CN113000043B - 一种二氧化钛量子点表面暴露的晶面结构的调控工艺及其与二维材料构建的复合光催化剂 - Google Patents

一种二氧化钛量子点表面暴露的晶面结构的调控工艺及其与二维材料构建的复合光催化剂 Download PDF

Info

Publication number
CN113000043B
CN113000043B CN202110194701.3A CN202110194701A CN113000043B CN 113000043 B CN113000043 B CN 113000043B CN 202110194701 A CN202110194701 A CN 202110194701A CN 113000043 B CN113000043 B CN 113000043B
Authority
CN
China
Prior art keywords
titanium dioxide
solution
quantum dot
dioxide quantum
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110194701.3A
Other languages
English (en)
Other versions
CN113000043A (zh
Inventor
王国景
向芸颉
汪烽淇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Southwest University
Original Assignee
Lanzhou University
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University, Southwest University filed Critical Lanzhou University
Priority to CN202110194701.3A priority Critical patent/CN113000043B/zh
Publication of CN113000043A publication Critical patent/CN113000043A/zh
Application granted granted Critical
Publication of CN113000043B publication Critical patent/CN113000043B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Optics & Photonics (AREA)
  • Water Supply & Treatment (AREA)
  • Biophysics (AREA)
  • Hydrology & Water Resources (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及光催化领域,具体涉及一种二氧化钛量子点表面暴露的晶面结构的调控工艺及其与二维材料构建的复合光催化剂。本发明具体公开了本发明提供二氧化钛量子点表面暴露的晶面结构的调控工艺,二氧化钛量子点的尺寸在5‑20nm,通过控制添加无水乙醇和去离子水混合溶液的剂量,可以调控量子点表面暴露的晶面结构为{001}或{101}晶面,方法简单,不含氟离子,环境友好。本发明在制备出的二氧化钛量子点表面引入更多的氧空位,改善二氧化钛复合材料的界面性质,利用表面氧空位缺陷为相互作用媒介与二维材料复合,制备出具备高光催化活性的零维‑二维复合光催化剂。

Description

一种二氧化钛量子点表面暴露的晶面结构的调控工艺及其与 二维材料构建的复合光催化剂
技术领域
本发明属于光催化应用技术领域,具体涉及一种二氧化钛量子点表面暴露的晶面结构的调控工艺及其与二维材料构建的复合光催化剂。
背景技术
半导体光催化技术是一种绿色环保去除空气、水体中有机污染物的方法。在众多的半导体材料中,TiO2具有无毒、低成本、稳定性好等优点,成为目前应用最为广泛的光催化剂,并已成功应用于水体污染物和固定相气体污染物的降解。然而以TiO2为代表的宽禁带半导体光催化剂催化效率较低,主要的原因有两个:1)在光吸收阶段,由于禁带宽度较宽导致宽禁带半导体仅能利用紫外光(紫外光占太阳光比例约为4%),即太阳光吸收率低;2)在光生电子和空穴的转移、分离与复合阶段,则普遍存在光生电子和空穴复合率高的问题。由于光生载流子的转移与分离效率是影响光催化性能的主要因素,因此,解决光生电子和空穴复合率高的问题是光催化研究领域的重点课题,也是一个极难解决的问题。
对材料性能影响较大的纳米结构特点包括晶面、异质结及界面三个方面。其中晶面,尤其是高能量晶面的大量暴露,对材料的性能产生了较大的影响,这是由于高能量晶面表面原子活性较高,且与晶面上的氧空位有关。因此,通过控制暴露高能晶面的比例可以调控晶态材料的相关性质。
公告号为CN107890861B的专利文献,公开了一种具有{001}晶面的二氧化钛片层/石墨烯复合薄膜的制备方法,该方法以TiF4为钛源,氧化石墨薄膜为基底,采用溶剂热法原位地在薄膜表面生长出具有{001}片层的锐钛矿型TiO2,同时氧化石墨在醇热的条件下被还原转变成石墨烯。
公告号为CN108404898B的专利文献,公开了一种以质子化钛酸盐制备石墨烯/{001}面暴露的二氧化钛纳米复合材料的方法。该方法以层状质子化钛酸盐(LPT)作为前驱体,将其与氧化石墨烯混合溶解在醇中,然后加入氢氟酸和葡萄糖后经水热反应,得到黑色沉淀物;然后将所得黑色沉淀物在温度为50℃~120℃条件下真空干燥12h~18h,得到石墨烯/{001}面暴露的二氧化钛纳米复合材料。
对于上述相关技术,发明认为具有以下技术缺陷:上述制备方法中都含有氟离子,容易对环境造成的氟污染。
发明内容
本发明的目的是提供一种二氧化钛量子点表面暴露的晶面结构的调控工艺,不含氟离子,环境友好。另一方面,本申请提供一种二氧化钛量子点材料,再一方面,本申请提供一种由该二氧化钛量子点材料与二维材料构建复合光催化剂。
第一方面,本发明提供的二氧化钛量子点表面暴露的晶面结构的调控工艺,包括以下制备步骤:
(1)将钛酸四丁酯加入到无水乙醇中,搅拌,边搅拌边加入盐酸溶液制备得到溶液A,其中,钛酸四丁酯、无水乙醇以及盐酸溶液的体积比为(3-6):(18-20):(0.5-0.8);
(2)向溶液A中滴加由无水乙醇和去离子水制备的混合溶液,制备得到溶液B,并将溶液B搅拌至溶胶状态,其中,混合溶液中无水乙醇和去离子水的体积比为1:1,混合溶液与步骤(1)中无水乙醇的体积比为1:1或1:2;
(3)将步骤(2)制得的溶胶在160-200℃下保温2-4小时,获得褐色二氧化钛粉末;
(4)将步骤(3)制得的褐色粉末分散在无水乙醇中,自然沉降至出现明显分层,取上层溶液,离心分离,去离子水清洗,真空烘干得到二氧化钛量子点;
(5)将步骤(4)制得的二氧化钛量子点置于惰性气氛保护下,在160-200℃下热处理1-5个小时,获得富含氧空位缺陷的二氧化钛量子点。
优选的,步骤(1)中钛酸四丁酯、无水乙醇以及盐酸溶液的体积比为(5-6):(18-20):(0.7-0.8)。
优选的,步骤(4)中,将步骤(3)制得的褐色粉末分散在无水乙醇中,自然沉降至出现明显分层,取上层溶液,离心分离,去离子水清洗,如此操作两次后再用去离子水清洗两次,真空烘干得到二氧化钛量子点。
优选的,步骤(5),将步骤(4)制得的二氧化钛量子点置于氩气保护气氛下,在180-200℃下热处理3-4个小时,获得富含氧空位缺陷的二氧化钛量子点。
第二方面,本发明提供一种二氧化钛量子点材料,由前述的二氧化钛量子点的制备工艺制备得到,其中二氧化钛量子点的晶粒尺寸为5-20nm,二氧化钛量子点表面暴露的晶面结构为{001}晶面或{101}晶面。
第三方面,本发明提供一种二氧化钛量子点与氧化石墨烯构建复合光催化剂的制备工艺,包括以下步骤:
(1)将片状氧化石墨烯溶液分散到去离子水中,超声处理1-2小时制备得到溶液C,氧化石墨烯溶液浓度为3-4mg/mL,氧化石墨烯溶液与去离子水的体积比为(0.2-0.3):(40-50);
(2)将前述的二氧化钛量子点材料加入到所述溶液C中,继续超声处理1-2小时制备得到溶液D;二氧化钛量子点材料与所述溶液C的用量比为(0.2-0.3)g:(40-50)mL;
(3)将溶液D真空烘干得到粉末;
(4)将所述粉末置于惰性气氛中,250-350℃下热处理1-6小时,获得零维-二维复合光催化剂。
第四方面,本发明提供一种零维-二维复合光催化剂,由前述的一种二氧化钛量子点与氧化石墨烯构建复合光催化剂的制备工艺制备得到。
优选的,所述零维-二维复合光催化剂的界面处形成化学接触,形成有Ti-O-C键。
第五方面,本发明提供一种二氧化钛量子点与二氧化锰构建复合光催化剂的制备工艺,包括以下步骤:
(1)将片状二氧化锰分散到去离子水中,超声处理1-2小时,制备得到溶液E,二氧化锰与去离子水的用量比为(0.1-0.2)g:(40-50)mL;
(2)将前述的二氧化钛量子点材料加入到所述溶液E中,继续超声处理1-2小时制备得到溶液F;二氧化钛量子点材料与所述溶液E的用量比为(0.2-0.3)g:(40-50)mL;
(3)将溶液F真空烘干得到粉末;
(4)将所述粉末置于惰性气氛中,250-350℃下热处理1-6小时,获得零维-二维复合光催化剂。
第六方面,本发明提供一种零维-二维复合光催化剂,由前述的二氧化钛量子点与二氧化锰构建复合光催化剂的制备工艺制备得到。
综上所述,本申请具有以下有益效果:
1、本发明提供二氧化钛量子点表面暴露的晶面结构的调控工艺,二氧化钛量子点的尺寸在5-20nm,通过控制添加无水乙醇和去离子水混合溶液的剂量,可以调控量子点表面暴露的晶面结构为{001}晶面或{101}晶面。
2、本发明在制备出的二氧化钛量子点表面引入更多的氧空位,改善二氧化钛复合材料的界面性质,并利用氧空位作为媒介构建零维-二维异质结结构;本发明的方法利用表面氧空位缺陷为相互作用媒介与二维材料复合,制备出具备高光催化活性的零维-二维复合光催化剂;该催化剂两种物质之间相互作用为化学作用,接触良好优化了光催化性能。
2、本发明方法简单,不含氟离子,环境友好,节能减排,成本低、可控性好,适合批量生产。
3、本发明方法可获得高催化活性的零维-二维复合复合材料;利用光照可以催化分解水制备氢气和降解有机污染物,在能源、环境领域都有着良好的应用前景。
附图说明
图1为实施例1制备的二氧化钛量子点的透射电镜图;
图2为实施例1制备的二氧化钛量子点的高分辨透射电镜图;
图3为实施例1制备的二氧化钛-氧化石墨烯的透射电镜图;
图4为实施例1中氧化石墨烯以及制备的二氧化钛-氧化石墨烯的XPS(X射线光电子)能谱;
图5为实施例1测得的光催化产氢的时间-产量关系图;
图6实施例2制备的二氧化钛量子点的高分辨透射电镜图;
图7为实施例3原始的二氧化锰的透射电镜图;
图8为实施例3制备的二氧化钛-二氧化锰的透射电镜图;
图9为实施例3中二氧化锰、二氧化钛以及二氧化钛-二氧化锰的XPS(X射线光电子)能谱;
图10为实施例3测得的光催化产氢的时间-产量关系图。
具体实施方式
以下结合实施例对本申请作进一步详细说明。
TiO2在光生电子和空穴的转移、分离与复合阶段,则存在光生电子和空穴复合率高的问题,难解决的主要原因是电子和空穴的运动速度非常快,即电子和空穴复合所需时间非常短(纳秒量级)。虽然很难在光催化材料表面实现光生电子和空穴的有效分离,但是通过掺杂金属修饰、构建异质结结构和引入缺陷等方法还是在一定程度上分离了光生电子和空穴。其中,杂质或缺陷特别是氧空位在光生电子和空穴转移过程中发挥着重要作用。
氧空位作为一种金属氧化物中的本征缺陷,氧化物半导体的电导率、载流子转移和扩散过程、热电性能以及光吸收率等通常是由材料表面氧空位所决定的,在光生电子和空穴转移与复合的过程中,位于禁带中的氧空位能级可以捕获/陷住电子,为光生电子和空穴提供转移通道。
此外,对材料性能影响较大的纳米结构特点还包括晶面、异质结及界面三个方面。其中晶面,尤其是高能量晶面的大量暴露,对材料的性能产生了较大的影响,这是由于高能量晶面表面原子活性较高,且与晶面上的氧空位有关。锐钛矿TiO2不同晶面间的取向生长有利于光催化活性的增强,不同晶面间表面自由能及表面能级结构的差异使得光激发的电子-空穴对选择性地沿着不同路径迁移。锐钛矿TiO2{001}面的暴露使其光催化活性得到显著提高,一方面是由于{001}面表面能大、原子活性高,另一方面是因为{001}与{101}面的协同作用在一定程度上提高了电子-空穴对的空间分离效率。
低维材料如二维的薄膜材料,一维的纳米棒、纳米线、纳米管,以及零维的量子点都具有大量的表面缺陷,且容易调控生长晶面,因此表现出优异的光催化性能。低维材料的制备工艺直接影响材料的形貌和结构,本申请人研究材料的制备工艺以获得具备更优光催化性能的低维材料,发现一种二氧化钛量子点的制备方案,并关注表面缺陷稳定性的问题,改善二氧化钛量子点与复合材料的界面性质,并将制备出的二氧化钛量子点与二维材料复合构建出具备高光催化活性的复合材料。
本发明首先调控二氧化钛量子点表面暴露的晶面结构,随后制备富含缺陷的二氧化钛量子点,其次利用表面氧空位缺陷为相互作用媒介,与二维材料复合制备出光催化活性高且稳定的零维-二维复合光催化剂。
实施例1:
(1)将5mL的钛酸四丁酯慢慢加入到20mL的无水乙醇中,搅拌,边搅拌边加入0.75mL的盐酸溶液(质量分数为36.0%),得到溶液A。
(2)向溶液A中滴加20mL的混合溶液,混合溶液由无水乙醇和去离子水以1:1的体积比混合而成,制备得到溶液B,并将溶液B搅拌至溶胶状态。
(3)将步骤(2)制得的溶胶在180℃下保温4小时,将获得褐色二氧化钛纳米粉末。
(4)将步骤(3)制得的褐色粉末分散在无水乙醇中,自然沉降至出现明显分层,取上层溶液,离心将溶液与粉末分离,如此操作两次后再用去离子水清洗两次,真空烘干,最终获得褐色二氧化钛量子点。
二氧化钛量子点样品的形貌如图1所示,从图1中可以看出,二氧化钛量子点的晶粒尺寸为5-20nm,如图2所示,测得二氧化钛量子点表面暴露的晶面结构为{001}晶面。零维的量子点,相较于几十甚至几百纳米级的二氧化钛,比表面积大和表面活性位点多,且暴露的{001}晶面由于高密度的活性不饱和的Ti原子和表面活性氧原子具有较高的表面能,表现出更高的光催化活性。
(5)将步骤(4)制得的粉末置于氩气保护气氛中,180℃下热处理4个小时,获得富含氧空位缺陷的二氧化钛量子点。在热处理过程中热能让样品表面晶格里的氧从表面脱离,因为炉内气氛并不包含氧气,不能补充样品表面晶格的氧则形成氧空位。氧空位在光生电子和空穴转移与复合的过程中,位于禁带中的氧空位能级可以捕获/陷住电子,为光生电子和空穴提供转移通道,抑制生电子和空穴再复合,有效提高光催化活性。
(6)将0.25mL的片状氧化石墨烯溶液(溶液浓度为4.0mg/mL)分散到40mL的去离子水中制备得到溶液C,并超声处理1小时。
(7)将0.25g步骤(5)获得的二氧化钛量子点加入到步骤(6)的制备得到溶液C中,继续超声处理1小时,制备得到溶液D。
(8)将步骤(7)的溶液D真空烘干得到粉末。
(9)将步骤(8)得的粉末在惰性气氛中(Ar气),300℃下热处理4小时,将获得零维二氧化钛量子点-二维氧化石墨烯光复合催化剂。样品形貌如图3所示,从图3中可以二氧化钛负载到片状的氧化石墨烯上,具有较高的分散性以及高的比表面积,充分发挥石墨烯与二氧化钛的协同作用。从XPS图谱(如图4所示,图4中上半部为氧化石墨烯(GO),图4中下半部为二氧化钛-氧化石墨烯(TiO2-GO)),二氧化钛和氧化石墨烯的界面处形成了Ti-O-C键,属于化学接触,二氧化钛和氧化石墨烯界面接触良好,使得TiO2的光生电子更容易向氧化石石墨烯表面发生转移,抑制了光生电子-空穴对的再复合,有效提高光催化活性。
光催化性能测试流程:将质量为0.1g的TiO2-GO复合光催化剂放在20mL甲醇和80mL去离子水的混合溶液中;在光照之前,反应容器先充分抽空以除去溶液中溶解的空气,然后注入氩气。采用300W氙灯作为光源,模拟太阳光。反应体系与气相色谱相连,用于在线检测气体产物的量。为维持光催化反应过程中溶液温度恒定,反应器外套通入15℃恒温循环水。
测得的产氢量如图5所示,计算得到TiO2-GO复合光催化剂光催化产氢率为0.32mmol/g·h。如图5所示,且TiO2-GO复合光催化剂使用三次后,性能稳定,说明其可循环稳定性能良好。
实施例2
实施例2与实施例1的区别之处在于:步骤(2)溶液A中加入的无水乙醇和去离子水以1:1体积比混合而成的混合溶液的用量为10mL。样品的表面暴露晶面如图6所示,测得二氧化钛量子点表面暴露的晶面结构为{101}晶面。
计算得到TiO2-GO复合光催化剂光催化产氢率较高,且TiO2-GO复合光催化剂使用三次后,性能稳定,说明其可循环稳定性能良好。
实施例3
(1)将5mL的钛酸四丁酯慢慢加入到20mL的无水乙醇中,搅拌,边搅拌边加入盐酸溶液(质量分数为36%),制备得到溶液A。
(2)向溶液A中滴加20mL的混合溶液,混合溶液由无水乙醇和去离子水以1:1的体积比混合而成,制备得到溶液B,并将溶液B搅拌至溶胶状态。
(3)将步骤(2)制得的溶胶在180℃下保温4小时,获得褐色二氧化钛纳米粉末。
(4)将步骤(3)制得的褐色粉末分散在无水乙醇中,自然沉降至出现明显分层,取上层溶液,用离心机将溶液与粉末分离,如此操作两次后再用去离子水清洗两次,真空烘干得到二氧化钛量子点。
(5)将步骤(4)制得的粉末置于氩气保护气氛下,180℃下热处理4个小时,获得富含氧空位缺陷的二氧化钛量子点。
(6)将0.1g的片状二氧化锰,分散到40mL的去离子水中,并超声处理1小时,制备得到溶液E。其中,片状二氧化锰的原始形貌如图7所示。
(7)将0.25g步骤(5)获得的二氧化钛量子点材料加入到步骤(6)的溶液E中,继续超声处理1小时。
(8)将步骤(7)的溶液E真空烘干得到粉末;
(9)将步骤(8)得的粉末在惰性气氛中(Ar气),300℃下热处理4小时,将获得零维二氧化钛-二维二氧化锰光复合催化剂。二氧化钛-二氧化锰光复合催化剂的形貌如图8所示,从图8中可以二氧化钛负载到二氧化锰上,具有较高的分散性。样品表面氧空位情况以及复合后氧空位变化情况如图9所示,复合前二氧化锰纳米片表面具有大量的氧空位,复合后复合物表面氧空位比例减小;样品的光催化性能如图10所示,计算得到TiO2-MnO2复合光催化剂光催化产氢率为0.38mmol/g·h,二氧化钛光催化产氢率为0.24mmol/g·h,二氧化锰光催化产氢率几乎为0。如图所示10,TiO2-MnO2复合光催化剂使用三次后,性能稳定,说明其可循环稳定性能良好。

Claims (9)

1.一种二氧化钛量子点表面暴露的晶面结构的调控工艺,其特征在于,包括以下制备步骤: (1) 将钛酸四丁酯加入到无水乙醇中,搅拌,边搅拌边加入盐酸溶液制备得到溶液A,其中,钛酸四丁酯、无水乙醇以及盐酸溶液的体积比为(3-6):(18-20):(0.5-0.8);
(2) 向溶液A中滴加由无水乙醇和去离子水制备的混合溶液,制备得到溶液B,并将溶液B搅拌至溶胶状态,其中,混合溶液中无水乙醇和去离子水的体积比为1:1;通过控制混合溶液与步骤(1)中无水乙醇的体积比为1:2,能够调控二氧化钛量子点表面暴露的晶面结构为{101}晶面;
(3) 将步骤(2)制得的溶胶在160-200℃ 下保温2-4小时,获得褐色二氧化钛粉末;
(4) 将步骤(3)制得的褐色粉末分散在无水乙醇溶液中,自然沉降至出现明显分层,取上层溶液,离心分离,去离子水清洗,真空烘干得到二氧化钛量子点;
(5) 将步骤(4)制得的二氧化钛量子点置于惰性气氛保护下,在160-200℃下热处理1-5个小时,获得富含氧空位缺陷的二氧化钛量子点,二氧化钛量子点的晶粒尺寸为5-20nm。
2.根据权利要求1所述的二氧化钛量子点表面暴露的晶面结构的调控工艺,其特征在于,步骤(1)中钛酸四丁酯、无水乙醇以及盐酸溶液的体积比为(5-6):(18-20):(0.7-0.8)。
3.根据权利要求1所述的二氧化钛量子点表面暴露的晶面结构的调控工艺,其特征在于,步骤(4)中,将步骤(3)制得的褐色粉末分散在无水乙醇溶液中,自然沉降至出现明显分层,取上层溶液,离心分离,去离子水清洗,如此操作两次后再用去离子水清洗两次,真空烘干得到二氧化钛量子点。
4.根据权利要求1所述的二氧化钛量子点表面暴露的晶面结构的调控工艺,其特征在于,步骤(5),将步骤(4)制得的二氧化钛量子点置于氩气保护气氛下,在180-200℃下热处理3-4个小时,获得富含氧空位缺陷的二氧化钛量子点。
5.一种二氧化钛量子点与氧化石墨烯构建复合光催化剂的制备工艺,其特征在于,包括以下步骤:
(1) 将片状氧化石墨烯溶液分散到去离子水中,超声处理1-2小时制备得到溶液C,氧化石墨烯溶液浓度为3-4mg/mL,氧化石墨烯溶液与去离子水的体积比为(0.2-0.3):(40-50);
(2) 将权利要求1步骤(5)获得的二氧化钛量子点材料加入到所述溶液C中,继续超声处理1-2小时制备得到溶液D;二氧化钛量子点材料与所述溶液C的用量比为(0.2-0.3)g:(40-50)mL;
(3) 将溶液D真空烘干得到粉末;
(4) 将所述粉末置于惰性气氛中,250-350℃下热处理1-6小时,获得零维-二维复合光催化剂。
6.一种零维-二维复合光催化剂,其特征在于,由权利要求5的一种二氧化钛量子点与氧化石墨烯构建复合光催化剂的制备工艺制备得到。
7.根据权利要求6所述的零维-二维复合光催化剂,其特征在于,所述零维-二维复合光催化剂的界面处形成化学接触,形成有Ti-O-C键。
8.一种二氧化钛量子点与二氧化锰构建复合光催化剂的制备工艺,其特征在于,包括以下步骤:
(1) 将片状二氧化锰分散到去离子水中,超声处理1-2小时制备得到溶液E,二氧化锰与去离子水的用量比为(0.1-0.2)g:(40-50)mL;
(2) 将权利要求1步骤(5)获得的二氧化钛量子点材料加入到所述溶液E中,继续超声处理1-2小时制备得到溶液F;二氧化钛量子点材料与所述溶液E的用量比为(0.2-0.3)g:(40-50)mL;
(3) 将溶液F真空烘干得到粉末;
(4) 将所述粉末置于惰性气氛中,250-350℃下热处理1-6小时,获得零维-二维复合光催化剂。
9.一种零维-二维复合光催化剂,由权利要求8的二氧化钛量子点与二氧化锰构建复合光催化剂的制备工艺制备得到。
CN202110194701.3A 2021-02-21 2021-02-21 一种二氧化钛量子点表面暴露的晶面结构的调控工艺及其与二维材料构建的复合光催化剂 Expired - Fee Related CN113000043B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110194701.3A CN113000043B (zh) 2021-02-21 2021-02-21 一种二氧化钛量子点表面暴露的晶面结构的调控工艺及其与二维材料构建的复合光催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110194701.3A CN113000043B (zh) 2021-02-21 2021-02-21 一种二氧化钛量子点表面暴露的晶面结构的调控工艺及其与二维材料构建的复合光催化剂

Publications (2)

Publication Number Publication Date
CN113000043A CN113000043A (zh) 2021-06-22
CN113000043B true CN113000043B (zh) 2022-02-11

Family

ID=76404983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110194701.3A Expired - Fee Related CN113000043B (zh) 2021-02-21 2021-02-21 一种二氧化钛量子点表面暴露的晶面结构的调控工艺及其与二维材料构建的复合光催化剂

Country Status (1)

Country Link
CN (1) CN113000043B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115594984B (zh) * 2021-10-22 2023-10-03 东南大学 一种基于二氧化钛量子点的调温改性沥青及其制备方法
CN116081684A (zh) * 2022-12-21 2023-05-09 河北工业大学 一种富氧空位的主暴露{101}晶面二氧化钛材料、制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007913A (zh) * 2012-12-12 2013-04-03 华东理工大学 Ti3+掺杂TiO2复合石墨烯光催化剂的制备方法
CN105664969A (zh) * 2016-01-23 2016-06-15 武汉理工大学 一种二氧化钛-铂-四氧化三钴三元复合光催化材料及其制备方法
CN106283099A (zh) * 2016-08-25 2017-01-04 岭南师范学院 一种表面活性剂辅助电沉积合成锐钛矿型二氧化钛和二氧化锰纳米复合材料的方法及其应用
CN106807344A (zh) * 2016-12-14 2017-06-09 湖北大学 一种锐钛矿相和TiO2(B)复合纳米结构二氧化钛光催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007913A (zh) * 2012-12-12 2013-04-03 华东理工大学 Ti3+掺杂TiO2复合石墨烯光催化剂的制备方法
CN105664969A (zh) * 2016-01-23 2016-06-15 武汉理工大学 一种二氧化钛-铂-四氧化三钴三元复合光催化材料及其制备方法
CN106283099A (zh) * 2016-08-25 2017-01-04 岭南师范学院 一种表面活性剂辅助电沉积合成锐钛矿型二氧化钛和二氧化锰纳米复合材料的方法及其应用
CN106807344A (zh) * 2016-12-14 2017-06-09 湖北大学 一种锐钛矿相和TiO2(B)复合纳米结构二氧化钛光催化剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Colossal and anomalous dielectric behavior in grain-oriented TiO2;Guojing Wang et al.;《J Mater Sci》;20191213;第55卷;第3940-3950页 *
Guojing Wang et al..Colossal and anomalous dielectric behavior in grain-oriented TiO2.《J Mater Sci》.2019,第55卷第3940-3950. *
Guojing Wang et al..Ti3+ self-doping in bulk of rutile TiO2 for enhanced photocatalysis.《Scripta Materialia》.2018,第162卷第28-32页. *
Ti3+ self-doping in bulk of rutile TiO2 for enhanced photocatalysis;Guojing Wang et al.;《Scripta Materialia》;20181228;第162卷;摘要 *

Also Published As

Publication number Publication date
CN113000043A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
Wang et al. Fabrication of 1D/2D BiPO4/g-C3N4 heterostructured photocatalyst with enhanced photocatalytic efficiency for NO removal
Zhang et al. Controlling oxygen vacancies and enhanced visible light photocatalysis of CeO2/ZnO nanocomposites
Liu et al. Ionic liquid-assisted hydrothermal preparation of BiOI/BiOCl heterojunctions with enhanced separation efficiency of photo-generated charge pairs and photocatalytic performance
Qin et al. Ultrasonic-assisted fabrication of a direct Z-scheme BiOI/Bi2O4 heterojunction with superior visible light-responsive photocatalytic performance
CN110947376B (zh) 单原子贵金属锚定缺陷型WO3/TiO2纳米管、其制备和应用
Hou et al. Synergistic effect of {101} crystal facet and bulk/surface oxygen vacancy ratio on the photocatalytic hydrogen production of TiO2
CN113000043B (zh) 一种二氧化钛量子点表面暴露的晶面结构的调控工艺及其与二维材料构建的复合光催化剂
Yang et al. One step solvothermal synthesis of Bi/BiPO4/Bi2WO6 heterostructure with oxygen vacancies for enhanced photocatalytic performance
CN101252988A (zh) 含有氧化锌纳米线的近场光催化剂
Zhang et al. Synthesis of g-C3N4 microrods with superficial C, N dual vacancies for enhanced photocatalytic organic pollutant removal and H2O2 production
Yang et al. Investigation of photocatalytic properties based on Fe and Ce Co-doped ZnO via hydrothermal method and first principles
Lv et al. Less is more: Enhancement of photocatalytic activity of g-C3N4 nanosheets by site-selective atomic layer deposition of TiO2
CN112657533A (zh) 一种碳氮硫共掺杂的异质结光催化剂及其制备方法和用途
Peng et al. Synthesis of one-dimensional Bi 2 O 3–Bi 5 O 7 I heterojunctions with high interface quality
Kang et al. Preparation of Zn2GeO4 nanosheets with MIL-125 (Ti) hybrid photocatalyst for improved photodegradation of organic pollutants
CN114308079A (zh) 一种硫化镉-双助催化剂复合光催化材料及其制备方法与应用
Guo et al. Core-shell-like BiOBr@ BiOBr homojunction for enhanced photocatalysis
Zhang et al. Sandwich-like SnO 2/MoO 3− x prepared by electrostatic self-assembly for high-performance photocatalysis
Cai et al. Room-temperature MXene-derived Ti3+ and rich oxygen vacancies in carbon-doped amorphous TiOx nanosheets for enhanced photocatalytic activity
Zhai et al. Enhanced photocatalytic degradation of tetracycline over magnetic La0. 7Sr0. 3MnO3/g-C3N4 p–n heterojunction arising from the synergistic effects of oxygen vacancy defects and high-potential photogenerated electrons
Ren et al. Decoration of CdMoO4 micron polyhedron with Pt nanoparticle and their enhanced photocatalytic performance in N2 fixation and water purification
CN113493221B (zh) 一种二氧化钼/二氧化钛纳米复合材料及其制备方法和应用
CN1259128C (zh) 光催化活性氟掺杂二氧化钛纳米材料的制备方法
Yang et al. In1–xGaxBO3 (0≤ x≤ 0.5)–Solvothermal Synthesis, Morphology, and Performance in Photocatalytic Water Reduction
Jiao et al. Hollow carbon spheres coated with layered MoS2 decorated carbon nitride for enhanced photocatalytic hydrogen performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220211

CF01 Termination of patent right due to non-payment of annual fee