CN113029193A - 一种陀螺仪死区的在线辨识方法 - Google Patents

一种陀螺仪死区的在线辨识方法 Download PDF

Info

Publication number
CN113029193A
CN113029193A CN202110203861.XA CN202110203861A CN113029193A CN 113029193 A CN113029193 A CN 113029193A CN 202110203861 A CN202110203861 A CN 202110203861A CN 113029193 A CN113029193 A CN 113029193A
Authority
CN
China
Prior art keywords
gyroscope
beta
alpha
angular velocity
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110203861.XA
Other languages
English (en)
Other versions
CN113029193B (zh
Inventor
陈银河
王静吉
张小伟
叶立军
丰保民
向坤
袁彦红
戴维宗
孟其琛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Aerospace Control Technology Institute
Original Assignee
Shanghai Aerospace Control Technology Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Aerospace Control Technology Institute filed Critical Shanghai Aerospace Control Technology Institute
Priority to CN202110203861.XA priority Critical patent/CN113029193B/zh
Publication of CN113029193A publication Critical patent/CN113029193A/zh
Application granted granted Critical
Publication of CN113029193B publication Critical patent/CN113029193B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

本发明公开了一种陀螺仪死区的在线辨识方法,包含以下步骤:确认陀螺仪已处于在线使用的状态;根据卫星运行轨道可选用利用轨道角速度或利用卫星在单陀螺基准下的运动特性去辨识出陀螺仪的死区;其中,所述利用轨道角速度辨识出陀螺仪的死区,是通过姿态偏置,让轨道角速度在陀螺仪IRA上产生一个分量,不断增大卫星与待测轴的偏置角度,直至陀螺仪敏感出轨道角速度;所述利用卫星在单陀螺基准下的运动特性辨识出陀螺仪的死区,是在单陀螺基准下,使用陀螺积分算法进行姿态控制。本发明可以不借助测试转台,对在轨卫星的陀螺仪死区进行辨识,具有技术优势和推广价值。

Description

一种陀螺仪死区的在线辨识方法
技术领域
本发明是涉及一种卫星控制系统在轨风险识别领域,尤其涉及一种陀螺仪区死区的在线辨识方法。
背景技术
陀螺仪的死区是指陀螺仪输入轴(IRA)上的输入角速度在某个区间范围内时,陀螺仪无法敏感到输入角速度,该区间称为陀螺仪的死区。陀螺仪的死区是一个包含零的区间[P,Q],其中P<0称为陀螺仪的反转死区,Q>0称为陀螺仪的正转死区。
陀螺仪死区传统的测量方式有两种:
(1)速率转台法
将待测陀螺仪放置在倾斜转台上,倾斜转台使待测陀螺仪的IRA在转动的时候始终与地球自转轴垂直,让陀螺仪敏感不到地球自转角速度。然后给陀螺仪施加由大至小的旋转角速度,直至陀螺仪敏感不出转台施加的角速度。
(2)回转台法
将待测陀螺仪水平放置在转台上,通过调整陀螺仪IRA与当地北的夹角关系,即改变地球自转角速度在IRA上的分量,从而测量出陀螺仪的死区。
Figure BDA0002949057490000011
其中Ω0为地球自转角速度在陀螺仪IRA上的分量,Ωe为地球自转角速度,
Figure BDA0002949057490000012
为当地纬度,θ为IRA与当地北的夹角。
传统的陀螺仪死区测量方法表现出如下缺点:
两种传统的测量方法中,陀螺仪均需放置在转台上,只能适用于未装载在卫星前的阶段。一旦陀螺仪装载在卫星平台上后,受平台尺寸限制或者平台运行环境限制,该方法将不再适用。
发明内容
本发明的目的在于提供一种陀螺仪死区的在线辨识方法,能够不借助测试转台,对在轨卫星的陀螺仪死区进行辨识,从而为卫星可靠运行提供数据支撑。
为了达到上述目的,本发明提供了一种陀螺仪死区的在线辨识方法。
在测量近圆轨道下已处于在线使用状态的X陀螺仪和Z陀螺仪时,包含以下步骤:
S1:使用除陀螺仪以外的高精度姿态敏感器作为姿态基准,使卫星保持为轨道系零姿态;
S2:若待测陀螺仪为X陀螺仪,则进入S3,若待测陀螺仪为Z陀螺仪,则进入S6;
S3:设定卫星绕轨道系Z轴的第一正向偏置角度α,α由0开始增大,轨道角速度ω在X陀螺仪上的分量大小为ωsinα,当α小于第一临界角度时,ωsinα小于陀螺仪死区,X陀螺仪的输出角速度不随α变化而变化,当α增大至第一临界角度时,X陀螺仪的输出角速度增大,此时停止增大α,记录此时α角为第一角度α1,进入S4;
S4:设定卫星绕轨道系Z轴的第一反向偏置角度α’,α’由0开始增大,轨道角速度ω在X陀螺仪上的分量大小为ωsinα’,当α’小于第二临界角度时,ωsinα’小于陀螺仪死区,X陀螺仪的输出角速度不随α’变化而变化,当α’增大至第二临界角度时,X陀螺仪的输出角速度增大,此时停止增大α’,记录此时α’角为第二角度α2,进入S5;
S5:则X陀螺仪的死区为(-ωsinα1,ωsinα2);
S6:设定卫星绕轨道系X轴的第二正向偏置角度β,β由0开始增大,轨道角速度ω在Z陀螺仪上的分量大小为ωsinβ,当β小于第三临界角度时,ωsinβ小于陀螺仪死区,Z陀螺仪的输出角速度不随β变化而变化,当β增大至第三临界角度时,Z陀螺仪的输出角速度增大,此时停止增大β,记录此时β角为第三角度β1,进入S7;
S7:设定卫星绕轨道系X轴的第二反向偏置角度β’,β’由0开始增大,轨道角速度ω在Z陀螺仪上的分量大小为ωsinβ’,当β’小于第四临界角度时,ωsinβ’小于陀螺仪死区,Z陀螺仪的输出角速度不随β’变化而变化,当β’增大至第四临界角度时,Z陀螺仪的输出角速度增大,此时停止增大β’,记录此时β’角为第四角度β2,进入S8;
S8:则Z陀螺仪的死区为(-ωsinβ2,ωsinβ1)。
所述近圆轨道的偏心率小于0.0001。
一种陀螺仪死区的在线辨识方法,其特征在于,在卫星运行轨道为近圆轨道或椭圆轨道下测量已处于在线使用状态的X、Y、Z陀螺仪时,包含以下步骤:
S1:使用除陀螺仪以外的高精度姿态敏感器作为姿态基准,使卫星保持为轨道系零姿态,由轨道信息确定当前轨道的角速度ω的范围为[ωmin,ωmax];
S2:若待测陀螺仪为X陀螺仪,则进入S3,若待测陀螺仪为Z陀螺仪,则进入S6;
S3:设定卫星绕轨道系Z轴的第一正向偏置角度α,α由0开始增大,轨道角速度ω在X陀螺仪上的分量为ωsinα,当α小于第一临界角度时,ωsinα小于陀螺仪死区,X陀螺仪的输出角速度不随α变化而变化,当α增大至第一临界角度时,X陀螺仪的输出角速度增大,此时停止增大α,记录此时α角为第一角度α1,进入S4;
S4:设定卫星绕轨道系Z轴的第一反向偏置角度α’,α’由0开始增大,轨道角速度ω在X陀螺仪上的分量为ωsinα’,当α’小于第二临界角度时,ωsinα’小于陀螺仪死区,X陀螺仪的输出角速度不随α’变化而变化,当α’增大至第二临界角度时,X陀螺仪的输出角速度增大,此时停止增大α’,记录此时α’角为第二角度α2,取νX=min{|-ωminsinα1|,|ωminsinα2|},进入S5;
S5:选取卫星绕轨道系Z轴的第三正向偏置角度α3,使得-ωminsinα3<-ωmaxsinα1,或选取卫星绕轨道系Z轴的第三反向偏置角度α4,使得ωmax sinα2<ωminsinα4,此时测得X陀螺仪的陀螺零漂ηx,进入S9;
S6:设定卫星绕轨道系X轴的第二正向偏置角度β,β由0开始增大,轨道角速度ω在Z陀螺仪上的分量为ωsinβ,当β小于第三临界角度时,ωsinβ小于陀螺仪死区,Z陀螺仪的输出角速度不随β变化而变化,当β增大至第三临界角度时,Z陀螺仪的输出角速度增大,此时停止增大β,记录此时β角为第三角度β1,进入S7;
S7:设定卫星绕轨道系X轴的第二反向偏置角度β’,β’由0开始增大,轨道角速度ω在Z陀螺仪上的分量为ωsinβ’,当β’小于第四临界角度时,ωsinβ’小于陀螺仪死区,Z陀螺仪的输出角速度不随β’变化而变化,当β’增大至第四临界角度时,Z陀螺仪的输出角速度增大,此时停止增大β’,记录此时β’角为第四角度β2,取νZ=min{|-ωmaxsinβ2|,|ωmaxsinβ1|},进入S8;
S8:选取卫星绕轨道系X轴的第四正向偏置角度β3,使得ωmaxsinβ1<ωminsinβ3,或选取卫星绕轨道系X轴的第四反向偏置角度β4,使得-ωminsinβ4<-ωmaxsinβ2,此时可测得Z陀螺仪的陀螺零漂ηz,进入S11;
S9、选取地面修正值在X轴的分量ζx=ζx1,使得0<ζx1XX,令地面修正值在Z轴的分量ζZ=0进入子流程计算时间T内卫星在X轴的平均角速度mX,即为X陀螺仪的反转死区;
S10、选取ζx=ζx2,使得-νXXx2<0,令ζZ=0进入子流程计算时间T内卫星在X轴的平均角速度mX,即为X陀螺仪的正转死区;
S11、令ζx=0,选取ζZ=ζZ1使得0<ζZ1ZZ,进入子流程计算时间T内卫星在Z轴的平均角速度mZ,即为Z陀螺仪的反转死区;
S12、令ζx=0,选取ζZ=ζZ2使得-νZZZ2<0,进入子流程计算时间T内卫星在Z轴的平均角速度mZ,即为Z陀螺仪的正转死区。
其中,所述子流程步骤为:
步骤1:使用陀螺以外的其他姿态敏感器作为姿态基准,使卫星保持为轨道系零姿态,测量三轴姿态信息;
步骤2:将陀螺积分算法中的地面修正值在X轴、Z轴上的分量分别设置为ζx和ζz
步骤3:将步骤1中其他姿态敏感器测量出来的三轴姿态信息赋给陀螺积分算法作为积分初值;
步骤4:卫星的姿态基准由其他敏感器基准切换至陀螺,由对陀螺积分算法输入值积分计算出的陀螺积分角作为卫星的姿态控制基准;
步骤5:持续一段时间T后,使用其他姿态敏感器测量出在该段时间内卫星X轴或Z轴的姿态偏差△x或△z;
步骤6:计算时间T内卫星在X轴的平均角速度mx=△x/T或一段时间内卫星在Z轴的平均角速度mz=△z/T。
所述陀螺积分算法输入值为陀螺仪输出值和地面修正值ζ之和。
所述陀螺仪输出值为陀螺仪感应角速度、陀螺仪零漂η和测量噪声三项之和。
所述陀螺仪的输入角速度处于陀螺仪死区范围内时,陀螺仪感应角速度和陀螺仪零漂η均为零,陀螺仪输出值仅包含测量噪声。
所述陀螺测量噪声为白噪声,随时间积分结果近似为零。因此陀螺仪的输入角速度在陀螺仪死区范围内时,陀螺积分算法的输入值可视为仅包含地面修正值ζ。
附图说明
图1为本发明中方法一中卫星绕轨道系Z轴的第一正向偏置角度α后轨道角速度在X陀螺仪上分量示意图;
图2为本发明中方法一中卫星绕轨道系Z轴的第一反向偏置角度α’后轨道角速度在X陀螺仪上分量示意图;
图3为本发明中方法一中卫星绕轨道系X轴的第二正向偏置角度β后轨道角速度在Z陀螺仪上分量示意图;
图4为本发明中方法一中卫星绕轨道系X轴的第二反向偏置角度β’后轨道角速度在Z陀螺仪上分量示意图;
图5为本发明中方法二中测量陀螺仪反转死区的原理图;
图6为本发明中方法二中测量陀螺仪正转死区的原理图。
具体实施方式
以下结合附图,通过实施例对本发明的技术内容、构造特征、所达成的目的及功效作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
陀螺仪的死区可写作[P,Q],P<0为陀螺仪的反转死区,Q>0为陀螺仪的正转死区。
如果卫星是偏心率小于0.0001的近圆轨道,轨道角速度为ω,待测陀螺仪为X陀螺仪或Z陀螺仪,则可以使用下述方法辨识陀螺仪死区。
S1:使用陀螺仪以外的其他高精度姿态敏感器作为姿态基准,使卫星保持为轨道系零姿态,进入S2;
S2:如果待测陀螺仪为X陀螺仪,进入S3。如果待测陀螺仪为Z陀螺仪,进入S6;
S3:设定卫星绕轨道系Z轴的第一正向偏置角度α,α由0开始增大。轨道角速度ω在X陀螺仪上的分量大小为ωsinα,当α小于第一临界角度时,ωsinα小于陀螺仪死区,X陀螺仪的输出角速度不随α变化而变化。当α增大至第一临界角度时,X陀螺仪的输出角速度增大,停止增大α,记录此时α角为第一角度α1,进入S4;
S4:设定卫星绕轨道系Z轴的第一反向偏置角度α’,α’由0开始增大。轨道角速度ω在X陀螺仪上的分量大小为ωsinα’,当α’小于第二临界角度时,ωsinα’小于陀螺仪死区,X陀螺仪的输出角速度不随α’变化而变化。当α’增大至第二临界角度时,X陀螺仪的输出角速度增大,停止增大α’,记录此时α’角为第二角度α2,进入S5;
S5:则X陀螺仪的死区为(-ωsinα1,ωsinα2);
S6:设定卫星绕轨道系X轴的第二正向偏置角度β,β由0开始增大,轨道角速度ω在Z陀螺仪上的分量大小为ωsinβ,当β小于第三临界角度时,ωsinβ小于陀螺仪死区,Z陀螺仪的输出角速度不随β变化而变化。当β增大至第三临界角度时,Z陀螺仪的输出角速度增大,停止增大偏置角度β,记录此时偏置角度β为第三角度β1,进入S7;
S7:设定卫星绕轨道系X轴的第二反向偏置角度β’,β’由0开始增大,轨道角速度ω在Z陀螺仪上的分量大小为ωsinβ’,当β’小于第四临界角度时,ωsinβ’小于陀螺仪死区,Z陀螺仪的输出角速度不随β’变化而变化。当β’增大至第四临界角度时,Z陀螺仪的输出角速度增大,停止增大β’,记录此时β’角为第四角度β2,进入S8;
S8:则Z陀螺仪的死区为(-ωsinβ2,ωsinβ1)。
当卫星的轨道是椭圆轨道时,由于轨道角速度是时变的,那么上述方法的操作性将会降低,此时需利用卫星在单陀螺基准下的运动特性辨识出陀螺仪的死区。虽然椭圆轨道的轨道角速度是时变的,但处于区间[ωmin,ωmax]的范围内。
由此可以得到以下关系:对于X轴有[-ωminsinα1,ωminsinα2]∈[PX,QX]∈[-ωmaxsinα1,ωmaxsinα2];对于Z轴有[-ωminsinβ2,ωminsinβ1]∈[PZ,QZ]∈[-ωmaxsinβ2,ωmaxsinβ1]。
取νX=min{|-ωminsinα1|,|ωminsinα2|},显然[-νX,νX]∈[-ωminsinα1,ωminsinα2]∈[PX,QX];同样取νZ=min{|-ωmaxsinβ2|,|ωmaxsinβ1|},显然[-νZ,νZ]∈[-ωminsinβ2,ωminsinβ1]∈[PZ,QZ]。
当卫星绕轨道系Z轴的正向偏置角度大于α1或绕轨道系Z轴的反向偏置角度大于α2时,轨道角速度在X轴的分量一定大于X陀螺仪的死区,那么便可以测得X陀螺仪的零漂ηX。同样,当卫星绕轨道系X轴的正向偏置角度大于β1或绕轨道系Z轴的反向偏置角度大于β2时,便可以测得Z陀螺仪的零漂ηZ
如图5所示,为本发明中一优选实施例中测量陀螺仪反转死区的原理图,以待测陀螺仪为X陀螺仪为例,当地面修正值在X轴的分量ζX>0,且满足ηX与ζX之和处于[-νX,νX]范围内时,可测的陀螺的反转死区。
在阶段0,卫星使用其他敏感器基准,卫星处于稳定状态。
在阶段1,卫星开始使用陀螺基准,在阶段1起始时刻,陀螺积分角使用阶段0终止时刻其他敏感器赋予的姿态信息,因此在阶段1起始时刻陀螺积分角为0。
在阶段1中,由于卫星真实角速度(惯性系下描述)为0,陀螺仪输入角速度在死区范围内,因此陀螺积分算法输入仅包含ζX。由于ζX>0,因此积分角随时间增长。在该阶段中卫星真实姿态角和真实角速度均为0。
到阶段2起始时刻,陀螺积分角触发卫星控制门限上限,卫星的控制系统启动执行机构(如飞轮等)将卫星相对于轨道系零姿态的角度向零调控,即施加负方向角加速度,卫星真实角速度开始负增长。由于该角速度仍处在死区范围内,因此陀螺积分算法输入仅包含ζX,陀螺积分角继续增加。
到阶段3起始时刻,卫星真实角速度超过陀螺仪死区,陀螺积分算法的输入项为陀螺仪输出值(陀螺仪感应角速度、ηX和测量噪声三项之和)与ζX之和。其中,测量噪声随时间积分为零,而陀螺仪感应角速度<PX,且-νX<ηXX<νX,因此陀螺积分算法的输入值为:陀螺仪感应角速度+ηXX<X陀螺仪反转死区PXX<0,陀螺积分角开始减小。
到阶段4起始时刻,陀螺积分角小于卫星控制门限上限,卫星不再输出控制指令,卫星当前真实角速度保持不变,陀螺积分角继续减少。
到阶段5起始时刻,陀螺积分角小于卫星控制门限下限,卫星输出正角加速度指令,卫星真实角速度开始增大。
到阶段6起始时刻,卫星真实角速度处于陀螺仪死区范围内,陀螺积分算法输入值仅包含ζX,陀螺积分角开始增加。
到阶段7起始时刻,陀螺积分角大于控制门限下限,卫星真实角速度保持不变,陀螺积分角继续增加。
阶段8与阶段2一致,并以此不断循环。因此平台在单陀螺基准下,卫星X轴会以近似于陀螺仪反转死区PX的惯性角速度持续运动。
如图6所示,为本发明中一优选实施例测量陀螺仪正转死区的原理图,以待测陀螺仪为X陀螺仪为例,当地面修正值在X轴分量ζX<0,且满足陀螺仪零漂ηX+地面修正值ζX之和处于[-νX,νX]范围内时,可测的陀螺的正转死区。
在阶段0,卫星使用其他敏感器基准,卫星处于稳定状态。
在阶段1,卫星开始使用陀螺基准,在阶段1起始时刻,陀螺积分角使用阶段0终止时刻其他敏感器赋予的姿态信息,因此在阶段1起始时刻陀螺积分角为0。
在阶段1中,由于卫星真实角速度为0,陀螺仪输入角速度在死区范围内,因此陀螺积分算法输入仅包含地面修正值ζX。由于地面修正值ζX<0,因此积分角随时间减小。在该阶段中卫星真实姿态角和真实角速度均为0。
到阶段2起始时刻,积分角触发卫星控制门限下限,卫星的控制系统启动执行机构(如飞轮等)将卫星的角度往零姿态控,即施加正方向角加速度,卫星真实角速度开始正增长。由于该角速度小于X陀螺仪正转死区QX,因此陀螺积分算法输入仅包含ζX,陀螺积分角继续减少。
到阶段3起始时刻,卫星真实角速度超过陀螺仪死区,陀螺积分算法的输入项为陀螺仪输出值(陀螺仪感应角速度、ηX和测量噪声三项之和)和ζX之和。其中测量噪声随时间积分为零,而陀螺仪感应角速度>QX,且-νX<ηXX<νX,因此陀螺积分算法的输入值为:陀螺仪感应角速度+陀螺零漂ηX+地面修正值ζX>QXX>0,陀螺积分角开始增加。
到阶段4起始时刻,陀螺积分角大于卫星控制门限下限,卫星不再输出控制指令,卫星当前真实角速度保持不变,陀螺积分角继续增加。
到阶段5起始时刻,陀螺积分角大于卫星控制门限上限,卫星输出负角加速度指令,卫星真实角速度开始减小。
到阶段6起始时刻,卫星真实角速度处于陀螺仪死区范围内,陀螺积分算法输入值仅包含ζX,陀螺积分角开始减小。
到阶段7起始时刻,陀螺积分角小于控制门限上限,卫星真实角速度保持不变,陀螺积分角继续减小。
阶段8与阶段2一致,并以此不断循环。因此平台在单陀螺基准下,会以近似于ν+的惯性角速度持续运动。
综上所述,在卫星运行轨道为近圆轨道(偏心率小于0.0001)或椭圆轨道(偏心率大于等于0.0001)下测量已处于在线使用状态的X、Y、Z陀螺仪时,包含以下步骤:
S1:使用除陀螺仪以外的高精度姿态敏感器作为姿态基准,使卫星保持为轨道系零姿态,由轨道信息确定当前轨道的角速度ω的范围为[ωmin,ωmax];
S2:若待测陀螺仪为X陀螺仪,则进入S3,若待测陀螺仪为Z陀螺仪,则进入S6;
S3:设定卫星绕轨道系Z轴的第一正向偏置角度α,α由0开始增大,轨道角速度ω在X陀螺仪上的分量大小为ωsinα,当α小于第一临界角度时,ωsinα小于陀螺仪死区,X陀螺仪的输出角速度不随α变化而变化,当α增大至第一临界角度时,X陀螺仪的输出角速度增大,此时停止增大α,记录此时α角为第一角度α1,进入S4;
S4:设定卫星绕轨道系Z轴的第一反向偏置角度α’,α’由0开始增大,轨道角速度ω在X陀螺仪上的分量大小为ωsinα’,当α’小于第二临界角度时,ωsinα’小于陀螺仪死区,X陀螺仪的输出角速度不随α’变化而变化,当α’增大至第二临界角度时,X陀螺仪的输出角速度增大,此时停止增大α’,记录此时α’角为第二角度α2,取|-ωminsinα1|与|ωminsinα2|之间的较小值,即取νX=min{|-ωminsinα1|,|ωminsinα2|},进入S5;
S5:选取卫星绕轨道系Z轴的第三正向偏置角度α3,使得-ωminsinα3<-ωmaxsinα1,或者卫星绕轨道系Z轴的第三反向偏置角度α4,使得ωmaxsinα2<ωminsinα4,此时可测得X陀螺仪的陀螺零漂ηX,进入S9;
S6:设定卫星绕轨道系X轴的第二正向偏置角度β,β由0开始增大,轨道角速度ω在Z陀螺仪上的分量为ωsinβ,当β小于第三临界角度时,ωsinβ小于陀螺仪死区,Z陀螺仪的输出角速度不随β变化而变化,当β增大至第三临界角度时,Z陀螺仪的输出角速度增大,此时停止增大β,记录此时β角为第三角度β1,进入S7;
S7:设定卫星绕轨道系X轴的第二反向偏置角度β’,β’由0开始增大,轨道角速度ω在Z陀螺仪上的分量为ωsinβ’,当β’小于第四临界角度时,ωsinβ’小于陀螺仪死区,Z陀螺仪的输出角速度不随β’变化而变化,当β’增大至第四临界角度时,Z陀螺仪的输出角速度增大,此时停止增大β’,记录此时β’角为第四角度β2,取|-ωmaxsinβ2|与|ωmaxsinβ1|二者之间的较小值,即取νZ=min{|-ωmaxsinβ2|,|ωmaxsinβ1|},进入S8;
S8:选取卫星绕轨道系X轴的第四正向偏置角度β3,使得ωmaxsinβ1<ωminsinβ3,或者卫星绕轨道系X轴的第四反向偏置角度β4,使得-ωminsinβ4<-ωmaxsinβ2,此时可测得Z陀螺仪的陀螺零漂ηZ,进入S11;
S9、选取地面修正值在X轴上的分量ζx=A1,使得0<A1<νXX,令地面修正值在Z轴上的分量ζZ=0进入子流程计算时间T内卫星在X轴的平均角速度mX,即为X陀螺仪的反转死区;
S10、选取地面修正值在X轴上的分量ζx=A2,使得-νXX<A2<0,令地面修正值在Z轴上的分量ζZ=0进入子流程计算时间T内卫星在X轴的平均角速度mX,即为X陀螺仪的正转死区;
S11、令地面修正值在X轴上的分量ζx=0,选取ζZ=B1,使得0<B1<νZZ,进入子流程计算时间T内卫星在Z轴的平均角速度mZ,即为Z陀螺仪的反转死区;
S12、令ζx=0,选取地面修正值在Z轴上的分量ζZ=B2使得-νZZ<B2<0,进入子流程计算时间T内卫星在Z轴的平均角速度mZ,即为Z陀螺仪的正转死区。
其中,由于在死区范围内没有零漂,因此,在S5中测零漂时,取卫星绕轨道系Z轴的第三正向偏置角度α3,使得-ωminsinα3<-ωmaxsinα1,或者卫星绕轨道系Z轴的第三反向偏置角度α4,使得ωmaxsinα2<ωminsinα4,即偏置后轨道角速度在X轴的分量不处于死区范围内,此时,可以测得零漂ηX
同理,在S8中测零漂时,取卫星绕轨道系X轴的第四正向偏置角度β3,使得ωmaxsinβ1<ωminsinβ3,或者卫星绕轨道系X轴的第四反向偏置角度β4,使得-ωminsinβ4<-ωmaxsinβ2,即偏置后轨道角速度在Z轴的分量不处于死区范围内,此时,可以测得零漂ηZ
子流程:
步骤1:使用陀螺以外的其他姿态敏感器作为姿态基准,使卫星保持为轨道系零姿态,进入步骤2;
步骤2:将陀螺积分算法中的地面修正值ζ在X轴、Z轴上的分量分别设置为ζx和ζz,进入步骤3;
步骤3:将步骤1中其他姿态敏感器测量出来的三轴姿态信息赋给陀螺积分算法作为积分初值,进入步骤4;
步骤4:卫星的姿态基准由其他敏感器基准切换至陀螺,由对陀螺测量值积分计算出的陀螺积分角作为卫星的姿态控制基准,进入步骤5;
步骤5:持续一段时间T后,使用其他姿态敏感器测量出在该段时间内卫星X轴或Z轴的姿态偏差△x或△z;
步骤6:计算时间T内卫星在X轴的平均角速度mx=△x/T或一段时间内卫星在Z轴的平均角速度mz=△z/T。
步骤7:返回主流程。
其中,若是在S9或S10的步骤中调动所述子流程,则子流程中步骤2所述地面修正值在X轴上的分量ζx等于所选参数值,地面修正值在Z轴上的分量ζz=0;若是在S11或S12的步骤中调动所述子流程,则子流程中步骤2所述地面修正值在X轴上的分量ζx=0,地面修正值在Z轴上的分量ζz等于所选参数值。
其中,若是在S9或S10的步骤中调动所述子流程,则子流程中步骤5测量出在该段时间内卫星X轴的姿态偏差△x,计算时间T内卫星在X轴的平均角速度mx=△x/T;若是在S11或S12的步骤中调动所述子流程,则子流程中步骤5测量出在该段时间内卫星Z轴的姿态偏差△z,计算时间T内卫星在Z轴的平均角速度mz=△z/T。
进一步,所述陀螺积分算法输入值为陀螺仪输出值和地面修正值ζ之和。
进一步,所述陀螺仪输出值为陀螺仪感应角速度、陀螺仪零漂η和测量噪声三项之和。
所述测量噪声表现为白噪声,随时间积分为0。因为陀螺积分算法的输入项可视作陀螺仪感应角速度、陀螺仪零漂η和地面修正值ζ之和。
所述陀螺仪的输入角速度处于陀螺仪死区范围时,陀螺积分算法的输入项为地面修正值ζ。
即,当X陀螺仪的输入角速度处于陀螺仪死区范围内时,X陀螺积分算法的输入项仅包含地面修正值在X轴的分量ζX;当X陀螺仪的输入角速度不处于陀螺仪死区范围时,X陀螺积分算法的输入项为测量角速度在X轴的分量、X陀螺仪零漂ηX和地面修正值在X轴的分量ζX三项之和。
当Z陀螺仪的输入角速度处于陀螺仪死区范围内时,Z陀螺积分算法的输入项仅包含地面修正值在Z轴的分量ζZ;当Z陀螺仪的输入角速度不处于陀螺仪死区范围时,Z陀螺积分算法的输入项为测量角速度在Z轴的分量、Z陀螺仪零漂ηZ和地面修正值在Z轴的分量ζZ三项之和。

Claims (8)

1.一种陀螺仪死区的在线辨识方法,其特征在于,在测量近圆轨道下已处于在线使用状态的X陀螺仪和Z陀螺仪时,包含以下步骤:
S1:使用除陀螺仪以外的高精度姿态敏感器作为姿态基准,使卫星保持为轨道系零姿态;
S2:若待测陀螺仪为X陀螺仪,则进入S3,若待测陀螺仪为Z陀螺仪,则进入S6;
S3:设定卫星绕轨道系Z轴的第一正向偏置角度α,α由0开始增大,轨道角速度ω在X陀螺仪上的分量大小为ωsinα,当α小于第一临界角度时,ωsinα小于陀螺仪死区,X陀螺仪的输出角速度不随α变化而变化,当α增大至第一临界角度时,X陀螺仪的输出角速度增大,此时停止增大α,记录此时α角为第一角度α1,进入S4;
S4:设定卫星绕轨道系Z轴的第一反向偏置角度α’,α’由0开始增大,轨道角速度ω在X陀螺仪上的分量大小为ωsinα’,当α’小于第二临界角度时,ωsinα’小于陀螺仪死区,X陀螺仪的输出角速度不随α’变化而变化,当α’增大至第二临界角度时,X陀螺仪的输出角速度增大,此时停止增大α’,记录此时α’角为第二角度α2,进入S5;
S5:得到X陀螺仪的死区为(-ωsinα1,ωsinα2);
S6:设定卫星绕轨道系X轴的第二正向偏置角度β,β由0开始增大,轨道角速度ω在Z陀螺仪上的分量大小为ωsinβ,当β小于第三临界角度时,ωsinβ小于陀螺仪死区,Z陀螺仪的输出角速度不随β变化而变化,当β增大至第三临界角度时,Z陀螺仪的输出角速度增大,此时停止增大β,记录此时β角为第三角度β1,进入S7;
S7:设定卫星绕轨道系X轴的第二反向偏置角度β’,β’由0开始增大,轨道角速度ω在Z陀螺仪上的分量大小为ωsinβ’,当β’小于第四临界角度时,ωsinβ’小于陀螺仪死区,Z陀螺仪的输出角速度不随β’变化而变化,当β’增大至第四临界角度时,Z陀螺仪的输出角速度增大,此时停止增大β’,记录此时β’角为第四角度β2,进入S8;
S8:得到Z陀螺仪的死区为(-ωsinβ2,ωsinβ1)。
2.如权利要求1所述的一种陀螺仪死区的在线辨识方法,其特征在于,所述近圆轨道的偏心率小于0.0001。
3.一种陀螺仪死区的在线辨识方法,其特征在于,在卫星运行轨道为近圆轨道或椭圆轨道下测量已处于在线使用状态的X、Y、Z陀螺仪时,包含以下步骤:
S1:使用除陀螺仪以外的高精度姿态敏感器作为姿态基准,使卫星保持为轨道系零姿态,由轨道信息确定当前的轨道角速度ω的范围为[ωmin,ωmax];
S2:若待测陀螺仪为X陀螺仪,则进入S3,若待测陀螺仪为Z陀螺仪,则进入S6;
S3:设定卫星绕轨道系Z轴的第一正向偏置角度α,α由0开始增大,轨道角速度ω在X陀螺仪上的分量大小为ωsinα,当α小于第一临界角度时,ωsinα小于陀螺仪死区,X陀螺仪的输出角速度不随α变化而变化,当α增大至第一临界角度时,X陀螺仪的输出角速度增大,此时停止增大α,记录此时α角为第一角度α1,进入S4;
S4:设定卫星绕轨道系Z轴的第一反向偏置角度α’,α’由0开始增大,轨道角速度ω在X陀螺仪上的分量大小为ωsinα’,当α’小于第二临界角度时,ωsinα’小于陀螺仪死区,X陀螺仪的输出角速度不随α’变化而变化,当α’增大至第二临界角度时,X陀螺仪的输出角速度增大,此时停止增大α’,记录此时α’角为第二角度α2,取νX=min{|-ωminsinα1|,|ωminsinα2|}进入S5;
S5:选取卫星绕轨道系Z轴的第三正向偏置角度α3,使得-ωminsinα3<-ωmaxsinα1,或者选取卫星绕轨道系Z轴的第三反向偏置角度α4,使得ωmax sinα2<ωminsinα4,此时测得X陀螺仪的陀螺零漂ηX,进入S9;
S6:设定卫星绕轨道系X轴的第二正向偏置角度β,β由0开始增大,轨道角速度ω在Z陀螺仪上的分量大小为ωsinβ,当β小于第三临界角度时,ωsinβ小于陀螺仪死区,Z陀螺仪的输出角速度不随β变化而变化,当β增大至第三临界角度时,Z陀螺仪的输出角速度增大,此时停止增大β,记录此时β角为第三角度β1,进入S7;
S7:设定卫星绕轨道系X轴的第二反向偏置角度β’,β’由0开始增大,轨道角速度ω在Z陀螺仪上的分量大小为ωsinβ’,当β’小于第四临界角度时,ωsinβ’小于陀螺仪死区,Z陀螺仪的输出角速度不随β’变化而变化,当β’增大至第四临界角度时,Z陀螺仪的输出角速度增大,此时停止增大β’,记录此时β’角为第四角度β2,取νZ=min{|-ωmaxsinβ2|,|ωmaxsinβ1|},进入S8;
S8:选取卫星绕轨道系X轴的第四正向偏置角度β3,使得ωmaxsinβ1<ωminsinβ3,或者选取卫星绕轨道系X轴的第四反向偏置角度β4,使得-ωminsinβ4<-ωmaxsinβ2,此时测得Z陀螺仪的陀螺零漂ηZ,进入S11;
S9、选取地面修正值在X轴的分量ζx=ζx1,使得0<ζx1XX,令地面修正值在Z轴的分量ζZ=0,进入子流程计算时间T内卫星在X轴的平均角速度mX,即为X陀螺仪的反转死区;
S10、选取地面修正值在X轴的分量ζx=ζx2,使得-νXXx2<0,令地面修正值在Z轴的分量ζZ=0,进入子流程计算时间T内卫星在X轴的平均角速度mX,即为X陀螺仪的正转死区;
S11、令地面修正值在X轴的分量ζx=0,选取地面修正值在Z轴的分量ζZ=ζZ1,使得0<ζZ1ZZ,进入子流程计算时间T内卫星在Z轴的平均角速度mZ,即为Z陀螺仪的反转死区;
S12、令地面修正值在X轴的分量ζx=0,选取地面修正值在Z轴的分量ζZ=ζZ2,使得-νZZZ2<0,进入子流程计算时间T内卫星在Z轴的平均角速度mZ,即为Z陀螺仪的正转死区。
4.如权利要求3所述的一种陀螺仪死区的在线辨识方法,其特征在于,所述子流程步骤为:
步骤1:使用陀螺以外的其他姿态敏感器作为姿态基准,使卫星保持为轨道系零姿态;
步骤2:将陀螺积分算法中的地面修正值ζ在X轴、Z轴上的分量分别设置为ζx和ζz
步骤3:将步骤1中其他姿态敏感器测量出来的三轴姿态信息赋给陀螺积分算法作为积分初值;
步骤4:卫星的姿态基准由其他敏感器基准切换至陀螺,由陀螺积分算法输入值积分计算出的陀螺积分角作为卫星的姿态控制基准;
步骤5:持续一段时间T后,使用其他姿态敏感器测量出在该段时间内卫星在X轴或Z轴的姿态偏差△x或△z;
步骤6:计算时间T内卫星在X轴的平均角速度mx=△x/T,或时间T内卫星在Z轴的平均角速度mz=△z/T。
5.如权利要求4所述的一种陀螺仪死区的在线辨识方法,其特征在于,所述陀螺积分算法输入值为陀螺仪输出值和地面修正值ζ之和。
6.如权利要求5所述的一种陀螺仪死区的在线辨识方法,其特征在于,所述陀螺仪输出值为陀螺仪感应角速度、陀螺仪零漂η和测量噪声三项之和。
7.如权利要求6所述的一种陀螺仪死区的在线辨识方法,其特征在于,所述陀螺仪的输入角速度处于陀螺仪死区范围内时,陀螺仪感应角速度和陀螺仪零漂η均为零,陀螺仪输出值仅包含测量噪声。
8.如权利要求5所述的一种陀螺仪死区的在线辨识方法,其特征在于,所述测量噪声为白噪声,随时间积分结果为零,因此陀螺仪的输入角速度在陀螺仪死区范围内时,陀螺积分算法的输入值仅包含地面修正值ζ。
CN202110203861.XA 2021-02-23 2021-02-23 一种陀螺仪死区的在线辨识方法 Active CN113029193B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110203861.XA CN113029193B (zh) 2021-02-23 2021-02-23 一种陀螺仪死区的在线辨识方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110203861.XA CN113029193B (zh) 2021-02-23 2021-02-23 一种陀螺仪死区的在线辨识方法

Publications (2)

Publication Number Publication Date
CN113029193A true CN113029193A (zh) 2021-06-25
CN113029193B CN113029193B (zh) 2022-12-23

Family

ID=76461010

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110203861.XA Active CN113029193B (zh) 2021-02-23 2021-02-23 一种陀螺仪死区的在线辨识方法

Country Status (1)

Country Link
CN (1) CN113029193B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113532475A (zh) * 2021-07-05 2021-10-22 浙江大学 一种光纤陀螺阈值高精度测试方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950019773A (ko) * 1993-12-30 1995-07-24 김은영 록-인 영역(Lock-in Zone)의 폭을 제어할 수 있는 레이저 자이로
JP2006349399A (ja) * 2005-06-14 2006-12-28 Yaskawa Electric Corp 方位角計測装置および移動体
US20120116716A1 (en) * 2010-11-08 2012-05-10 Anatole M. Lokshin Device and method of gyro sensor calibration
JP2012137455A (ja) * 2010-12-28 2012-07-19 Alpine Electronics Inc ジャイロ用ゼロ点補正方法及び装置
CN102627151A (zh) * 2012-05-09 2012-08-08 哈尔滨工业大学 一种基于混合执行机构的快速机动卫星的力矩分配方法
CN105352530A (zh) * 2015-12-07 2016-02-24 深圳飞马机器人科技有限公司 一种惯性器件的精度测量标定方法
CN107449420A (zh) * 2017-07-28 2017-12-08 湖北三江航天红峰控制有限公司 一种星箭一体化惯性姿态敏感器
CN107747953A (zh) * 2017-10-25 2018-03-02 上海航天控制技术研究所 一种多敏感器数据与轨道信息时间同步方法
CN109612664A (zh) * 2019-01-08 2019-04-12 上海卫星工程研究所 利用陀螺数据辨识卫星挠性附件在轨振动状态方法与系统
CN109655218A (zh) * 2019-01-08 2019-04-19 上海卫星工程研究所 用卫星陀螺数据辨识整星挠性振动模态频率的方法及系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950019773A (ko) * 1993-12-30 1995-07-24 김은영 록-인 영역(Lock-in Zone)의 폭을 제어할 수 있는 레이저 자이로
JP2006349399A (ja) * 2005-06-14 2006-12-28 Yaskawa Electric Corp 方位角計測装置および移動体
US20120116716A1 (en) * 2010-11-08 2012-05-10 Anatole M. Lokshin Device and method of gyro sensor calibration
JP2012137455A (ja) * 2010-12-28 2012-07-19 Alpine Electronics Inc ジャイロ用ゼロ点補正方法及び装置
CN102627151A (zh) * 2012-05-09 2012-08-08 哈尔滨工业大学 一种基于混合执行机构的快速机动卫星的力矩分配方法
CN105352530A (zh) * 2015-12-07 2016-02-24 深圳飞马机器人科技有限公司 一种惯性器件的精度测量标定方法
CN107449420A (zh) * 2017-07-28 2017-12-08 湖北三江航天红峰控制有限公司 一种星箭一体化惯性姿态敏感器
CN107747953A (zh) * 2017-10-25 2018-03-02 上海航天控制技术研究所 一种多敏感器数据与轨道信息时间同步方法
CN109612664A (zh) * 2019-01-08 2019-04-12 上海卫星工程研究所 利用陀螺数据辨识卫星挠性附件在轨振动状态方法与系统
CN109655218A (zh) * 2019-01-08 2019-04-19 上海卫星工程研究所 用卫星陀螺数据辨识整星挠性振动模态频率的方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ARPIT KHANDELWAL等: "Performance Evaluation of Integrated Semiconductor Ring Laser Gyroscope", 《JOURNAL OF LIGHTWAVE TECHNOLOGY》 *
袁彦红等: "利用高精度陀螺对星敏感器在轨标定算法研究", 《系统工程与电子技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113532475A (zh) * 2021-07-05 2021-10-22 浙江大学 一种光纤陀螺阈值高精度测试方法
CN113532475B (zh) * 2021-07-05 2023-12-01 浙江大学 一种光纤陀螺阈值高精度测试方法

Also Published As

Publication number Publication date
CN113029193B (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2021057894A1 (zh) 一种基于车辆零速检测的惯性导航误差修正方法
US8930138B2 (en) North finder
CN110954102B (zh) 用于机器人定位的磁力计辅助惯性导航系统及方法
CN107490803A (zh) 利用gps和惯导系统对机器人定位定向方法
US7430460B2 (en) Method for determining roll rate gyro bias in an attitude heading reference system
CN104697521B (zh) 一种采用陀螺冗余斜交配置方式测量高速旋转体姿态和角速度的方法
CN110926447B (zh) 一种具有自主导航功能的单轴光纤陀螺寻北方法及航姿导航方法
CN113447047B (zh) 速率积分陀螺检测电极误差辨识方法、装置、系统及介质
CN113029193B (zh) 一种陀螺仪死区的在线辨识方法
US4275605A (en) Acceleration sensitive gyroscope stabilized platform
CN112504275A (zh) 一种基于级联卡尔曼滤波算法的水面舰船水平姿态测量方法
CN111121824A (zh) 一种mems传感器的标定方法
Pham Kalman filter mechanization for INS airstart
CN109708663A (zh) 基于空天飞机sins辅助的星敏感器在线标定方法
CN106595669B (zh) 一种旋转体姿态解算方法
CN113984049B (zh) 飞行器的飞行轨迹的估计方法、装置及系统
CN113375669B (zh) 基于神经网络模型的姿态更新方法及装置
CN110667892B (zh) 基于地磁测量的卫星消旋控制方法
JP2001141507A (ja) 慣性航法装置
EP0329344B1 (en) Gyroscope system
JP2001264106A (ja) 慣性航法装置、慣性航法装置の初期化方法及び記録媒体
Kadir et al. Application of Kalman filter in fine alignment of INS assisted by magneto sensors
CN117782149A (zh) 一种基于姿态机动的陀螺在轨标定方法
JPS5947243B2 (ja) 自動探北装置
CN116124126A (zh) 一种纯磁强计滤波角速度确定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant