CN113016129A - 多谐振转换器电源 - Google Patents
多谐振转换器电源 Download PDFInfo
- Publication number
- CN113016129A CN113016129A CN201980074710.XA CN201980074710A CN113016129A CN 113016129 A CN113016129 A CN 113016129A CN 201980074710 A CN201980074710 A CN 201980074710A CN 113016129 A CN113016129 A CN 113016129A
- Authority
- CN
- China
- Prior art keywords
- stage
- resonant
- voltage
- inductor
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 52
- 230000001360 synchronised effect Effects 0.000 claims description 31
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 238000002955 isolation Methods 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 238000003780 insertion Methods 0.000 claims description 2
- 230000037431 insertion Effects 0.000 claims description 2
- 238000012546 transfer Methods 0.000 description 16
- 230000015654 memory Effects 0.000 description 7
- 241001125929 Trisopterus luscus Species 0.000 description 6
- 238000007599 discharging Methods 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 210000004944 mitochondria-rich cell Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000004557 technical material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4241—Arrangements for improving power factor of AC input using a resonant converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1582—Buck-boost converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
Abstract
在一个实施例中,一种装置包括第一级和第二级,该第一级包括第一有源开关、第一谐振电感器和谐振电容器,并且该第二级包括第二有源开关、第二谐振电感器和滤波电容器。第一和第二级形成非隔离式多谐振转换器,用于将DC输入电压转换为DC输出电压。
Description
技术领域
本公开概括而言涉及电压转换器,更具体而言,涉及多谐振转换器。
背景技术
DC到DC转换器被用于将处于一个电平的DC电压转换成处于另一电平的DC电压并且将功率输送到负载。这种转换器通常包括变压器,其作为电压转换器提供从输入到输出的功率转移。变压器在大多数应用中也可提供输入和输出之间的电流隔离。在传统的谐振拓扑结构中,为了获得良好的效率,对于从输入到输出的宽电压转换范围,通常需要变压器。然而,变换器的使用由于在较高频率下的铁芯损耗而限制了开关频率,并且具有额外的缺点,例如复杂的电路、大尺寸和高成本。
附图说明
图1根据一个实施例图示了步降型多谐振转换器(MRC)的示例。
图2图示了图1中所示的MRC的操作。
图3根据一个实施例图示了高电压比率步降型MRC的示例。
图4图示了图3中所示的MRC的操作。
图5图示了在功率存储级和功率转移级中图3中所示的MRC的操作的额外细节。
图6根据一个实施例图示了了MRC步降-步升型降压-升压的示例。
图7图示了图6中所示的MRC的操作。
图8A根据一个实施例图示了MRC步升-步降型升压-降压的示例。
图8B根据一个实施例图示了MRC步升型升压-降压的示例。
图9是根据一个实施例图示出作为线路卡或架构卡上的负载点电源的MRC的实现方式的框图。
图10是图示出到隔离DC/DC转换器的AC/DC PFC(功率因数校正)MRC级中的图6的MRC拓扑结构的实现方式的示例。
图11A是图示出具有前向转换器变压器级的DC/DC隔离MRC中的图1的步降型MRC拓扑结构的实现方式的示例。
图11B是图示出具有前向转换器变压器级的DC/DC隔离MRC中的图6的步升型MRC拓扑结构的实现方式的示例。
图12A和12B是图示出具有谐振电容器的反激式PWM的隔离MRC和具有同步整流器的第二谐振开关级的实现方式的示例。
对应的附图标记在附图的若干视图中始终指示对应的部件。
具体实施方式
概述
在独立权利要求中记载本发明的各方面并且在从属权利要求中记载优选特征。一个方面的特征可被单独应用到每个方面或者与其他方面组合应用。
在一个实施例中,一种装置一般包括第一级和第二级,该第一级包括第一有源开关、第一谐振电感器和谐振电容器,该第二级包括第二有源开关、第二谐振电感器和滤波电容器。第一和第二级形成非隔离式多谐振转换器拓扑结构,用于将DC输入电压转换为DC输出电压。
非隔离式多谐振转换器可包括步降型转换器或者步升型转换器。在一个或多个实施例中,一个或两个级包括同步整流器。在一个或多个实施例中,第一和第二谐振电感器在非连续模式中以电流操作并且谐振电容器处的电压在多个周期中的每个周期上放电到零。在一个或多个实施例中,两个级都以零电流接通在非连续电流模式中操作,第一级在最大占空比时以零电流关断操作,并且第二级在半正弦转移脉冲电流的九十度时以零电流关断操作。在一个或多个实施例中,第一级被配置为使用脉冲宽度调制或频率调制来调节存储在谐振电容器上的电荷,以调节输出电压和电流。在一个或多个实施例中,第二谐振电感器包括一个抽头电感器。
在另一实施例中,一种装置一般包括用于插入到网络设备中的卡,该卡包括负载点电源,该负载点电源包括第一级和第二级,该第一级包括第一开关、第一电感器和谐振电容器,该第二级包括第二开关、第二电感器和滤波电容器。第一级包括功率调节谐振级,并且第二级包括电压转换器级,以形成非隔离式多谐振转换器。
在另外一个实施例中,一种装置一般包括负载点电源,该负载点电源包括第一级和第二级,该第一级包括第一有源开关、谐振电感器和谐振电容器,该第二级包括第二有源开关、抽头谐振电感器和滤波电容器。第一级和第二级形成非隔离式多谐振转换器,用于以具有例如48伏至1伏的大输入到输出比率的步降式电压转换或者具有例如48伏至400伏的大输入到输出比率的步升式电压转换将DC输入电压转换为DC输出电压。
通过参考说明书的其余部分和附图,可以实现对本文描述的实施例的特征和优点的进一步理解。
示例实施例
呈现以下描述来使得本领域普通技术人员能够做出和使用实施例。对具体实施例和应用的描述是仅作为示例提供的,并且对于本领域的技术人员来说各种修改都将是显而易见的。本文描述的一般原则可应用于其他应用,而不脱离实施例的范围。从而,实施例不限于示出的那些,而是要符合与本文描述的原理和特征相符的最宽范围。为了清晰起见,没有详细描述与实施例相关的技术领域中已知的技术材料有关的细节。
本文描述的一个或多个实施例提供了一种双级、双开关、多谐振电压转换器,其可操作来提供宽范围(高电压转换比率)输入到输出电压、步升或步降,无需变压器以获得更高的频率,并且以更少的部件、更小的空间要求和更低的成本获得高效率。正如下文详细描述的,该拓扑结构结合了用于功率调节的谐振或准谐振第一级和作为电压转换器的第二级,从而实现了具有高效率的宽电压转换范围。在一个或多个实施例中,该拓扑结构可提供一种DC/DC非隔离电源,包括一种两级、两开关的多谐振转换器(multi-resonantconverter,MRC),在一级或两级中具有准谐振或全谐振操作,在上转换或下转换的宽电压比率上以高效率提供电压转换。
本文描述的实施例以更少的组件提供更高的频率和效率,以实现高功率密度。在一个或多个实施例中,以软开关谐振或准谐振充电和放电级提供了更高的效率,并且在没有步降或步升转换器的高电压比率转换通常所需要的变压器的情况下提供了更高的频率。大多数相位中的软开关提供了高效率和开关和组件上的更低应力。
如前所述,一个或多个实施例作为下转换器或上转换器提供大的电压转换比率,而没有变压器或者性能损失。从而,高电压比率步降或步升转换器可以利用本文描述的实施例来实现,而不需要变压器。通过消除为了宽电压转换对变压器的需要,可以用更小的尺寸封装和更高的效率使用非常高的频率。在一个或多个实施例中,转换器提供灵活的电压或电流调节,包括脉冲宽度调制(pulse width modulation,PWM)、频率调制(frequencymodulation,FM),或者脉冲宽度调制和频率调制两者。
现在参考附图,首先参考图1,根据一个实施例示出了多谐振转换器(MRC)电源电路的示例,一般表示为10。在图1所示的示例中,MRC10是两级、两开关谐振-降压-降压转换器(two-stage,two-switch resonant-buck-buck converter)。第一级9包括第一有源开关12(Q1)、第一谐振电感器13(LR1)、谐振电容器14(CR)和第一同步整流器15(Q2)。第二级11包括第二有源开关16(Q3)、第二谐振电感器17(LR2)、滤波电容器18(CF)和第二同步整流器19(Q4)。DC输入电压Vin(DC电压源)被转换成DC输出电压以施加在由电阻器RL表示的负载上。第一电感器LR1与第一开关Q1和谐振电容器CR串联电耦合。第二电感器LR2与第二开关Q3和滤波电容器CF串联电耦合。同步整流器Q2和Q4与电容器CR和CF并联。电阻器RL与电容器CF并联连接以形成负载。如下文详细描述的,在输入LC电荷存储级(第一级9)到输出电压转换级(第二级11)到输出电容器CF和负载RL之间提供谐振功率转移。第一和第二级形成非隔离式多谐振转换器,用于将DC输入电压转换为DC输出电压。
开关Q1和Q3和同步整流器Q2和Q4可包括能够在期望的开关频率下操作的任何适当的有源控制开关器件(有源开关),例如金属氧化物半导体场效应晶体管(Metal Oxidesemiconductor Field Effect Transistor,MOSFET)、双极结晶体管(Bipolar JunctionTransistor,BJT)、氮化镓场效应晶体管(Gallium Nitride Field Effect Transistor,GaNFET)或者固态继电器(solid state relay,SSR)。开关的闭合和打开可由耦合到开关(未示出)的控制逻辑来管理。控制逻辑可以是处理器的一部分,或者是单独的集成电路,例如脉冲宽度调制(PWM)控制器。图1所示的MRC拓扑结构的电压步降可以是例如50伏到25伏(50:25V)或者其他适当的比率。
MRC 10一般将来自输入电压Vin的能量电压电荷存储到CR,并且将该能量电荷转移到输出滤波器和负载,其功率转移函数为Pin=1/2CR VCR 2F,其中Pin是输入功率,VCR是电容峰值电压电荷,CR是谐振电容,并且F是开关频率。第一LC谐振级开关Q1在开关频率的第一个半正弦周期中用来自输入电压Vin的存储功率脉冲对谐振电容器CR进行充电,如下文对于图2所述。第二LC谐振级开关Q3随后作为电压转换器在输出滤波电容器CF和负载RL中以高频率转移谐振电容器CR中存储的功率。谐振电感器电流通常以非连续模式操作,并且谐振电容器电压以非连续电流操作在每个周期放电至最低电压零(参见图2中的VCR迹线)。这可要求将第二级放电开关占空比调整或调制在小于90度的开关周期。但是还有其他可能的控制模式,其中CR上的最低电压在每个开关周期高于或低于零,具有非连续或连续电流操作,其中第二级放电开关占空比可被调整到大于或小于90度开关周期,并且同步整流器可被消除。
要理解图1所示的MRC电源拓扑结构只是一个示例,在不脱离实施例的范围的情况下,可以对电路进行修改。例如,同步整流器Q2、Q4中的一者或两者可被移除。另外,电感器LR2可以用抽头电感器来代替,如下文对于图3所述。该电路也可被修改以提供步升转换,如下文对于图8、图10A和图10B所述。通常,CR上的最小电压在非连续电流操作的情况下在每个周期为零,但在一些控制应用中,这可要求将第二级放电开关占空比调整或调制在小于90度的开关周期。但是还有其他可能的控制模式,其中CR上的最低电压在每个开关周期高于或低于零,具有非连续或连续电流操作,其中第二级放电开关占空比可被调整到大于或小于90度开关周期,并且同步整流器可被消除。另外,在一个或多个实施例中,电路可包括输入隔离级并且输入隔离级可以是输入开关级的一部分。
图2图示了图1中所示的转换器10的步降MRC操作。图2中的Q1和Q3迹线图示了开关的通/断状态。图2中的Q1是占空比功率充电开关,并且Q3是功率转移开关。Q2和Q4是同步整流器,其中Q2仅对于Q1 Duty(0-0.5)调制是同步整流器。LR1处的电压和电流分别被示为VLR1和ILR1。LR2处的电压和电流分别被示为VLR2和ILR2。VCR图示了CR处的充电和放电。谐振电容器CR在全占空比上将充电到Vin的2倍。输入开关Q1被调制为0-50%/周期(占空比)的谐振输入充电周期,具有零电流接通开关,以通过LR1电流(ILR1)以0-2倍输入电压调制CR。
在此示例中,第一LC谐振开关级9以最大占空比为50%开关频率作为谐振半周期在具有零电流接通和零电流关断的非连续电流模式中操作(图1和2)。第一LC开关谐振级9可在0-50%占空比上使用脉冲宽度调制(PWM)来调节存储在谐振电容器CR上的电压电荷,以调节输出电压和电流。在PWM切换期间,小于最大占空比的50%将在对于第一谐振电感器使用同步整流器的情况下以中断电流关断。另一种调节输出电压和电流的方法使用低于谐振开关最大频率的频率调制(frequency modulation,FM)。也可以使用PWM和FM两者的组合。
在此示例中,第二CL谐振开关级11以零电流接通在非连续电流模式中操作,但在半正弦转移脉冲电流的90度时关断,其中同步整流器将电流钳回到输出滤波电容器CF和负载RL。第一个1/2周期的能量存储和第二个1/2周期的能量转移和电压转换在开关频率下完成一个功率周期。输出开关Q3固定为25%/周期的谐振输出放电1/2周期,具有零电流接通切换,将LR2充电电流中的能量转移到滤波电容器(输出电容器)CF和负载RL。这允许了CR中的所有能量存储被转移到输出,并且允许了CR上的电压在下一个充电周期中保持在零伏。输出电感器LR2可例如具有LR2电流(ILR2)的25%/周期线性输出放电,充电到输出电容器CF和负载RL中。
下面是图1中所示的电路和图2中所示的操作的MRC功率转移函数的示例:
Pin=1/2*CR*VCR 2*Fs
其中:
CR=谐振电容器;
VCR=电容器峰值电荷电压;并且
Fs=开关频率。
在一个示例中,输入功率被定义如下:
Pin=Vin2*.637avg*Eff*D/Rin
=Vin2*.637avg*Eff*D/Z0
其中:
Z0=(LR/CR)^.5;
LR=谐振电感器;
CR=谐振电容器;并且
D=占空比
谐振半周期=1/(2*F)=1/(π*(LR/CR)^.5)
第一级9在开关时段的第一个半周期中在谐振电容器CR中提供能量存储。这个能量代表每个周期的功率输入,并且可以通过PWM或FM来调制,如前所述,用于输出电压和电流调节。第二级11提供从谐振电容器CR到输出滤波电容器CF和负载电阻RL的能量转移。第二级11也是电压转换级,作为电压下转换器(或者如下所述的上转换器),并且由输出电阻控制。输出功率可被定义如下:
Pout=Pin*Eff
Vout=(Pout*RL)^.5
VCR=2*Vin*sin(Duty(0-1)*90°)
其中:
Duty(0-1)=TQ1_ON/0.5TFs_period
CR=Pout*max Duty(0-0.5)*Eff/(.5*VCR 2*Fs)
LR=(tR/π)2/CR)
其中tR=1/2Fs下的谐振半正弦
CF=i*1/Fs/dv
其中i=Iout;Fs=开关频率;并且
dv=Vp-p波纹
图3图示了DC/DC谐振-降压-降压高电压比率步降型MRC非隔离式电源转换器,一般表示为30。在此示例中,第二级电感器LR2被抽头电感器LR2/LD取代。LR2是功率转移电压转换器级到输出滤波电容器和负载电阻器的谐振扼流圈。LD是谐振扼流圈LR2的抽头电感器绕组,用于电流复位周期,具有在更低的输出电压下线性复位的Q4同步整流器。分离式电感器提供了高电压比率,其中LD电感远小于LR2电感,以允许LR2电流复位周期的时间更短,与Q3放电1/4周期期间LR2上的更高电压相比,LD上的输出电压非常低。在一个示例中,图3所示的DC/DC步降MRC 30以高效率提供了48伏到1伏的比率(48:1V),50:5V,或者任何其他适当的步降POL转换器高电压比率。
图4图示了图3中所示的转换器10的步降MRC操作。图4中的Q1和Q3迹线图示了开关的通/断状态。图2中的Q1是占空比功率充电,并且Q3是功率转移。Q2和Q4是同步整流器,其中Q2仅对于Q1 Duty(0-0.5)调制是同步整流器。对于LR1分别在VLR1和ILR1示出了电压和电流。对于LR2示出了电流,相对于同步整流器Q4在ILr2并且对于LD在ILD。VCR图示了CR处的充电和放电。
功率和电压的计算可如先前对于图1所描述。LD可被定义如下:
LD=e*1.5tR*.5/di
其中:
e=Vout;
di=Iout/(Duty(0-.25)*0.5,对于平均值)
图5图示了图3所示的MRC电源拓扑结构中的功率存储和电压转换级,在第一个1/2周期中占空比为0-100%。模式1和模式2构成了谐振电荷功率存储级。模式1说明了电源存储占空比最大周期,Vin通过Q1进入LR1/CR以便充电ILR1。模式2涵盖了同步整流器Q2在占空比之后将ILR1放电至CR的功率存储最大周期。模式3和模式4构成了功率转移到电压转换级。模式3说明了CR通过Q3向LR2/CF的谐振放电,以便充电ILR2。模式4示出了LR2/LD的线性放电,通过同步整流器Q4放电ILR2。
如先前所述,MRC还可包括步升型转换器。图6图示了DC/DC MRC双开关、双级谐振-降压-升压步降-步升电源的示例,该电源可用作电压步升或步降转换器,一般表示为80。这个拓扑结构允许了简单的高效率步升电压转换,具有较高的电压输入输出比率,如48:400V、50:400V或者其他适当的比率(例如,至少48:400V)。在图6所示的示例中,第一级包括第一开关82(Q1)、第一谐振电感器83(LR1)和谐振电容器84(CR)。第二级包括第二谐振电感器87(LR2)、第二开关86(Q3)和滤波电容器88(CF)。在此示例中,每一级还包括同步整流器85(Q2)、89(Q4)。
图7图示了图6中所示的两级、两开关步升型示例MRC 80的操作。开关的通/断周期被示出在Q1和Q3。Q1是占空比功率充电,并且Q3是功率转移。Q2和Q4是同步整流器,其中Q2仅对于Q1占空比0-50%调制是同步整流器。
开关Q1和电感器LR1之间的电压和电流分别示出在VLR1和ILR1。CR的充电和放电电压被示出在VCR。LR2处的电压被示出在VLR2。LR2和Q3之间的电流被示出在ILR2/IQ3并且ILR2和Q4之间的电流被示出在ILR2/IQ4。
下面是图6中所示的电路和图7中所示的相应操作的示例功率转移函数描述。
Vout=(Pout*RL)^.5
Pout=Pin*Eff=.5*CR*VCR 2*Fs*Eff
VCR=2*Vin*sin(Duty(0-1)*90°)
其中:
Duty(0-1)=TQ1_ON/0.5TFs_period
CR=Pout*Duty*Eff/(.5*VCR 2*Fs)
LR1=(tR/pi)2/CR)
其中:
tR=1/2Fs下的谐振半正弦
LR2=e*(1.5tR*.5)/di
其中:
e=Vout;并且
di=Iout/(Duty*0.5,对于平均值)
CF=i*1/Fs/dv
其中:
i=Iout;
Fs=开关频率;并且
dv=Vp-p波纹
具有两个开关和两个同步整流器的DC/DC谐振-升压-降压步升-步降型MRC非隔离(未隔离)电压转换器的另一个示例在图8A中示出,并且一般表示为100,其可被用作电压步升或步降转换器。电路100包括谐振电感器103(LR1)、107(LR2)、谐振电容器104(CR)、滤波电容器108(CF)、开关105(Q1)和106(Q3)以及同步整流器102(Q2)和109(Q4)。MRC 100被配置为提供更高的存储电荷电压。一般表示为101的MRC步升型升压-升压的示例在图8B中示出。如图8B中所示,第二级中的组件已被修改以从降压变成升压。
在一个或多个实施例中,根据本文描述的实施例之一的POL转换器110可用于替代线卡或架构卡112上的传统IBC(Intermediate-Bus-Converter,中间总线转换器)和POL转换器,如图9中所示。在一个示例中,POL转换器110可用于利用48:1V POL替代标准的48:12/10V IBC加12/10V:1V POL转换器,同时提供高效率、小尺寸、低成本的封装,并且消除了变压器的尺寸和频率限制。在图9所示的示例中,POL 110从PSU(Power Supply Unit,电源单元)114接收电力,并且向一个或多个处理器(例如,ASIC(专用集成电路))、存储器或其他芯片或设备116提供电力。
要理解的是,图9所示的实现方式只是一个示例,POL可用于任何类型的板或系统类型和电源应用上,包括例如LED、激光、电池充电器、电机、风扇,等等。
本文描述的实施例可例如实现在板装电源(Board Mounted Power,BMP)POL电源、BMP IBC电源、前端电源(Front End Power,FEP)功率因数转换器(PFC)电源部分、LLC型谐振电源转换器、高压倍增器、降压、升压、正激、多相级或者任何其他适当的应用中。
在图10所示的一个示例中,图6的MRC拓扑结构可被包含来用于AC/DC非隔离PFC(功率因数校正)MRC级到隔离DC/DC转换器中,一般表示为120。该电路可包括例如AC输入整流器到MRC两级降压-升压两开关两同步整流器示例,作为步升转换器级到隔离DC/DC转换器级。在图10所示的示例中,电路包括具有大CF1电容的PFC级,为线路掉电时间保护提供体电压能量存储,并具有输出功率穿越时间。另外,PFC MRC不提供浪涌电流,因此不需要软启动电路。可以使用任何体电压,并且开关Q1和输入桥式整流器可以用无桥式PFC整流器和第一级开关电路来替代。CR峰值电压可以充电到最大峰值输入线电压的2倍,并且需要低于CF1上的最小体电压,以便通过输入AC波形提供良好的PFC。CR上的最小电压需要在每个开关周期为零,以便通过每个正弦波半周期提供最佳PFC,这样LR1充电电流就可以与Q1的占空比成比例地跟随整流后的输入线。这可要求第二级Q3开关来将占空比调整或调制为在整个线路整流正弦波中小于90度开关周期。PFC电源对于不同的应用可以使用MRC降压-升压、升压-降压或升压-升压转换器。
图11A、11B、12A和12B图示了示例,其中本文描述的MRC拓扑结构(例如,图1的MRC拓扑结构)可用于具有正向转换器变压器级的DC/DC隔离MRC中以形成电源电路。在一个示例中,电路130包括具有两个开关和三个同步整流器的隔离式MRC降压-降压步降-步降电压转换器(图11A)。在另一示例中,电路132形成具有两个开关和三个同步整流器的隔离式MRC谐振降压-升压步降-步升电压转换器(图11B)。图12A和12B图示了一般分别表示为140和142的示例拓扑结构,包括一种隔离式MRC,具有谐振电容器电荷的反激式PWM控制和同步整流器作为第一级到谐振降压或谐振升压第二级。
要理解的是,图10、图11A、图11B、图12A和图12B所示的电路只是示例,而本文描述的MRC拓扑结构可被包含在任何其他类型的电路或拓扑结构中,以创建其他类型的电路,用于其他应用中的实现。
本文描述的多谐振转换器(MRC)电源电路可用于任何类型的电源应用中,包括网络设备(例如,服务器、路由器、交换机、网关、控制器、边缘设备、接入设备、汇聚设备、核心节点、中间节点或其他网络设备)。该网络设备可以在包括多个网络设备的数据通信网络的情境中操作,并且可以通过一个或多个网络进行通信。
网络设备可以是以硬件、软件或其任何组合实现的可编程机器。网络设备可包括一个或多个处理器、存储器和网络接口。存储器可以是易失性存储器或非易失性存储装置,其存储各种应用、操作系统、模块和数据,供处理器执行和使用。逻辑可被编码在一个或多个有形介质中,供处理器执行。例如,处理器可执行存储在计算机可读介质(例如存储器)中的代码。计算机可读介质例如可以是电子(例如,RAM(随机存取存储器)、ROM(只读存储器)、EPROM(可擦除可编程只读存储器))、磁性、光学(例如,CD、DVD)、电磁、半导体技术或任何其他合适的介质。网络接口可包括一个或多个线路卡、架构卡、服务卡、路由器处理器卡、控制器卡、或者其他卡、元件或组件,并且POL转换器可位于一个或多个卡上。要理解的是,本文描述的网络设备只是一个示例,并且本文描述的实施例可以在不同配置的网络设备上实现。
虽然已根据示出的实施例描述了方法和装置,但本领域普通技术人员将很容易认识到,在不脱离本发明的范围的情况下,可以对实施例进行修改。因此,希望上述描述中包含的和附图中示出的所有事项应被解释为说明性的而不是限制性的。
Claims (20)
1.一种装置,包括:
第一级,该第一级包括第一有源开关、第一谐振电感器和谐振电容器;以及
第二级,该第二级包括第二有源开关、第二谐振电感器和滤波电容器;
其中所述第一级和所述第二级形成非隔离式多谐振转换器,用于将DC输入电压转换为DC输出电压。
2.如权利要求1所述的装置,其中所述非隔离式多谐振转换器包括步降电压转换器。
3.如权利要求1所述的装置,其中所述非隔离式多谐振转换器包括步升电压转换器。
4.如权利要求1至3的任何一项所述的装置,其中所述级的至少一者包括同步整流器。
5.如权利要求1至4的任何一项所述的装置,其中所述级的每一者包括同步整流器。
6.如权利要求1至5的任何一项所述的装置,其中所述第一谐振电感器和所述第二谐振电感器在非连续模式中以电流操作并且其中所述谐振电容器处的电压在多个周期中的每个周期上放电到零。
7.如权利要求1至6的任何一项所述的装置,其中所述第一谐振电感器和所述第二谐振电感器在连续模式中以电流操作并且其中所述谐振电容器处的电压在多个周期中的每个周期上放电到不为零。
8.如权利要求1至7的任何一项所述的装置,其中所述第一级和所述第二级以开关零电流接通在非连续电流模式中操作并且其中所述第一级在最大占空比时以零电流关断操作并且所述第二级以零电流接通操作。
9.如权利要求1至8的任何一项所述的装置,其中所述装置可操作来使用频率调制来调节输出电压和电流。
10.如权利要求1至9的任何一项所述的装置,其中所述第一级被配置为使用脉冲宽度调制来调节存储在所述谐振电容器上的电荷以调节输出电压和电流。
11.如权利要求1至10的任何一项所述的装置,其中所述第二谐振电感器包括抽头电感器。
12.如权利要求1至11的任何一项所述的装置,其中所述装置包括功率因数校正级。
13.如权利要求1至12的任何一项所述的装置,其中所述装置包括输入隔离级。
14.一种装置,包括:
用于插入到网络设备中的卡,所述卡包括负载点电源,所述负载点电源包括:
第一级,该第一级包括第一开关、第一电感器和谐振电容器;以及
第二级,该第二级包括第二开关、第二电感器和滤波电容器;
其中所述第一级包括功率调节谐振级,并且所述第二级包括电压转换器谐振级,以形成非隔离式多谐振转换器。
15.如权利要求14所述的装置,其中所述负载点电源消除了对于所述卡上的中间总线转换器的需要。
16.如权利要求14或15所述的装置,其中所述级的至少一者包括同步整流器。
17.如权利要求14至16的任何一项所述的装置,其中所述装置包括输入隔离级。
18.如权利要求14至17的任何一项所述的装置,其中所述第二电感器包括抽头谐振电感器。
19.如权利要求14至18的任何一项所述的装置,其中所述第一级被配置为使用脉冲宽度调制或频率调制来调节输出电压和电流。
20.一种负载点电源,包括:
第一级,该第一级包括第一有源开关、谐振电感器和谐振电容器;以及
第二级,该第二级包括第二有源开关、抽头谐振电感器和滤波电容器;
其中所述第一级和所述第二级形成非隔离式多谐振转换器,用于以步降电压转换或步升电压转换将DC输入电压转换成DC输出电压。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/191,308 | 2018-11-14 | ||
US16/191,308 US10763749B2 (en) | 2018-11-14 | 2018-11-14 | Multi-resonant converter power supply |
PCT/US2019/059632 WO2020101933A1 (en) | 2018-11-14 | 2019-11-04 | Multi-resonant converter power supply |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113016129A true CN113016129A (zh) | 2021-06-22 |
Family
ID=69159947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980074710.XA Pending CN113016129A (zh) | 2018-11-14 | 2019-11-04 | 多谐振转换器电源 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10763749B2 (zh) |
EP (1) | EP3881421A1 (zh) |
CN (1) | CN113016129A (zh) |
WO (1) | WO2020101933A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116582003A (zh) * | 2023-07-11 | 2023-08-11 | 恩赛半导体(成都)有限公司 | 零电压切换两级电源电路、电源系统和控制方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11552568B2 (en) * | 2019-03-21 | 2023-01-10 | Samsung Electronics Co., Ltd. | Switching regulator and power management unit including the same |
US11438183B2 (en) | 2020-02-25 | 2022-09-06 | Cisco Technology, Inc. | Power adapter for power supply unit |
US11582048B2 (en) | 2020-07-17 | 2023-02-14 | Cisco Technology, Inc. | Bi-directional power over ethernet for digital building applications |
US11708002B2 (en) | 2020-08-03 | 2023-07-25 | Cisco Technology, Inc. | Power distribution and communications for electric vehicle |
US11745613B2 (en) | 2020-08-26 | 2023-09-05 | Cisco Technology, Inc. | System and method for electric vehicle charging and security |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5532919A (en) * | 1993-03-30 | 1996-07-02 | Motorola, Inc. | Variable frequency, zero voltage switching, quasi-resonant converters with resonant bridge switch |
US5594635A (en) * | 1993-03-30 | 1997-01-14 | Motorola, Inc. | Constant frequency, zero-voltage-switching converters with resonant switching bridge |
CN1454407A (zh) * | 2000-09-08 | 2003-11-05 | 斯罗博丹·卡克 | 无损耗切换直流-直流转换器 |
US20040264214A1 (en) * | 2003-06-25 | 2004-12-30 | Ming Xu | Quasi-resonant DC-DC converters with reduced body diode loss |
US20060018138A1 (en) * | 2004-07-21 | 2006-01-26 | Tesshi Iwakura | Step-up/down voltage chopper |
TW201228206A (en) * | 2010-12-31 | 2012-07-01 | Univ Nat Cheng Kung | Series cascaded converter with single zero-voltage-transition auxiliary circuit |
KR101377121B1 (ko) * | 2012-12-28 | 2014-03-25 | 서울과학기술대학교 산학협력단 | 비절연 고승압 공진형 컨버터 |
US20180159430A1 (en) * | 2015-04-23 | 2018-06-07 | Danmarks Tekniske Universitet | A three-port direct current converter |
Family Cites Families (180)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3335324A (en) | 1965-10-06 | 1967-08-08 | Westinghouse Air Brake Co | Fail-safe continuous ground monitoring circuit |
EP0191482B1 (en) | 1985-02-12 | 1990-07-25 | Hitachi Metals, Ltd. | Dc-dc converter |
US5827267A (en) | 1992-02-18 | 1998-10-27 | Angeion Corporation | Cooled multi-fiber medical connector |
US5652893A (en) | 1994-12-13 | 1997-07-29 | 3Com Corporation | Switching hub intelligent power management |
US6470405B2 (en) | 1995-10-19 | 2002-10-22 | Rambus Inc. | Protocol for communication with dynamic memory |
US6931183B2 (en) | 1996-03-29 | 2005-08-16 | Dominion Lasercom, Inc. | Hybrid electro-optic cable for free space laser antennas |
US7237036B2 (en) | 1997-10-14 | 2007-06-26 | Alacritech, Inc. | Fast-path apparatus for receiving data corresponding a TCP connection |
US6220955B1 (en) | 1998-02-17 | 2001-04-24 | John G. Posa | Combination power and cooling cable |
US6826368B1 (en) | 1998-10-20 | 2004-11-30 | Lucent Technologies Inc. | Wavelength division multiplexing (WDM) with multi-frequency lasers and optical couplers |
US6259745B1 (en) | 1998-10-30 | 2001-07-10 | Broadcom Corporation | Integrated Gigabit Ethernet transmitter architecture |
US6643566B1 (en) | 1999-01-12 | 2003-11-04 | Powerdsine Ltd. | System for power delivery over data communication cabling infrastructure |
US6008631A (en) * | 1999-03-18 | 1999-12-28 | International Business Machines Corporation | Synchronous voltage converter |
US6636538B1 (en) | 1999-03-29 | 2003-10-21 | Cutting Edge Optronics, Inc. | Laser diode packaging |
US20030214800A1 (en) | 1999-07-15 | 2003-11-20 | Dibene Joseph Ted | System and method for processor power delivery and thermal management |
US6400579B2 (en) * | 2000-03-24 | 2002-06-04 | Slobodan Cuk | Lossless switching DC to DC converter with DC transformer |
JP3830726B2 (ja) | 2000-04-26 | 2006-10-11 | 松下電器産業株式会社 | 熱伝導基板とその製造方法およびパワーモジュール |
US6734784B1 (en) | 2000-09-06 | 2004-05-11 | Marshall E. Lester | Zero crossing based powerline pulse position modulated communication system |
USRE40866E1 (en) | 2000-09-27 | 2009-08-04 | Huron Ip Llc | System, method, and architecture for dynamic server power management and dynamic workload management for multiserver environment |
CN1209880C (zh) | 2001-11-30 | 2005-07-06 | 王德清 | 一种集电力、电信、电视和互联网于一体的宽带接入传输网 |
US6685364B1 (en) | 2001-12-05 | 2004-02-03 | International Business Machines Corporation | Enhanced folded flexible cable packaging for use in optical transceivers |
US7358745B1 (en) | 2002-06-07 | 2008-04-15 | Marvell International Ltd. | Cable tester |
US6855881B2 (en) | 2002-06-26 | 2005-02-15 | Bahman Khoshnood | Combined communication and power cable with air cooling for network systems |
JP3782407B2 (ja) | 2002-08-06 | 2006-06-07 | ズン−クック,チェ | 波長分割多重方式手動型光加入者網システム(wavelengthdivisionmultiplexing−passiveopticalnetwork) |
US6851960B2 (en) | 2002-08-29 | 2005-02-08 | Dell Products L.P. | AC adapter connector assembly |
US7492059B2 (en) | 2003-10-16 | 2009-02-17 | Microsemi Corp.—Analog Mixed Signal Group Ltd. | High power architecture for power over ethernet |
US7583703B2 (en) | 2003-10-23 | 2009-09-01 | Cisco Technology Inc. | System and method for power injection and out of band communications on shared medium |
US6976885B2 (en) | 2004-03-02 | 2005-12-20 | Mobility Electronics, Inc. | Keyed universal power tip and power source connectors |
US7212419B2 (en) | 2004-02-24 | 2007-05-01 | Vlt, Inc. | Adaptively configured and autoranging voltage transformation module arrays |
US7603570B2 (en) | 2004-05-13 | 2009-10-13 | Cisco Technology, Inc. | Power delivery over ethernet cables |
WO2006000238A1 (en) | 2004-06-24 | 2006-01-05 | Molex Incorporated | Jack connector assembly having circuitry components integrated for providing poe-functionality |
US7056149B1 (en) | 2004-11-12 | 2006-06-06 | Comarco Wireless Technologies, Inc. | Key coded power adapter connectors |
US7509505B2 (en) | 2005-01-04 | 2009-03-24 | Cisco Technology, Inc. | Method and system for managing power delivery for power over Ethernet systems |
US7263245B2 (en) | 2005-03-14 | 2007-08-28 | The Boeing Company | Method and apparatus for optically powering and multiplexing distributed fiber optic sensors |
US7474704B2 (en) | 2005-03-16 | 2009-01-06 | Cisco Technology, Inc. | Method and apparatus for current sharing ethernet power across four conductor pairs |
US8184525B2 (en) | 2005-05-25 | 2012-05-22 | Cisco Technology, Inc. | Method and apparatus for detecting and fixing faults in an inline-power capable ethernet system |
US7593747B1 (en) | 2005-07-01 | 2009-09-22 | Cisco Technology, Inc. | Techniques for controlling delivery of power to a remotely powerable device based on temperature |
US9189036B2 (en) | 2005-08-19 | 2015-11-17 | Akros Silicon, Inc. | Ethernet module |
US7940787B2 (en) | 2005-08-30 | 2011-05-10 | Cisco Technology, Inc. | Low-power ethernet device |
US7265555B2 (en) | 2005-11-09 | 2007-09-04 | Douglas William Batten | Loop impedance meter |
WO2007084496A2 (en) | 2006-01-17 | 2007-07-26 | Broadcom Corporation | Power over ethernet controller integrated circuit architecture |
US7560825B2 (en) | 2006-04-11 | 2009-07-14 | Akros Silicon, Inc. | Network devices for separating power and data signals |
US7490251B2 (en) | 2006-04-13 | 2009-02-10 | Cisco Technology, Inc. | Method and apparatus for current sharing ethernet power across four conductor pairs using a midspan device |
US20070288125A1 (en) | 2006-06-09 | 2007-12-13 | Mks Instruments, Inc. | Power Over Ethernet (Poe) - Based Measurement System |
US20070284946A1 (en) | 2006-06-10 | 2007-12-13 | Steven Andrew Robbins | Passive Power Combiner for Dual Power over Ethernet Sources |
US9515843B2 (en) | 2006-06-22 | 2016-12-06 | Broadcom Corporation | Method and system for link adaptive Ethernet communications |
US7835389B2 (en) | 2006-09-20 | 2010-11-16 | Broadcom Corporation | Method and system for an extended range Ethernet line code using 4B/3B mapping |
US7420355B2 (en) | 2006-07-11 | 2008-09-02 | Artesyn Technologies, Inc. | DC-DC converter with over-voltage protection |
US7589435B2 (en) | 2006-08-02 | 2009-09-15 | Cisco Technology, Inc. | Reporting power requirements of a powered device |
US7490996B2 (en) | 2006-08-16 | 2009-02-17 | Sigmund Sommer | Electro-optical plug and receptacle |
US7915761B1 (en) | 2006-09-27 | 2011-03-29 | Cisco Technology, Inc. | Power injector detection |
US7664972B2 (en) | 2006-12-19 | 2010-02-16 | Broadcom Corporation | System and method for controlling power delivered to a powered device based on cable characteristics |
US20080198635A1 (en) | 2007-02-21 | 2008-08-21 | Broadcom Corporation | Pulse width modulated ground/return for powered device |
US7814346B2 (en) | 2007-03-12 | 2010-10-12 | Broadcom Corporation | System and method for continual cable thermal monitoring using cable resistance considerations in power over ethernet |
AU2008224832B2 (en) | 2007-03-14 | 2013-05-09 | Zonit Structured Solutions, Llc | Air-based cooling for data center rack |
US8037324B2 (en) | 2007-03-20 | 2011-10-11 | Broadcom Corporation | Power over ethernet connector with integrated power source equipment (PSE) controller supporting high power applications |
US7921307B2 (en) | 2007-03-27 | 2011-04-05 | Cisco Technology, Inc. | Methods and apparatus providing advanced classification for power over Ethernet |
US20080276104A1 (en) | 2007-05-01 | 2008-11-06 | Broadcom Corporation | Power source equiment for power over ethernet system with increased cable length |
DE202007007927U1 (de) | 2007-06-05 | 2007-08-23 | Bürkert Werke GmbH & Co. KG | Hybrides Universalverteilersystem mit elektrischen, fluidischen und Kommunikationsfunktionen |
US7737704B2 (en) | 2007-06-12 | 2010-06-15 | Broadcom Corporation | System and method for using a PHY to locate a thermal signature in a cable plant for diagnostic, enhanced, and higher power applications |
US8094452B1 (en) | 2007-06-27 | 2012-01-10 | Exaflop Llc | Cooling and power grids for data center |
US7813646B2 (en) | 2007-07-11 | 2010-10-12 | RLH Industries, Inc | Power over optical fiber system |
US8081589B1 (en) | 2007-08-28 | 2011-12-20 | Meru Networks | Access points using power over ethernet |
US7924579B2 (en) | 2008-02-05 | 2011-04-12 | Cisco Technology, Inc. | Fly-forward converter power supply |
EP2120443A1 (en) | 2008-05-15 | 2009-11-18 | BRITISH TELECOMMUNICATIONS public limited company | Power supply system |
US8279883B2 (en) | 2008-07-07 | 2012-10-02 | Broadcom Corporation | High speed isolation interface for PoE |
US7973538B2 (en) | 2008-08-21 | 2011-07-05 | Cisco Technology, Inc. | Power over ethernet system having hazard detection circuitry to detect potentially hazardous cable conditions |
GB0816721D0 (en) | 2008-09-13 | 2008-10-22 | Daniel Simon R | Systems,devices and methods for electricity provision,usage monitoring,analysis and enabling improvements in efficiency |
US8712324B2 (en) | 2008-09-26 | 2014-04-29 | Qualcomm Incorporated | Inductive signal transfer system for computing devices |
CA2742937C (en) | 2008-11-08 | 2016-12-06 | Sensortran, Inc. | System and method for determining characteristics of power cables using distributed temperature sensing systems |
US8122266B2 (en) | 2008-11-11 | 2012-02-21 | Cisco Technology, Inc. | Powered communications interface providing low-speed communications between power-sourcing equipment and powered device in non-powered operating mode |
US8345439B1 (en) | 2008-11-18 | 2013-01-01 | Force10 Networks, Inc. | Modular chassis arrangement with redundant logic power delivery system |
US7990710B2 (en) | 2008-12-31 | 2011-08-02 | Vs Acquisition Co. Llc | Data center |
US8205102B2 (en) | 2009-01-05 | 2012-06-19 | Hewlett-Packard Development Company, L.P. | Intelligent power management of an intermediate network device switching circuitry and PoE delivery |
US8020043B2 (en) | 2009-03-06 | 2011-09-13 | Cisco Technology, Inc. | Field failure data collection |
US8269622B2 (en) | 2009-03-17 | 2012-09-18 | Jetlun Corporation | Method and system for intelligent energy network management control system |
US8049484B2 (en) | 2009-03-17 | 2011-11-01 | Cisco Technology, Inc. | Controlling inline power at a powered device |
US8350538B2 (en) | 2009-04-11 | 2013-01-08 | Cuks, Llc | Voltage step-down switching DC-to-DC converter |
US8369090B2 (en) | 2009-05-12 | 2013-02-05 | Iceotope Limited | Cooled electronic system |
GB2467808B (en) | 2009-06-03 | 2011-01-12 | Moduleco Ltd | Data centre |
US8781637B2 (en) | 2009-10-27 | 2014-07-15 | Voltserver Inc. | Safe exposed conductor power distribution system |
CA2684820A1 (en) | 2009-11-06 | 2011-05-06 | Wayne Ernest Conrad | Electrical cord and apparatus using same |
US8358893B1 (en) | 2010-01-14 | 2013-01-22 | Sandia Corporation | Photonic-powered cable assembly |
EP2367275B2 (en) * | 2010-03-18 | 2020-12-23 | MARICI Holdings The Netherlands B.V. | Non-isolated DC - DC converter for solar power plant |
CN103119637B (zh) | 2010-03-19 | 2015-12-02 | 莫戈公司 | 用于监控照相机的以太网供电优先化系统和方法 |
US8935543B2 (en) | 2010-04-02 | 2015-01-13 | Andrew Llc | Method and apparatus for distributing power over communication cabling |
US8310089B2 (en) | 2010-05-03 | 2012-11-13 | Cisco Technology, Inc. | Power sharing network communications device |
CN201689347U (zh) | 2010-05-06 | 2010-12-29 | 谭志明 | 一种poe供电的温度控制装置 |
US8757270B2 (en) | 2010-05-28 | 2014-06-24 | Statoil Petroleum As | Subsea hydrocarbon production system |
US8798409B2 (en) | 2010-10-07 | 2014-08-05 | Alcatel Lucent | Optical transmitter with flip-chip mounted laser or integrated arrayed waveguide grating wavelenth division multiplexer |
CN103314556B (zh) | 2010-11-24 | 2017-09-08 | 康宁光缆系统有限责任公司 | 用于分布式天线系统的能够带电连接和/或断开连接的配电模块及相关电力单元、组件与方法 |
US10389235B2 (en) * | 2011-05-05 | 2019-08-20 | Psemi Corporation | Power converter |
US8666255B2 (en) | 2010-12-30 | 2014-03-04 | Source Photonics, Inc. | Circuits, architectures, apparatuses, systems, and methods for merging of management and data signals, and for recovery of a management signal |
CN102158096B (zh) | 2011-05-11 | 2013-11-20 | 南京博兰得电子科技有限公司 | 一种非隔离式谐振变换器 |
US8966747B2 (en) | 2011-05-11 | 2015-03-03 | Vlt, Inc. | Method of forming an electrical contact |
US9693244B2 (en) | 2011-05-25 | 2017-06-27 | Nec Corporation | Sensor and receiving device in sensor system |
US8730673B2 (en) | 2011-05-27 | 2014-05-20 | Lockheed Martin Corporation | Fluid-cooled module for integrated circuit devices |
EP3678327B1 (en) | 2011-06-09 | 2021-11-17 | CommScope Technologies LLC | Distributed antenna system using power-over-ethernet |
US8750710B1 (en) | 2011-07-15 | 2014-06-10 | Cisco Technology, Inc. | System and method for facilitating fiber access transport using pluggable radio frequency optics |
CN103703429B (zh) | 2011-07-18 | 2017-06-23 | 惠普发展公司,有限责任合伙企业 | 与以太网供电(poe)计算系统相关联的功耗限制 |
US9024473B2 (en) | 2011-08-30 | 2015-05-05 | Linear Technology Corporation | Power combining in power over ethernet systems |
US20130079633A1 (en) | 2011-09-23 | 2013-03-28 | Tyco Electronics Corporation | Diagnostic System with Hybrid Cable Assembly |
US20130077923A1 (en) | 2011-09-23 | 2013-03-28 | Tyco Electronics Corporation | Hybrid Cable Assembly |
US9069151B2 (en) | 2011-10-26 | 2015-06-30 | Corning Cable Systems Llc | Composite cable breakout assembly |
US20130272721A1 (en) | 2012-04-13 | 2013-10-17 | Alcatel-Lucent Usa, Inc. | Optical network device employing three-level duobinary modulation and method of use thereof |
US9273906B2 (en) | 2012-06-14 | 2016-03-01 | International Business Machines Corporation | Modular pumping unit(s) facilitating cooling of electronic system(s) |
US10407995B2 (en) | 2012-07-05 | 2019-09-10 | Sdg Llc | Repetitive pulsed electric discharge drills including downhole formation evaluation |
US20140040641A1 (en) | 2012-08-03 | 2014-02-06 | Broadcom Corporation | Cable Imbalance Diagnostics Between Channels That Include Wire Pairs for Power Over Ethernet Transmission |
US9319101B2 (en) | 2012-09-28 | 2016-04-19 | Siemens Industry, Inc. | System and method for ground fault detection in a transformer isolated communication channel of a network device |
US8872579B2 (en) | 2012-10-23 | 2014-10-28 | Broadcom Corporation | Method and apparatus for current sensing in power over Ethernet (PoE) systems |
US9026809B2 (en) | 2012-11-05 | 2015-05-05 | Linear Technology Corporation | Polarity correction bridge controller for combined power over ethernet system |
US9665148B2 (en) | 2012-11-07 | 2017-05-30 | Dell Products L.P. | PoE power distribution system for PoE-powered port extender having multiple data and power inputs |
US9019895B2 (en) | 2013-01-09 | 2015-04-28 | Qualcomm Incorporated | Methods and apparatus for controlling access points coupled to a common power source |
AU2014207504B2 (en) | 2013-01-18 | 2017-10-19 | Christopher B. Scherer | Field-terminable traceable cables, components, kits, and methods |
CN104412541B (zh) | 2013-03-05 | 2019-05-10 | 优倍快网络公司 | 线缆和扩展器装置 |
US20140265550A1 (en) | 2013-03-14 | 2014-09-18 | Raytheon Bbn Technologies Corp. | Redundantly powered and daisy chained power over ethernet |
US9373963B2 (en) | 2013-05-24 | 2016-06-21 | Raytheon Company | Energy transfer and storage apparatus for delivery of pulsed power |
US9209981B2 (en) | 2013-06-18 | 2015-12-08 | Linear Technology Corporation | Power over Ethernet on data pairs and spare pairs |
US10171180B2 (en) | 2013-09-19 | 2019-01-01 | Radius Universal, LLC | Fiber optic communications and power network |
US20150078740A1 (en) | 2013-09-19 | 2015-03-19 | RADIUS UNIVERSAL, A Limited Liability Company of the State of New York | Fiber optic communications network |
US9356439B2 (en) | 2013-09-26 | 2016-05-31 | Commscope, Inc. Of North Carolina | Patch cords for reduced-pair ethernet applications having strain relief units that resist rotational loads and related strain relief units and connectors |
US9727518B2 (en) | 2013-10-10 | 2017-08-08 | Nokia Technologies Oy | Communication control pins in a dual row connector |
US9640998B2 (en) | 2013-10-29 | 2017-05-02 | Avaya Inc. | AC power over Ethernet |
ES2754230T3 (es) | 2014-01-19 | 2020-04-16 | Voltserver Inc | Método y aparato de red de potencia digital |
US9184795B2 (en) | 2014-01-26 | 2015-11-10 | VoltServer, Inc. | Packet energy transfer in-line communications |
WO2015116071A1 (en) | 2014-01-29 | 2015-08-06 | Hewlett-Packard Development Company, L.P. | Managing a number of ethernet links |
US9634844B2 (en) | 2014-01-30 | 2017-04-25 | Linear Technology Corporation | Detection scheme for four wire pair Power Over Ethernet system |
US9321362B2 (en) | 2014-02-05 | 2016-04-26 | Tesia Motors, Inc. | Cooling of charging cable |
WO2015175617A1 (en) | 2014-05-15 | 2015-11-19 | Schneider Electric Buildings, Llc | Power over ethernet enabled sensor and sensor network |
US9638583B2 (en) | 2014-05-21 | 2017-05-02 | Amazon Technologies, Inc. | Virtual data center environmental monitoring system |
US10007628B2 (en) | 2014-06-18 | 2018-06-26 | Qualcomm Incorporated | Dynamically adjustable multi-line bus shared by multi-protocol devices |
EP3748469A1 (en) | 2014-06-23 | 2020-12-09 | Gridbridge, Inc. | Highly flexible, electrical distribution grid edge energy manager and router |
US11063431B2 (en) | 2014-07-04 | 2021-07-13 | Apparent Labs Llc | Hierarchical and distributed power grid control |
US9531551B2 (en) | 2014-08-26 | 2016-12-27 | Cisco Technology, Inc. | Dynamically configurable power-over-ethernet apparatus and method |
US9618714B2 (en) | 2014-10-14 | 2017-04-11 | David W. Murray | Optical wiring systems and methods |
WO2016064727A1 (en) | 2014-10-21 | 2016-04-28 | VoltServer, Inc. | Digital power receiver system |
US9705306B2 (en) * | 2014-10-23 | 2017-07-11 | Honeywell International Inc. | Non-isolated power supply output chassis ground fault detection and protection system |
WO2016066371A1 (en) | 2014-10-28 | 2016-05-06 | Philips Lighting Holding B.V. | Apparatus, method and system for controlling a load device via a power line by using a power negotiation protocol |
US9853689B2 (en) | 2014-11-07 | 2017-12-26 | VoltServer, Inc. | Packet energy transfer power control elements |
US10032542B2 (en) | 2014-11-07 | 2018-07-24 | Cable Components Group, Llc | Compositions for compounding, extrusion and melt processing of foamable and cellular halogen-free polymers |
US9967104B2 (en) | 2014-11-19 | 2018-05-08 | Linear Technology Corporation | Detecting ground isolation fault in ethernet PoDL system |
US9837996B2 (en) | 2015-01-07 | 2017-12-05 | Raytheon Company | Method and apparatus for control of pulsed power in hybrid energy storage module |
US20160241148A1 (en) | 2015-02-13 | 2016-08-18 | Avogy, Inc. | Method and system for integrated power supply with accessory functions |
US9713286B2 (en) | 2015-03-03 | 2017-07-18 | International Business Machines Corporation | Active control for two-phase cooling |
MX2018016360A (es) | 2015-03-18 | 2021-08-05 | Abl Ip Holding Llc | Sistema de iluminación de emergencia por alimentación a través de ethernet. |
US20160294500A1 (en) | 2015-04-03 | 2016-10-06 | John Mezzalingua Associates, LLC | Packet energy transfer powered telecommunications system for macro antenna systems and power distribution system therefor |
US9985600B2 (en) | 2015-04-03 | 2018-05-29 | Foxconn Interconnect Technology Limited | Printed circuit board assembly for filtering noise of network signal transmission |
US10135626B2 (en) | 2015-04-14 | 2018-11-20 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Power coupling circuits for single-pair ethernet with automotive applications |
JP6477220B2 (ja) | 2015-05-12 | 2019-03-06 | Tdk株式会社 | 共振コンバータおよびスイッチング電源装置 |
US10027471B2 (en) | 2015-06-11 | 2018-07-17 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Synchronization and training stage operation |
CN204836199U (zh) | 2015-07-29 | 2015-12-02 | 杭州海康威视数字技术股份有限公司 | Poe供电模块及设置有poe供电模块的线缆 |
US10389539B2 (en) | 2015-08-07 | 2019-08-20 | Texas Instruments Incorporated | Turn on method without power interruption redundant power over Ethernet systems |
US10374813B2 (en) | 2015-08-07 | 2019-08-06 | The Boeing Company | Coupler for power line communication and power-over-ethernet |
US10128764B1 (en) | 2015-08-10 | 2018-11-13 | Vlt, Inc. | Method and apparatus for delivering power to semiconductors |
US9874930B2 (en) | 2015-09-03 | 2018-01-23 | Cisco Technology, Inc. | Selection of power in power over ethernet systems |
US10659240B2 (en) | 2015-09-29 | 2020-05-19 | Electrical Engineering Solutions Pty Ltd | Mobile power, data and lighting system |
WO2017066438A1 (en) | 2015-10-16 | 2017-04-20 | Foster Frederick M | Circuit protection system and method |
US20170123466A1 (en) | 2015-11-02 | 2017-05-04 | Thomas Craig Carnevale | System Management Device with High-Powered Power Over Ethernet |
US10318266B2 (en) | 2015-11-25 | 2019-06-11 | Johnson Controls Technology Company | Modular multi-function thermostat |
CN106817225B (zh) | 2015-11-30 | 2020-04-21 | 华为技术有限公司 | 以太网供电方法和设备 |
CN106817226B (zh) | 2015-11-30 | 2019-11-29 | 华为技术有限公司 | 一种基于PoE的供电方法及PSE |
US10468879B2 (en) | 2016-01-24 | 2019-11-05 | VoltServer, Inc. | Method and apparatus for parallel operation of packet energy transfer receivers |
EP3414808B1 (en) | 2016-02-08 | 2022-01-05 | Voltserver, Inc. | Digital electricity transmission system using reversal sensing packet energy transfer |
US10671826B2 (en) | 2016-02-08 | 2020-06-02 | Ideal Industries Lighting Llc | Indoor location services using a distributed lighting network |
EP3211289B1 (en) | 2016-02-26 | 2021-12-15 | Nel Hydrogen A/S | Communication/control system for a hydrogen refuelling system |
CN205544597U (zh) | 2016-03-18 | 2016-08-31 | 江苏联宏自动化系统工程有限公司 | 一种多功能三相电力监控装置 |
GB2548914B (en) | 2016-04-01 | 2019-02-13 | Canon Kk | Power management method of a system made of devices powered over data cable |
US9734940B1 (en) | 2016-04-14 | 2017-08-15 | Superior Essex International LP | Communication cables incorporating twisted pair components |
US9949409B2 (en) | 2016-05-11 | 2018-04-17 | Facebook, Inc. | Modular network switches, associated structures, and associated methods of manufacture and use |
WO2018017544A1 (en) | 2016-07-18 | 2018-01-25 | Commscope Technologies Llc | Systems and methods for high capacity power delivery to remote nodes |
US20180024964A1 (en) | 2016-07-19 | 2018-01-25 | Pure Storage, Inc. | Disaggregated compute resources and storage resources in a storage system |
US20180188712A1 (en) | 2016-07-22 | 2018-07-05 | Michael T. MacKay | Relevance based digital building |
US9953432B2 (en) | 2016-08-17 | 2018-04-24 | David M. Smith | Systems and methods of detecting motion |
US20180054083A1 (en) | 2016-08-19 | 2018-02-22 | Leviton Manufacturing Co., Inc. | Supplemental power system for power over ethernet lighting luminaries |
KR20220101776A (ko) | 2016-08-25 | 2022-07-19 | 아나로그 디바이시즈 인코포레이티드 | 원격 버스 활성화를 위한 시스템들 및 기술들 |
JP6754652B2 (ja) | 2016-09-27 | 2020-09-16 | ルネサスエレクトロニクス株式会社 | 給電システム |
US10541543B2 (en) | 2016-10-31 | 2020-01-21 | VoltServer, Inc. | Digital power multiport battery charging system |
US10341125B2 (en) | 2016-12-29 | 2019-07-02 | Nexans | Active cooling arrangement for power over ethernet arrangements |
KR102307999B1 (ko) | 2017-03-06 | 2021-09-30 | 엘에스일렉트릭(주) | 인버터의 파워릴레이 고장감지장치 |
WO2018200817A1 (en) | 2017-04-26 | 2018-11-01 | VoltServer, Inc. | Methods for verifying digital-electricity line integrity |
WO2019023731A1 (en) | 2017-08-04 | 2019-02-07 | Electrical Engineering Solutions Pty Limited | POE SYSTEM FOR HIGH VOLTAGE POWER, DATA AND LIGHT DISTRIBUTION AND COMMON MODE SIGNALING SYSTEM INCLUDING POE SYSTEM |
-
2018
- 2018-11-14 US US16/191,308 patent/US10763749B2/en active Active
-
2019
- 2019-11-04 WO PCT/US2019/059632 patent/WO2020101933A1/en unknown
- 2019-11-04 EP EP19835905.1A patent/EP3881421A1/en active Pending
- 2019-11-04 CN CN201980074710.XA patent/CN113016129A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5532919A (en) * | 1993-03-30 | 1996-07-02 | Motorola, Inc. | Variable frequency, zero voltage switching, quasi-resonant converters with resonant bridge switch |
US5594635A (en) * | 1993-03-30 | 1997-01-14 | Motorola, Inc. | Constant frequency, zero-voltage-switching converters with resonant switching bridge |
CN1454407A (zh) * | 2000-09-08 | 2003-11-05 | 斯罗博丹·卡克 | 无损耗切换直流-直流转换器 |
US20040264214A1 (en) * | 2003-06-25 | 2004-12-30 | Ming Xu | Quasi-resonant DC-DC converters with reduced body diode loss |
US20060018138A1 (en) * | 2004-07-21 | 2006-01-26 | Tesshi Iwakura | Step-up/down voltage chopper |
TW201228206A (en) * | 2010-12-31 | 2012-07-01 | Univ Nat Cheng Kung | Series cascaded converter with single zero-voltage-transition auxiliary circuit |
KR101377121B1 (ko) * | 2012-12-28 | 2014-03-25 | 서울과학기술대학교 산학협력단 | 비절연 고승압 공진형 컨버터 |
US20180159430A1 (en) * | 2015-04-23 | 2018-06-07 | Danmarks Tekniske Universitet | A three-port direct current converter |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116582003A (zh) * | 2023-07-11 | 2023-08-11 | 恩赛半导体(成都)有限公司 | 零电压切换两级电源电路、电源系统和控制方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2020101933A1 (en) | 2020-05-22 |
EP3881421A1 (en) | 2021-09-22 |
US20200153337A1 (en) | 2020-05-14 |
US10763749B2 (en) | 2020-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10763749B2 (en) | Multi-resonant converter power supply | |
US9490694B2 (en) | Hybrid resonant bridgeless AC-DC power factor correction converter | |
US8488340B2 (en) | Power converter with boost-buck-buck configuration utilizing an intermediate power regulating circuit | |
US7212419B2 (en) | Adaptively configured and autoranging voltage transformation module arrays | |
US6934166B2 (en) | Output resistance modulation in power converters | |
USRE44136E1 (en) | Energy storage and hold-up method and apparatus for high density power conversion | |
US8462527B1 (en) | Universal AC adaptor | |
Aranda et al. | Combination of interleaved single-input multiple-output DC-DC converters | |
US10686378B2 (en) | High-efficiency regulated buck-boost converter | |
US20070109822A1 (en) | Zero voltage switch method for synchronous rectifier and inverter | |
JPH0865889A (ja) | 電力変換装置及び方法 | |
US11843316B2 (en) | Wide-voltage-range DC-DC converters | |
US8331110B2 (en) | Switching capacitor—PWM power converter | |
Willers et al. | Analysis and design of a practical discontinuous-conduction-mode BIFRED converter | |
RU2761179C2 (ru) | Инвертор с прямым мостом переменного тока и улучшенной топологией преобразования постоянного тока в переменный | |
Nouri et al. | A Semi-Quadratic Trans-Inverse High Step-Up DC-DC Converter for Renewable Energy Applications | |
Srinivas | Integrated Magnetics based Dual Output AC/DC Flyback Converter Topology with Active Front-End Power Factor Correction for Low Power Medical Applications | |
Fernández et al. | Self-driven synchronous rectification system with input voltage tracking for converters with a symmetrically driven transformer | |
CN112075019A (zh) | 具有升压开关的降压矩阵式整流器及其在一相损耗期间的操作 | |
Ismail et al. | Single-stage single-switch PFC converter with extreme step-down voltage conversion ratio | |
Qian | A Novel Regulated High-Frequency DC Transformer for Intermediate Bus Architecture Application | |
Chakraborty et al. | A novel power distribution system for multiple individually regulated loads using a single converter and reduced magnetic components | |
Narimani et al. | Analysis and design of a new three-level PFC AC-DC converter | |
Kahol et al. | Switched Mode Power Supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |