF快速老化测试的优势
该方法用于柴油车颗粒捕集器快速老化。待测DPF使用以柴油机系统实际老化过程为基础建立的等效快速老化循环,可以快速便捷的达到预期老化效果,节省了大量时间、人力和物力。
对于不同类型的柴油机系统,该方法可以依据实际老化过程得到不同的等效快速老化循环,更加贴近DPF实际老化状态,等效效果好。
虽然使用不同的等效老化循环,但由于其均基于同一理论原理,即阿累尼乌斯方程,因此可以对不同类型柴油机系统下的DPF快速老化情况进行统一的评价,极大地扩展了快速老化方法的适用范围,有良好的通用性。
该方法极大地缩短了柴油机系统的研发和评价周期,是进一步提高DPF耐久性和过滤效率的有效手段。
本例为某国六重型柴油车配装CDPF,其催化剂活化能Ea取值为18050kJ/mol。如图3所示,对CDPF温度-时间特性进行等效计算处理,则该类型CDPF在快速老化温度为300℃的条件下,只需进行96小时等效快速老化。
当注意,本发明的实施方式可以通过硬件、软件或者软件和硬件的结合来实现。硬件部分可以利用专用逻辑来实现;软件部分可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域的普通技术人员可以理解上述的设备和方法可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本发明的设备及其模块可以由诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用由各种类型的处理器执行的软件实现,也可以由上述硬件电路和软件的结合例如固件来实现。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种柴油机DPF系统快速老化测试法,其特征在于,所述柴油机DPF系统快速老化测试法包括:
将柴油机DPF系统实际老化过程中的各温度区间对应的温度-时间特征按照阿伦尼乌斯公式转化为快速老化循环的多点温度-时间特性;
采集柴油车实际老化信息,基于采集的信息以及柴油机的类型计算多点快速老化温度和对应时间,建立等效快速老化循环;
选取各种不同的待老化DPF件,并选取的待老化DPF件进行预处理;
基于建立的等效快速老化循环进行台架快速老化试验;并于快速老化后,对各DPF件进行性能评估。
2.如权利要求1所述的柴油机DPF系统快速老化测试法,其特征在于,所述阿伦尼乌斯公式如下:
Figure FDA0002963425610000011
其中,k为速率常数,R为摩尔气体常数;T为热力学温度;Ea为活化能。
3.如权利要求1所述的柴油机DPF系统快速老化测试法,其特征在于,所述基于采集的信息以及柴油机的类型计算多点快速老化温度和对应时间包括:获取采集的信息中包含际老化过程采集的柴油机CDPF后处理器入口温度,并将获取的温度数据进行处理计算,得到柴油机CDPF入口温度-时间特性,基于确定的柴油机CDPF入口温度-时间特性计算快速老化循环的温度-时间循环参数。
4.如权利要求3所述的柴油机DPF系统快速老化测试法,其特征在于,所述将获取的温度数据进行处理计算包括:按照不同温度数据进行分类分组为单元,利用聚类分析进行数据统计分析,得到有代表性CDPF后处理器部件的温度-时间数据谱。
5.如权利要求1所述的柴油机DPF系统快速老化测试法,其特征在于,所述建立等效快速老化循环包括:通过选定有限个特征老化温度点,基于得到的快速老化循环的温度-时间循环参数,计算对应的老化时间,建立快速老化多点温度-时间循环。
6.如权利要求5所述的柴油机DPF系统快速老化测试法,其特征在于,所述老化时间计算方式如下:
Figure FDA0002963425610000021
其中,te表示快速老化温度Tr下的累计老化时间;i表示温度区间序号,1表示最低温度区间的序号,n表示最高温度区间序号;
Figure FDA0002963425610000022
表示快速老化温度Tr下的等效时间;
快速老化温度Tr下的等效时间
Figure FDA0002963425610000023
计算公式如下:
Figure FDA0002963425610000024
其中,Tr表示选定的快速老化温度;
Figure FDA0002963425610000025
表示柴油车CDPF后处理器温度区间i的温度均值;
Figure FDA0002963425610000026
表示
Figure FDA0002963425610000027
温度下统计时间和;Ea表示活化能。
7.一种计算机设备,其特征在于,所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如下步骤:
将柴油机DPF系统实际老化过程中的各温度区间对应的温度-时间特征按照阿伦尼乌斯公式转化为快速老化循环的多点温度-时间特性;
采集柴油车实际老化信息,基于采集的信息以及柴油机的类型计算多点快速老化温度和对应时间,建立等效快速老化循环;
选取各种不同的待老化DPF件,并选取的待老化DPF件进行预处理;
基于建立的等效快速老化循环进行台架快速老化试验;并于快速老化后,对各DPF件进行性能评估。
8.一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如下步骤:
将柴油机DPF系统实际老化过程中的各温度区间对应的温度-时间特征按照阿伦尼乌斯公式转化为快速老化循环的多点温度-时间特性;
采集柴油车实际老化信息,基于采集的信息以及柴油机的类型计算多点快速老化温度和对应时间,建立等效快速老化循环;
选取各种不同的待老化DPF件,并对选取的待老化DPF件进行预处理;
基于建立的等效快速老化循环进行台架快速老化试验;并于快速老化后,对各DPF件进行性能评估。
9.一种颗粒捕集器,其特征在于,所述颗粒捕集器使用权利要求1~6任意一项所述的柴油机DPF系统快速老化测试法。
10.一种实施权利要求1~6任意一项所述柴油机DPF系统快速老化测试法的柴油机DPF系统快速老化测试系统,其特征在于,所述柴油机DPF系统快速老化测试系统包括:
特征转化模块,用于将柴油机DPF系统实际老化过程中的各温度区间对应的温度-时间特征按照阿伦尼乌斯公式转化为快速老化循环的多点温度-时间特性;
等效快速老化循环建立模块,用于采集柴油车实际老化信息,基于采集的信息以及柴油机的类型计算多点快速老化温度和对应时间,建立等效快速老化循环;
预处理模块,用于选取各种不同的待老化DPF件,并对选取的待老化DPF件进行预处理;
性能评估模块,用于基于建立的等效快速老化循环进行台架快速老化试验;并于快速老化后,对各DPF件进行性能评估。
CN202110244087.7A 2021-03-05 2021-03-05 柴油机dpf系统快速老化测试法、系统、介质及应用 Active CN113030150B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110244087.7A CN113030150B (zh) 2021-03-05 2021-03-05 柴油机dpf系统快速老化测试法、系统、介质及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110244087.7A CN113030150B (zh) 2021-03-05 2021-03-05 柴油机dpf系统快速老化测试法、系统、介质及应用

Publications (2)

Publication Number Publication Date
CN113030150A true CN113030150A (zh) 2021-06-25
CN113030150B CN113030150B (zh) 2022-03-29

Family

ID=76467898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110244087.7A Active CN113030150B (zh) 2021-03-05 2021-03-05 柴油机dpf系统快速老化测试法、系统、介质及应用

Country Status (1)

Country Link
CN (1) CN113030150B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113969819A (zh) * 2021-10-21 2022-01-25 奇瑞商用车(安徽)有限公司 基于台架老化的催化器临界件制备方法
CN114738091A (zh) * 2022-03-23 2022-07-12 潍柴动力股份有限公司 一种doc的控制方法、汽车后处理装置和存储介质
CN114964794A (zh) * 2022-05-09 2022-08-30 北京理工大学 一种快速评价cDPF装置耐久过程中平衡点温度的方法
CN113969819B (zh) * 2021-10-21 2024-07-09 奇瑞商用车(安徽)有限公司 基于台架老化的催化器临界件制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185132A (ja) * 2010-03-08 2011-09-22 Mitsubishi Heavy Ind Ltd Dpfの強制再生用マップの検証方法および検証装置
CN102967467A (zh) * 2012-11-30 2013-03-13 潍柴动力股份有限公司 一种颗粒捕集器耐久性评测方法
CN103696839A (zh) * 2013-12-10 2014-04-02 潍柴动力股份有限公司 Dpf主动再生系统的检测方法和装置
CN104234802A (zh) * 2014-07-14 2014-12-24 浙江大学 基于NOx反馈和储氨预测的SCR催化器老化判定方法
CN104454085A (zh) * 2014-10-29 2015-03-25 凯龙高科技股份有限公司 一种dpf柴油机颗粒过滤系统喷油助燃再生温度控制方法
CN111157049A (zh) * 2020-01-13 2020-05-15 北京理工大学 一种柴油车scr后处理器老化性能快速评价系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185132A (ja) * 2010-03-08 2011-09-22 Mitsubishi Heavy Ind Ltd Dpfの強制再生用マップの検証方法および検証装置
CN102967467A (zh) * 2012-11-30 2013-03-13 潍柴动力股份有限公司 一种颗粒捕集器耐久性评测方法
CN103696839A (zh) * 2013-12-10 2014-04-02 潍柴动力股份有限公司 Dpf主动再生系统的检测方法和装置
CN104234802A (zh) * 2014-07-14 2014-12-24 浙江大学 基于NOx反馈和储氨预测的SCR催化器老化判定方法
CN104454085A (zh) * 2014-10-29 2015-03-25 凯龙高科技股份有限公司 一种dpf柴油机颗粒过滤系统喷油助燃再生温度控制方法
CN111157049A (zh) * 2020-01-13 2020-05-15 北京理工大学 一种柴油车scr后处理器老化性能快速评价系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孟忠伟等: "热老化对碳烟颗粒氧化特性的影响", 《江苏大学学报(自然科学版)》 *
郑健等: "机动车后处理系统快速老化技术研究", 《柴油机》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113969819A (zh) * 2021-10-21 2022-01-25 奇瑞商用车(安徽)有限公司 基于台架老化的催化器临界件制备方法
CN113969819B (zh) * 2021-10-21 2024-07-09 奇瑞商用车(安徽)有限公司 基于台架老化的催化器临界件制备方法
CN114738091A (zh) * 2022-03-23 2022-07-12 潍柴动力股份有限公司 一种doc的控制方法、汽车后处理装置和存储介质
CN114964794A (zh) * 2022-05-09 2022-08-30 北京理工大学 一种快速评价cDPF装置耐久过程中平衡点温度的方法

Also Published As

Publication number Publication date
CN113030150B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
CN113030150B (zh) 柴油机dpf系统快速老化测试法、系统、介质及应用
US20160186630A1 (en) NOx SENSOR DIAGNOSTIC FOR AN EXHAUST AFTERTREATMENT SYSTEM
US7174779B1 (en) Method for aging catalyzed particulate filter system
RU2010154411A (ru) Способ и устройство для распознования сгорания в фильтре частиц
CN113177314B (zh) 一种dpf主动再生方法、装置、计算机设备和存储介质
CN112147028A (zh) 柴油机dpf载体极限碳载量热冲击试验系统及方法
CN111520219A (zh) 一种发动机dpf清灰判断方法及装置
US20070135968A1 (en) Apparatus, system, and method for calculating maximum back pressure
Pla et al. Model-based simultaneous diagnosis of ammonia injection failure and catalyst ageing in deNOx engine after-treatment systems
CN112414717B (zh) 一种发动机后喷燃油对机油稀释的试验方法
CN110714822B (zh) Dpf再生的控制方法及控制系统
CN114033532B (zh) Dpf主动再生周期确定方法、装置、电子设备及存储介质
CN115655697A (zh) 一种柴油机dpf催化剂的dti试验装置及dti测试方法
CN115324696B (zh) 一种烟度控制方法、装置及车辆
Eakle et al. The DAAAC Protocol: A Procedure for Developing Accelerated Aging Cycles for Diesel Aftertreatment
CN114704361A (zh) Dpf部分再生控制方法、装置、电子设备及存储介质
Baba et al. Numerical simulation of deactivation process of three-way catalytic converters
CN114964794B (zh) 一种快速评价cDPF装置耐久过程中平衡点温度的方法
CN111625958B (zh) 汽车尾气装置的测试方法、设备、存储介质及装置
CN114383849B (zh) 一种混合器结晶实验方法、装置、存储介质及设备
CN116625697B (zh) 柴油发动机累碳测量方法、装置、电子设备及存储介质
CN103382873B (zh) 用于控制排气再生的系统和方法
CN114483273B (zh) 一种排放管理方法、装置及系统
CN115306523B (zh) 一种发动机dpf控制方法及装置
CN117436372B (zh) 发动机原排Soot值预估方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant