CN113025562A - R406在促进体细胞重编程中的应用、其重编程培养基及方法 - Google Patents

R406在促进体细胞重编程中的应用、其重编程培养基及方法 Download PDF

Info

Publication number
CN113025562A
CN113025562A CN202110293323.4A CN202110293323A CN113025562A CN 113025562 A CN113025562 A CN 113025562A CN 202110293323 A CN202110293323 A CN 202110293323A CN 113025562 A CN113025562 A CN 113025562A
Authority
CN
China
Prior art keywords
reprogramming
medium
days
cells
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110293323.4A
Other languages
English (en)
Other versions
CN113025562B (zh
Inventor
祝赛勇
王卫云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202110293323.4A priority Critical patent/CN113025562B/zh
Publication of CN113025562A publication Critical patent/CN113025562A/zh
Application granted granted Critical
Publication of CN113025562B publication Critical patent/CN113025562B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0656Adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases [EC 2.]
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Rheumatology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Transplantation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种R406在促进体细胞重编程中的应用、其重编程培养基及方法。其中,R406的分子式为
Figure DDA0002982079640000011
在实际应用时,可以将R406配置成一种重编程培养基进行应用,即向基础培养基中添加SYK抑制剂R406来制备得到重编程培养基。本发明的R406通过抑制Syk‑Cn‑NFAT信号通路,减弱NFATc1对甘氨酸、丝氨酸和苏氨酸代谢相关基因的直接结合,从而促进这些基因表达,提高了甘氨酸、丝氨酸和苏氨酸代谢以及下游半胱氨酸代谢途径中代谢产物的含量,增加细胞内H2S水平。细胞内积累的H2S从而调控了线粒体氧化磷酸化活性和氧化还原稳态,最终促进了化学重编程。

Description

R406在促进体细胞重编程中的应用、其重编程培养基及方法
技术领域
本发明属于体细胞重编程领域,具体涉及一种R406在促进体细胞重编程中的应用、其重编程培养基及方法。
背景技术
干细胞目前可以通过以下几种方式获得:
1)从囊胚中分离。胚胎干细胞(Embryonic stem cells,ESCs)来源于胚胎发育囊胚时期的内细胞团,具有多能性,并且可以无限增殖,是研究自我更新、发育和疾病的有力工具。但胚胎干细胞的获取涉及伦理问题,并且在进行临床应用时存在免疫排斥问题。
2)核移植。将体细胞的细胞核移植到去核卵母细胞中,可消除体细胞特征并有发育为完整个体的潜能。但该技术操作困难,并且也涉及到伦理问题。
3)细胞融合。将体细胞和干细胞融合得到的杂交细胞可消除体细胞特征,获得多能细胞的生化和发育特性。可用于研究遗传互补和寻找使体细胞发生重编程的因子。但该方法得到的细胞不是正常染色体细胞,不能用于临床应用。
4)转录因子诱导的体细胞重编程。重编程是指通过一定的手段使已经分化的细胞恢复到具有分化能力的干细胞的状态。体细胞中转入转录因子(Oct4,Sox2,Klf4和c-Myc)使体细胞发生重编程从而诱导产生多能干细胞(Induced pluripotent stem cells,iPSCs)。该方法得到的细胞可来源于患者本身,因此在临床应用时不会发生免疫排斥,并且不涉及伦理问题。但在重编程过程中细胞的基因组整合了外源基因,临床应用有成瘤的风险。
5)小分子诱导的体细胞重编程(化学重编程)。体细胞培养时加入小分子化合物,将体细胞诱导为多能干细胞。这种方法得到的干细胞可来源于患者本身的体细胞,排除免疫排斥和伦理问题;并且没有外源基因的插入,临床应用更加安全。但该方法目前效率低、耗时久并且分子机制尚不明确,限制了干细胞的临床应用。
因此寻找新的小分子来提高重编程效率、揭示其中的机制,对iPSCs的临床应用非常有必要。
发明内容
本发明的目的在于克服现有技术中的缺陷,并提供一种R406在促进体细胞重编程中的应用、其重编程培养基及方法。
本发明所采用的具体技术方案如下:
第一方面,本发明提供了一种R406在促进体细胞重编程中的应用,其中,R406的分子式为
Figure BDA0002982079620000021
作为第一方面的优选,所述体细胞为小鼠胚胎成纤维细胞。
第二方面,本发明提供了一种用于促进体细胞重编程的重编程培养基,其由基础培养基中添加SYK抑制剂R406制成。
作为第二方面的优选,所述重编程培养基中R406的浓度为1μM。其中,基础培养基和R406的混合体积比为1000:1。
作为第二方面的优选,所述基础培养基包括78%DMEM,10%KSR,10%FBS,1%NEAA,1%P/S,0.055mMβ-ME,20ng/mL bFGF,0.5mM VPA,20μM CHIR99021,10μM 616452,5μMParnate,50μM Forskolin,0.5μM AM580,5μM EPZ004777和250μM vitamin C(记为优选方式A)。
作为第二方面的优选,所述基础培养基包括78%DMEM,10%KSR,10%FBS,1%NEAA,1%P/S,0.055mMβ-ME和1,000U/mL mLIF,2μg/mL强力霉素(记为优选方式B)。
第三方面,本发明提供了一种利用重编程培养基促进体细胞重编程的方法,其步骤具体如下:
1)在MEF培养基中接种待重编程的体细胞;
2)在MEF培养基中培养体细胞1天后,将MEF培养基更换为根据优选方式A所述的重编程培养基;
3)每4天更换一次新的所述重编程培养基,连续培养12天;
4)在体细胞培养重编程的第12天,将所述重编程培养基更换为Stage 2培养基;
5)每4天更换一次新的所述Stage 2培养基,连续培养12天;
6)在体细胞培养重编程的第24天,将所述Stage 2培养更换为Stage 3培养基;
7)每4天更换一次新的所述Stage 3培养基,连续培养12~16天,完成体细胞的重编程培养过程。
作为第三方面的优选,所述Stage 2培养基包含78%DMEM,10%KSR,10%FBS,1%NEAA,1%P/S,0.055mMβ-ME,20ng/mL bFGF,0.5mM VPA,10μM CHIR99021,10μM 616452,5μMParnate,10μM Forskolin,0.5μM AM580,0.05μM DZNep,0.5μM 5-aza-dC,5μM SGC0946和250μM Vc。
作为第三方面的优选,所述Stage 3培养基包括47%DMEM/F12,47%Neurobasal培养基,1×N2 supplement,1×B27 supplement,1%NEAA,1%P/S,0.055mMβ-ME,1,000U/mLLIF,3μM CHIR99021和0.2μM PD0325901。
第四方面,本发明提供了一种利用重编程培养基促进体细胞重编程的方法,其步骤具体如下:
1)将待重编程的体细胞进行慢病毒转染,所述慢病毒表达Oct4,Sox2,Klf4和c-Myc基因;
2)将转染后的体细胞传代培养;
3)将传代培养后的体细胞置于根据优选方式B所述的重编程培养基中,每4天更换一次新的所述重编程培养基,连续培养8天,完成体细胞的重编程培养过程。
本发明相对于现有技术而言,具有以下有益效果:
1)本发明的R406小分子化合物可以显著提高化学重编程的效率,促进诱导多能干细胞(iPSCs)的应用。
2)本发明通过R406小分子化合物,建立了Syk-Cn-NFAT信号通路与甘氨酸、丝氨酸和苏氨酸代谢的联系,揭示了重编程新的机制,有望给免疫方向和代谢方向的研究带来新的研究思路。
3)本发明的R406通过抑制Syk-Cn-NFAT信号通路,减弱NFATc1对甘氨酸、丝氨酸和苏氨酸代谢相关基因的直接结合,从而促进这些基因表达,提高了甘氨酸、丝氨酸和苏氨酸代谢以及下游半胱氨酸代谢途径中代谢产物的含量,增加细胞内H2S水平。细胞内积累的H2S从而调控了线粒体氧化磷酸化活性和氧化还原稳态,最终促进了化学重编程。
附图说明
图1为R406、R788和Lenvatinib的重编程效率比较图;
图2为R406的最佳使用浓度探究结果图;
图3为R406的最佳处理时间探究结果图;
图4为Syk-Cn-NFAT信号通路示意图;
图5为通过质谱法检测R406促进细胞内H2S含量增加的结果图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步阐述和说明。。本发明中各个实施方式的技术特征在没有相互冲突的前提下,均可进行相应组合。
本发明提供了一种小分子化合物R406在促进体细胞重编程中的应用,通过研究发现,R406能够有效促进包括小鼠胚胎成纤维细胞在内的体细胞重编程。
其中,R406的分子式为
Figure BDA0002982079620000041
在实际应用时,可以将R406配置成一种重编程培养基进行应用,即向基础培养基中添加SYK抑制剂R406来制备得到重编程培养基。基础培养基可以采用市面上销售的各种组分的用于培养体细胞重编程的基础培养基,也可以采用自行配置的基础培养基组分。其中,基础培养基和R406的混合体积比为1000:1,两者混合后得到的重编程培养基中,R406的浓度为1μM。
实施例1
化学重编程系统包括三个阶段:Stage 1,Stage 2和Stage 3。具体的,Stage1结束后,细胞开始表达重编程早期阶段标志性基因,如Sall4;Stage 2结束后,细胞开始表达干细胞标志基因,如Oct4;Stage 3结束后,形成成熟的干细胞。因此,依次在不同的培养基(Stage 1培养基,Stage 2培养基和Stage 3培养基)中培养体细胞,以期寻找促进化学重编程的小分子。每个阶段经历12天,总共耗时36~40天。
其中,Stage 1培养基包括78%DMEM,10%KSR,10%FBS,1%NEAA,1%P/S,0.055mMβ-ME,20ng/mL bFGF,0.5mM VPA,20μM CHIR99021,10μM 616452,5μM Parnate,50μMForskolin,0.5μM AM580,5μM EPZ004777和250μM vitamin C(Vc);Stage 2培养基包含78%DMEM,10%KSR,10%FBS,1%NEAA,1%P/S,0.055mMβ-ME,20ng/mL bFGF,0.5mM VPA,10μM CHIR99021,10μM 616452,5μM Parnate,10μM Forskolin,0.5μM AM580,0.05μM DZNep,0.5μM 5-aza-dC,5μM SGC0946和250μM Vc;Stage 3培养基包括47%DMEM/F12,47%Neurobasal培养基,1×N2 supplement,1×B27supplement,1%NEAA,1%P/S,0.055mMβ-ME,1,000U/mL LIF,3μM CHIR99021和0.2μM PD0325901。
在重编程Stage 1阶段进行小分子筛选,向细胞培养板中每个孔加入不同的小分子化合物(以DMSO试剂为对照),一直到第12天;随后细胞正常经历第二阶段,第二阶段结束后对Oct4-GFP阳性克隆计数,将每个孔的克隆数和DMSO孔进行比较来判断小分子化合物对重编程的促进作用。结果鉴定出三个促进化学重编程最有效的小分子化合物(即R406、R788和Lenvatinib),即这三个小分子化合物可以显著增加GFP阳性的克隆数量。其中,R406和R788均为Syk的抑制剂,Lenvatinib是VEGFR的抑制剂。
随后通过实验进一步发现,在R406、R788和Lenvatinib中,R406对重编程的促进效果最明显,可将重编程的效率提高5~6倍,如图1所示。
也就是说,我们发现了一种利用重编程培养基促进体细胞重编程的方法,步骤具体如下:
1)一个培养板中接种4×105MEFs细胞,在MEF培养基中培养过夜。
2)一天后,MEF培养基更换为Stage 1培养基并添加1μM R406,得到R406浓度为1μM的重编程培养基。
3)每4天更换一次培养基,连续培养12天。
4)重编程第12天,Stage 1培养基更换为Stage 2培养基。
5)每4天更换一次培养基,连续培养12天。
6)重编程第24天,Stage 2培养基更换为Stage 3培养基。
7)每4天更换一次培养基,连续培养12-16天。
8)在重编程结束后,挑取iPSC单克隆并进行扩增,得到稳定的iPSC细胞系。
因此,我们接下来详细地研究了R406在化学重编程过程中的作用和机理,具体见实施例2~11。
实施例2
通过浓度梯度测试,发现1μM是R406使用的最佳浓度(如图2所示);另外,我们也证实了R406促进典型的早期多能基因Sall4的表达,并特异性在重编程早期阶段起作用(图3所示)。上述实验结果表明,R406的作用是阶段特异性的,且最佳使用时间是重编程早期阶段(d0-d12),最佳作用浓度是1μM。
实施例3
由于Sall4,Cdh1,Epcam和Esrrb是干细胞标志基因,其中Cdh1和Epcam也是间充质-上皮细胞转化(MET)的标志基因。为了进一步验证R406对重编程的促进作用,我们做了实时荧光定量PCR(RT-qPCR)实验检测这些基因的表达情况。结果显示,重编程早期阶段添加R406显著提高了多能基因的表达。
实施例4
看到了实施例1中R406在小鼠体细胞化学重编程中的促进效果,我们也在其他的重编程系统中检测了R406的作用。具体如下:
1)MEFs细胞种在6孔细胞板中,待密度至60%-80%,对细胞进行慢病毒(表达Oct4,Sox2,Klf4和c-Myc基因)转染,每天转染一次;
2)第二次转染24小时后,细胞传代到24孔板中,每板3×105细胞;
3)细胞过夜培养后,培养基更换为重编程培养基(包括78%DMEM,10%KSR,10%FBS,1%NEAA,1%P/S,0.055mMβ-ME和1,000U/mL mLIF),添加2μg/mL强力霉素(Dox);
4)每4天更换一次培养基,重编程第8天对GFP阳性的克隆进行计数。结果显示,R406对转录因子重编程同样有显著的促进效果,表明R406在小鼠体细胞重编程系统中有普适性。
实施例5
由于R406是Syk的抑制剂,为了证明这个小分子是通过Syk对重编程发挥作用的,我们设计了shRNA抑制Syk基因的表达,并且通过慢病毒在重编程第一阶段对细胞进行转染,第一阶段结束后对Sall4阳性的克隆进行计数来计算重编程效率。结果显示,shRNA敲低效果很好,Syk表达量降低60%以上。Syk基因表达被抑制后重编程的效率显著增加,并且重编程早期多能基因表达量显著提高。因此小分子R406对重编程的促进作用是通过Syk介导的。
实施例6
为了得到R406处理之后产生的诱导多能干细胞,我们在重编程第二阶段结束后,培养基更换为Stage3培养基,继续培养16-20天。待产生GFP阳性的多能干细胞后,挑取单克隆并进行扩增,最终拿到成熟的多能干细胞。
随后我们对多能干细胞进行免疫荧光染色,结果显示这些干细胞表达典型的多能干细胞标志因子Oct4,Sox2和Nanog。干细胞有分化为任意细胞类型的潜力,为了鉴定我们获得的干细胞的多能性,我们做了体外拟胚体分化实验。分化结束后,对细胞进行免疫荧光染色,我们观察到了Tuj1阳性的外胚层细胞,α-SMA阳性的中胚层细胞以及Foxa2阳性的内胚层细胞。我们也检测了这些多能干细胞的体内分化能力,将细胞与Metrigel混合后注射至免疫缺陷小鼠的后颈部位,一个月后,手术分离出畸胎瘤。我们观察到了畸胎瘤中包含外胚层,中胚层和内胚层的组织,这表明我们的细胞是有多能型的。另外这些多能干细胞也可成功产生嵌合小鼠,说明这些细胞有体内发育的潜能。以上数据表明,我们得到的诱导多能干细胞具有多能性。
实施例7
Calcineurin(Cn)-Nuclear factor of activated T cells(NFAT)是Syk常见的下游通路,并且Syk和Cn-NFAT信号通路在免疫系统中发挥着重要的作用。为了验证R406是否通过该通路影响重编程,我们首先检测了Cn的小分子抑制剂FK506的作用。结果表明FK506对重编程也有显著的促进作用,并且与R406一致,其作用时期同样是Stage 1。我们也设计了shRNA对Cn的一个编码基因Ppp3ca和NFAT的一个成员Nfatc1进行敲低,结果显示这两个基因的敲低同样显著提高重编程效率。因此我们证实了R406是通过Syk-Cn-NFAT信号通路对重编程发挥作用的,如图4所示。
实施例8
为了进一步探索Syk-Cn-NFAT是通过什么方式影响重编程的,我们对R406处理后的重编程中期阶段的细胞进行了RNA-seq分析,并对R406上调的基因做了KyotoEncyclopedia of Genes and Genomes(KEGG)分析,我们可以从分析结果中看到R406上调了Glycine,Serine and threonine metabolism相关的基因,这些基因包括Gldc,Cbs,Tdh,Shmt1,Cth和Gcat等。我们也设计了shRNA敲低基因Gldc,结果显示Gldc的敲低显著抑制了化学重编程。
之前没有研究报道过Syk-Cn-NFAT信号通路对Glycine,Serine and threoninemetabolism的调控作用,因此我们接下来研究该代谢通路是否受Syk-Cn-NFAT信号的直接调控作用。NFAT是核因子,在活化后可以结合在基因的启动子区域并对基因的表达进行调控,因此我们猜测R406通过NFAT对Glycine,Serine and threonine metabolism相关基因的表达进行直接的调控。为了验证这个猜测,我们做了Cleavage Under Target&Tagmentation(CUT&Tag)分析,探索NFAT对基因的直接调控。分析结果显示NFATc1直接结合在Glycine,Serine and threonine metabolism重要基因的启动子区域(包括Gldc,Cbs和Tdh),并且R406的加入抑制了NFATc1的结合作用。因此这部分的结果表明,R406通过Syk-Cn-NFAT对Glycine,Serine and threonine metabolism相关基因进行直接的调控作用,并且对重编程产生影响。
实施例9
在确定了R406对Glycine,Serine and threonine metabolism相关基因的调控作用后,我们猜测R406也会影响该通路代谢产物的含量。为了验证这一猜测,我们做了代谢组学分析,分析结果显示,R406改变了细胞的代谢方式。我们从差异代谢产物的KEGG分析中看到了Cysteine and methionine metabolism,并且R406处理后含量提高的代谢产物中包含Glycine,Cystathionine和Cystine,三者都是Glycine,Serine and threoninemetabolism及下游通路的代谢产物。因此,我们的代谢结果表明R406提高Glycine,Serineand threonine metabolism代谢产物的含量。
实施例10
S-adenosyl-methionine(SAM)是Glycine,Serine and threonine metabolism的其中一个代谢产物,并且是细胞内DNA和组蛋白甲基化的主要供体,因此我们猜测R406或许通过影响SAM的含量从而影响细胞内表观修饰水平,进而影响重编程效率。为了验证这一猜测,我们也检测了SAM的含量,但结果表明SAM含量没有显著改变,虽然下游产物SAH有略微下降,但SAH/SAM比例没有改变。因此R406没有影响细胞内SAM含量,更不会因此影响细胞重编程过程中的表观修饰。谷胱甘肽GSH是Glycine,Serine and threonine metabolism下游Cysteine metabolism的代谢产物,也是维持细胞内氧化还原稳态的重要物质,因此我们猜测R406会不会通过上游信号通路提高了GSH的含量,从而影响的重编程效率呢?为了验证该猜测,我们使用试剂盒检测了R406处理后细胞内还原型和氧化型谷胱甘肽的含量(GSH和GSSG)并计算了比例,结果显示R406不仅没有提高GSH的含量,反而使其降低,并且没有影响GSH/GSSG的比例。
这一结果令我们意外,因此我们再次寻找其他的可能性。硫化氢(H2S)是Cysteinemetabolism的另一个重要的代谢产物,并且目前也有很多报道证实了其作为重要的气体信号分子对多种生理过程起重要的调控作用。另外,从RNA-seq的结果中我们也可以看到R406提高了两个促进H2S产生的重要的酶(Cbs和Cth)的表达量。R406是否会影响H2S的产量从而影响重编程呢?我们接下来检测了R406处理后细胞内H2S的含量,令人惊喜的是,结果显示R406的确会显著提高H2S的产量(图5)。为了测试H2S对重编程的作用,我们排除了R406的作用,应用现有能够促进细胞内H2S含量的实验手段(如采用能够促进H2S产生的化合物NAC或者使Cbs基因过表达等等),对H2S促进重编程的作用进行了探究,结果表明,R406确实通过提高H2S的含量从而调控化学重编程。
实施例11
研究表明,高浓度的H2S和氧气竞争性的与线粒体复合物Ⅳ结合,从而抑制线粒体氧化磷酸化(OXPHOS)活性。为了检测在重编程过程中H2S的变化对氧化磷酸化的影响,我们检测了细胞氧气消耗速率(OCR)。结果显示,R406处理之后,OCR水平显著被抑制,同样地使用HA/NAC处理之后,OCR水平有了显著的提高/降低。因此我们的结果表明R406通过提高细胞内H2S的含量而影响氧化磷酸化水平。细胞内的活性氧ROS主要通过氧化磷酸化产生,因此接下来我们使用试剂盒检测了小分子处理后ROS水平。结果与氧化磷酸化变化趋势抑制,R406和NAC抑制了ROS产生,而HA显著提高ROS含量。细胞内脂质过氧化是氧化压力的标志,可用malondialdehyde(MDA,丙二醛)水平进行衡量,我们检测了化学重编程细胞内MDA水平,结果显示HA、NAC和R406对MDA的影响趋势与活性氧一致。因此,这部分结果表明R406及其下游产生的H2S可在化学重编程过程中调控氧化还原稳态。
因此,通过以上所有的实验数据,我们发现:Syk抑制剂R406通过抑制Syk-Cn-NFAT信号通路,减弱NFATc1对甘氨酸、丝氨酸和苏氨酸代谢相关基因的直接结合作用,从而促进这些基因表达,提高了甘氨酸、丝氨酸和苏氨酸代谢以及下游半胱氨酸代谢途径中代谢产物的含量,增加细胞内H2S水平。细胞内积累的H2S从而调控了线粒体氧化磷酸化活性和氧化还原稳态,最终促进了化学重编程。
以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (10)

1.一种R406在促进体细胞重编程中的应用,其中,R406的分子式为
Figure FDA0002982079610000011
2.根据权利要求1所述一种R406在促进体细胞重编程中的应用,其特征在于,所述体细胞为小鼠胚胎成纤维细胞。
3.一种用于促进体细胞重编程的重编程培养基,其特征在于,由基础培养基中添加SYK抑制剂R406制成。
4.根据权利要求3所述的重编程培养基,其特征在于,所述重编程培养基中R406的浓度为1μM。
5.根据权利要求3或4所述的重编程培养基,其特征在于,所述基础培养基包括78%DMEM,10%KSR,10%FBS,1%NEAA,1%P/S,0.055mMβ-ME,20ng/mL bFGF,0.5mM VPA,20μMCHIR99021,10μM 616452,5μM Parnate,50μM Forskolin,0.5μM AM580,5μM EPZ004777和250μM vitamin C。
6.根据权利要求3或4所述的重编程培养基,其特征在于,所述基础培养基包括78%DMEM,10%KSR,10%FBS,1%NEAA,1%P/S,0.055mMβ-ME和1,000U/mL mLIF,2μg/mL强力霉素。
7.一种利用重编程培养基促进体细胞重编程的方法,其特征在于,步骤具体如下:
1)在MEF培养基中接种待重编程的体细胞;
2)在MEF培养基中培养体细胞1天后,将MEF培养基更换为根据权利要求5所述的重编程培养基;
3)每4天更换一次新的所述重编程培养基,连续培养12天;
4)在体细胞培养重编程的第12天,将所述重编程培养基更换为Stage 2培养基;
5)每4天更换一次新的所述Stage 2培养基,连续培养12天;
6)在体细胞培养重编程的第24天,将所述Stage 2培养更换为Stage 3培养基;
7)每4天更换一次新的所述Stage 3培养基,连续培养12~16天,完成体细胞的重编程培养过程。
8.根据权利要求7所述一种利用重编程培养基促进体细胞重编程的方法,其特征在于,所述Stage 2培养基包含78%DMEM,10%KSR,10%FBS,1%NEAA,1%P/S,0.055mMβ-ME,20ng/mL bFGF,0.5mM VPA,10μM CHIR99021,10μM 616452,5μM Parnate,10μM Forskolin,0.5μM AM580,0.05μM DZNep,0.5μM 5-aza-dC,5μM SGC0946和250μM Vc。
9.根据权利要求7所述一种利用重编程培养基促进体细胞重编程的方法,其特征在于,所述Stage 3培养基包括47%DMEM/F12,47%Neurobasal培养基,1×N2 supplement,1×B27 supplement,1%NEAA,1%P/S,0.055mMβ-ME,1,000U/mL LIF,3μM CHIR99021和0.2μMPD0325901。
10.一种利用重编程培养基促进体细胞重编程的方法,其特征在于,步骤具体如下:
1)将待重编程的体细胞进行慢病毒转染,所述慢病毒表达Oct4,Sox2,Klf4和c-Myc基因;
2)将转染后的体细胞传代培养;
3)将传代培养后的体细胞置于根据权利要求6所述的重编程培养基中,每4天更换一次新的所述重编程培养基,连续培养8天,完成体细胞的重编程培养过程。
CN202110293323.4A 2021-03-18 2021-03-18 R406在促进体细胞重编程中的应用、其重编程培养基及方法 Active CN113025562B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110293323.4A CN113025562B (zh) 2021-03-18 2021-03-18 R406在促进体细胞重编程中的应用、其重编程培养基及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110293323.4A CN113025562B (zh) 2021-03-18 2021-03-18 R406在促进体细胞重编程中的应用、其重编程培养基及方法

Publications (2)

Publication Number Publication Date
CN113025562A true CN113025562A (zh) 2021-06-25
CN113025562B CN113025562B (zh) 2022-11-29

Family

ID=76471676

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110293323.4A Active CN113025562B (zh) 2021-03-18 2021-03-18 R406在促进体细胞重编程中的应用、其重编程培养基及方法

Country Status (1)

Country Link
CN (1) CN113025562B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423721A (zh) * 2018-05-01 2019-11-08 云南济慈再生医学研究院有限公司 一种年轻化的修复型成纤维细胞的制备方法及其应用
CN115044619A (zh) * 2022-05-25 2022-09-13 郑州大学第一附属医院 一种全身诱导性Ppp3ca基因敲除鼠模型的构建方法
CN115369077A (zh) * 2022-07-29 2022-11-22 佛山市中科律动生物科技有限公司 Meflc细胞株及其构建方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013142328A1 (en) * 2012-03-23 2013-09-26 The Trustees Of The University Of Pensylvania Small molecule antagonists of pf4 containing ultra large complexes
CN103667349A (zh) * 2013-11-15 2014-03-26 安徽农业大学 一种高效获取猪诱导性多能干细胞的方法
CN108934168A (zh) * 2015-11-30 2018-12-04 北昊干细胞与再生医学研究院有限公司 用于将非多能细胞重编程为多能干细胞的改进方法
CN110499293A (zh) * 2019-07-23 2019-11-26 张文胜 用于提高多能干细胞重编程效率的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013142328A1 (en) * 2012-03-23 2013-09-26 The Trustees Of The University Of Pensylvania Small molecule antagonists of pf4 containing ultra large complexes
CN103667349A (zh) * 2013-11-15 2014-03-26 安徽农业大学 一种高效获取猪诱导性多能干细胞的方法
CN108934168A (zh) * 2015-11-30 2018-12-04 北昊干细胞与再生医学研究院有限公司 用于将非多能细胞重编程为多能干细胞的改进方法
CN110499293A (zh) * 2019-07-23 2019-11-26 张文胜 用于提高多能干细胞重编程效率的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
SYLVIA BRASELMANN等: "R406, an Orally Available Spleen Tyrosine Kinase Inhibitor Blocks Fc Receptor Signaling and Reduces Immune Complex-Mediated Inflammation", 《THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS》 *
WEIYUN WANG: "Inhibition of Syk promotes chemical reprogramming of fibroblasts via metabolic rewiring and H2S production", 《THE EMBO JOURNAL》 *
刘治威等: "小分子化合物诱导体细胞重编程为多能干细胞的研究进展", 《世界最新医学信息文摘》 *
王卫云等: "Syk抑制剂R406促进小鼠体细胞化学重编程的机制研究", 《中国博士学位论文全文数据库 (医药卫生科技辑)》 *
陈泳等: "药物生物技术小鼠胚胎成纤维细胞制备及小鼠胚胎干细胞E14TG2a的培养", 《药物生物技术》 *
高艳等: "小分子重编程体细胞为神经细胞的研究进展", 《中国组织化学与细胞化学杂志》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423721A (zh) * 2018-05-01 2019-11-08 云南济慈再生医学研究院有限公司 一种年轻化的修复型成纤维细胞的制备方法及其应用
CN110423721B (zh) * 2018-05-01 2024-02-27 云南济慈再生医学研究院有限公司 一种年轻化的修复型成纤维细胞的制备方法及其应用
CN115044619A (zh) * 2022-05-25 2022-09-13 郑州大学第一附属医院 一种全身诱导性Ppp3ca基因敲除鼠模型的构建方法
CN115044619B (zh) * 2022-05-25 2023-09-15 郑州大学第一附属医院 一种全身诱导性Ppp3ca基因敲除鼠模型的构建方法
CN115369077A (zh) * 2022-07-29 2022-11-22 佛山市中科律动生物科技有限公司 Meflc细胞株及其构建方法和应用

Also Published As

Publication number Publication date
CN113025562B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
Patterson et al. Defining the nature of human pluripotent stem cell progeny
CN113025562A (zh) R406在促进体细胞重编程中的应用、其重编程培养基及方法
US9670463B2 (en) Inhibition and enhancement of reprogramming by chromatin modifying enzymes
Miyawaki et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats
CN105316278B (zh) 用于转染细胞的方法和产品
Li et al. A kinase inhibitor screen identifies small-molecule enhancers of reprogramming and iPS cell generation
US20130040390A1 (en) Culture medium supplement and use thereof
Huang et al. JMJD3 acts in tandem with KLF4 to facilitate reprogramming to pluripotency
US9957484B2 (en) Methods for promoting cell reprogramming
JPWO2019107576A1 (ja) 始原生殖細胞/始原生殖細胞様細胞の維持増幅及び分化誘導方法
JP5843111B2 (ja) 人工多能性幹細胞の製造方法
Oburoglu et al. Glutamine metabolism regulates endothelial to hematopoietic transition and hematopoietic lineage specification
Lee et al. The role of selenium-mediated redox signaling by selenophosphate synthetase 1 (SEPHS1) in hESCs
EP2253700A1 (en) A method for producing test systems from donors suffering from adverse effects of medicaments and /or medical treatments, and uses of said systems
WO2019109666A1 (zh) 一种尿液来源细胞的培养方法
US20180371423A1 (en) Non-viral ipscs inducing method, compositions, kits and ipscs
US8759098B2 (en) Method for cloning pluripotent stem cells
Massé et al. ZFPIP/Zfp462 is involved in P19 cell pluripotency and in their neuronal fate
WO2024055043A2 (en) Minimal essential media for the culture of human induced pluripotent stem cells
JP2022534395A (ja) 細胞リプログラミングのための組成物および方法
JP6433902B2 (ja) 初期化幹細胞
US20170356005A1 (en) Non-viral ipscs inducing composition and kits
WO2014174047A1 (en) Cell-cycle directed differentiation of pluripotent cells
EP3707242A1 (en) Compounds for use in the elimination of pluripotent stem cells
CN112941019B (zh) 一种促进体细胞重编程的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant