CN112994494B - 适用于飞跨电容多电平变换电路的电压平衡控制方法 - Google Patents

适用于飞跨电容多电平变换电路的电压平衡控制方法 Download PDF

Info

Publication number
CN112994494B
CN112994494B CN201911279470.5A CN201911279470A CN112994494B CN 112994494 B CN112994494 B CN 112994494B CN 201911279470 A CN201911279470 A CN 201911279470A CN 112994494 B CN112994494 B CN 112994494B
Authority
CN
China
Prior art keywords
flying capacitor
current
voltage
flying
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911279470.5A
Other languages
English (en)
Other versions
CN112994494A (zh
Inventor
沈国桥
徐国金
何宁
章进法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Shanghai Co Ltd
Original Assignee
Delta Electronics Shanghai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Shanghai Co Ltd filed Critical Delta Electronics Shanghai Co Ltd
Priority to CN201911279470.5A priority Critical patent/CN112994494B/zh
Priority to US17/118,961 priority patent/US11418131B2/en
Priority to EP20213419.3A priority patent/EP3836376B1/en
Publication of CN112994494A publication Critical patent/CN112994494A/zh
Application granted granted Critical
Publication of CN112994494B publication Critical patent/CN112994494B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4833Capacitor voltage balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/073Charge pumps of the Schenkel-type
    • H02M3/077Charge pumps of the Schenkel-type with parallel connected charge pump stages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel

Abstract

本公开的适用于飞跨电容多电平变换电路的电压平衡控制方法是确认多个输出电感输出的电感电流所构成的总电流的幅值小于或等于电流阈值时,以控制输出电感的电感电流,进而改变飞跨电压,因此,本公开的电压平衡控制方法是于轻载状态下对电感电流的流向进行控制,而不会对电流方向产生误判,且还可在较小的电感电流的情况下,控制飞跨电容的飞跨电压,故本公开的电压平衡控制方法可以轻易地实现飞跨电容的电容电压平衡控制。

Description

适用于飞跨电容多电平变换电路的电压平衡控制方法
技术领域
本公开涉及一种电压平衡控制方法,特别涉及一种适用于一飞跨电容多电平变换电路的电压平衡控制方法。
背景技术
近年来,对大功率变流装置的需求呈现出快速增长的趋势。其中,多电平变换电路因具有降低开关元件电压应力的显着特点,得以快速发展并较多地应用在高压大功率领域。多电平变换电路的优点还体现在滤波电感电压的高频化和低电压,使滤波电感得以小型化并减小损耗。此外,多电平变换电路还具有电压(dv/dt)变化率低,和共模电压波动小等优点。
目前多电平变换电路应用主要有三种结构分别为:二极管钳位型、级联型和飞跨电容型。其中,二极管钳位型的多电平变换电路有直流母线侧的各电容的电压均压困难和电压应力不均匀等缺点。级联型的多电平变换电路则具有需要多个不共地的独立直流电源的缺点。而飞跨电容型的多电平变换电路与前两种相比,由于其电路简单、元件数量少,并有大量的冗余开关状态,故具有更容易向多电平发展的优良特点。
然而对于飞跨电容的多电平变换电路而言,飞跨电容的电压平衡是一个必须予以解决的关键点。一般而言,飞跨电容多电平变换电路包含多个飞跨电容、从一直流正极依次串接到一直流负极的偶数个开关和与偶数个开关所串接的中间点连接的一输出电感,每一飞跨电容的两端是分别跨接至串接中间点两侧的对应相邻两个开关的连接点。而飞跨电容的电压平衡控制方式,就是通过对飞跨电容进行充放电控制,使飞跨电容的电压保持为期望的电压值,且多电平变换电路更通过调节开关相位和占空比来输出多个直流电平以控制输出电感的电流或电压,实现功率变换和调节。此外,由于用以实现飞跨电容电压平衡控制的占空比调节量不仅与飞跨电容的期望的电压变化量相关,而且占空比调节方向与电流方向(输出电感的电流的正负)相关联,因此,输出电感的电流方向是决定飞跨电容充放电并维持电容电压平衡的至关重要的因素。
然而,在多电平变换电路轻载运行,即多电平变换电路的电感电流较小时,或交流/直流变换电路及直流/交流变换电路中的交流电流过零点附近时,由于高频开关引起的电流纹波是造成电流方向反复切换,极易使控制系统对电流方向产生误判,并且过小的电感电流使得飞跨电容的电容电压难以实现快速的平衡控制,这一问题已经成为限制飞跨电容多电平变换电路实际应用的主要因素。
有鉴于此,如何发展一种可改善上述现有技术缺失的适用于飞跨电容多电平变换电路的电压平衡控制方法,实为相关技术领域者目前所迫切需要解决的问题。
发明内容
本公开的目的在于提供一种适用于飞跨电容多电平变换电路的电压平衡控制方法,可实现其飞跨电容的电容电压平衡控制。
为达上述目的,本公开的一优选实施方式为提供一种电压平衡控制方法,适用于飞跨电容多电平变换电路。飞跨电容多电平变换电路包含相互并联且接收直流输入电压的多个飞跨电容多电平变换支路,每个飞跨电容多电平变换支路包含至少一飞跨电容、从直流输入电压的正极依次串接到直流输入电压的负极的偶数个开关和输出电感,每一飞跨电容的两端分别跨接至偶数个开关所串接的中间点两侧的对应相邻两个开关的连接点,每一输出电感的一端连接于中间点,每一输出电感的另一端连接于飞跨电容多电平变换电路的输出端。飞跨电容多电平变换电路的电压平衡控制方法的步骤如下所述,首先,执行步骤S1,依据每一飞跨电容多电平变换支路的偶数个开关的个数而对应生成偶数个控制信号,以分别控制偶数个开关切换,在对应的输出电感中生成电感电流,并在每一飞跨电容的两端上形成对应的飞跨电压。接着,执行步骤S2,检测并确认多个飞跨电容中每一飞跨电容两端的飞跨电压是否满足预设条件。当步骤S2的确认结果为否时执行步骤S3,检测并确认多个输出电感输出的电感电流所构成的总电流的幅值是否小于或等于电流阈值,或是比较并确认飞跨电容多电平变换电路的输出总电流控制给定值是否小于或等于电流阈值。当步骤S3的确认结果为是时执行步骤S4,控制每一飞跨电容多电平变换支路的偶数个开关切换,使得多个飞跨电容多电平变换支路中的至少一飞跨电容多电平变换支路的输出电感的电感电流的流向与总电流的流向相反。执行完步骤S4后执行步骤S5,根据偶数个开关的切换,基于每一飞跨电容多电平变换支路的输出电感的电感电流,控制每一飞跨电容的飞跨电压改变以接近各飞跨电容对应的基准电压,并返回步骤S2。
附图说明
图1为本公开优选实施例的电压平衡控制方法的流程示意图。
图2为图1所示的电压平衡控制方法所适用的飞跨电容多电平变换电路的电路结构示意图。
图3为图1所示的电压平衡控制方法所适用的另一飞跨电容多电平变换电路的电路结构示意图。
附图标记说明:
1:飞跨电容多电平变换电路
10:飞跨电容多电平变换支路
b:基本单元
Lf:输出电感
C1、C2、C3:飞跨电容
Q1、Q2、Q3、Q1b、Q2b、Q3b:开关
m:中间点
V1:输入电压
V2:输出电压
Cf:输出电容
S1~S6:电压平衡控制方法的步骤
具体实施方式
体现本公开特征与优点的一些典型实施例将在后段的说明中详细叙述。应理解的是本公开能够在不同的实施方式上具有各种的变化,其皆不脱离本公开的范围,且其中的说明及附图在本质上是当作说明的用,而非用于限制本公开。
图1为本公开优选实施例的电压平衡控制方法的流程示意图,图2为图1所示的电压平衡控制方法所适用的飞跨电容多电平变换电路的电路结构示意图。请参阅图1及图2,本实施例的电压平衡控制方法是适用于飞跨电容多电平变换电路1,其中飞跨电容多电平变换电路1是具有输出总电流控制给定值,且包含相互并联且接收一直流输入电压V1的多个飞跨电容多电平变换支路10,其中飞跨电容多电平变换支路10的个数可例如图2所示为三个,且每一飞跨电容多电平变换支路10可视为由至少一个基本单元b和输出电感Lf所组成,例如图1所示,每一飞跨电容多电平变换支路10是由两个基本单元b和输出电感Lf组成飞跨电容三电平变换支路。当然,本公开并不局限基本单元b的数量,如图3所示,每一飞跨电容多电平变换支路10还可由三个基本单元b和输出电感Lf组成飞跨电容四电平变换支路,而下述实施例是以图2所示的飞跨电容三电平变换支路进行说明。
每一飞跨电容多电平变换支路10包含两个飞跨电容,例如C1及C2,及从直流输入电压V1的正极依次串接到直流输入电压V1的负极的偶数个半导体的开关(如图所示串联接的开关Q1、开关Q2、开关Q1b及开关Q2b),及输出电感Lf,其中,每一基本单元b包含一个飞跨电容所构成的输入端和由两个开关所构成的输出端(例如由飞跨电容C1与开关Q1、开关Q1b所组成的基本单元,及由飞跨电容C2与开关Q2、开关Q2b所组成的基本单元),其中每一基本单元b内的两个开关的切换方式为互补。每一飞跨电容C1及C2的两端是分别跨接至偶数个开关Q1、Q2、Q1b及Q2b所串接的中间点m两侧的对应相邻的两个开关的连接点,例如飞跨电容C1的两端是跨接至中间点m两侧的对应相邻的两个开关Q1及Q1b,飞跨电容C2的两端是跨接至中间点m两侧的对应相邻的两个开关Q2及Q2b,且偶数个开关Q1、Q2、Q1b及Q2b是以相同的开关周期运行。
最远离输出电感Lf的基本单元b的输入端(电压输入端/高压侧)是与高电压直流母线(未附图)电连接而接收输入电压V1,而其输出端连接至下一个基本单元b的输入端,其后的基本单元b的输入端均依次连接到上一个基本单元b的输出端,各基本单元b以此方式完成前后级联。其中,相互级联的每一基本单元b的飞跨电容C1及C2并联连接于各自的基本单元b的输入端,并与对应的基本单元b内的两个开关的一端连接,两个开关的另一端连接至下一个基本单元b的输入端,而最后一个基本单元b的输出端则与输出电感Lf的一端连接。每一基本单元b通过各自开关的切换作动而在各自的输出端获得输出电流。输出电感Lf的一端连接于偶数个开关Q1、Q2、Q1b及Q2b所串接的中间点m,输出电感Lf的另一端连接于飞跨电容多电平变换电路1的输出端,而输出电感Lf接收对应的所有基本单元b所输出的输出电流而形成电感电流,且多个输出电感Lf所输出的电感电流汇流为总电流,并经由输出电容Cf进行低通滤波而输出输出电压V2至低压侧。
于本实施例中,飞跨电容多电平变换电路1还可包含控制单元(未附图),控制单元与每一飞跨电容多电平变换支路10的偶数个开关连接,用以当飞跨电容多电平变换电路1开始运行时,对应地依据每一飞跨电容多电平变换支路10的偶数个开关Q1、Q2、Q1b及Q2b的个数而生成对应数量的偶数个控制信号,以分别控制偶数个开关Q1、Q2、Q1b及Q2b切换,而使得与偶数个开关Q1、Q2、Q1b及Q2b对应的输出电感Lf中生成对应的电感电流,且可进一步控制每一电感电流的流向,且每一飞跨电容C1及C2亦可依据对应的偶数个开关Q1、Q2、Q1b及Q2b的切换而于每一飞跨电容C1及C2的两端形成对应的飞跨电压。
另外,飞跨电容多电平变换电路1还可包含检测单元(未附图),检测单元与飞跨电容C1及C2、多个输出电感Lf及控制单元连接,用以检测每一飞跨电容C1及C2的飞跨电压及多个输出电感Lf输出的电感电流所构成的总电流,并输出对应的检测结果至控制单元,使得控制单元根据检测结果输出对应的控制信号。
本公开的飞跨电容多电平变换电路1的电压平衡控制方法则如图1所示,先执行步骤S1,依据每一飞跨电容多电平变换支路10的偶数个开关Q1、Q2、Q1b及Q2b的个数而对应生成偶数个控制信号,以分别控制偶数个开关Q1、Q2、Q1b及Q2b切换,在对应的输出电感Lf中生成电感电流,并在每一飞跨电容C1及C2上形成对应的飞跨电压。接着,执行步骤S2,检测并确认多个飞跨电容C1及C2中每一飞跨电容C1及C2两端的飞跨电压是否满足一预设条件。于一些实施例中,预设条件为每一飞跨电容C1及/或C2的飞跨电压是否位于一预设电压区间内,例如预设电压区间为不小于对应的飞跨电容C1及C2所预设的基准电压的91%,且不大于对应的飞跨电容C1及C2所预设的基准电压的105%,但不以此为限。
当步骤S2的确认结果为否,即多个飞跨电容C1及C2中每一飞跨电容C1及/或C2两端的飞跨电压并未满足预设条件,例如飞跨电容C1及/或C2的飞跨电压的偏差值是超出飞跨电容多电平变换电路1的容许范围外,此时,执行步骤S3,检测并确认多个输出电感Lf输出的电感电流所构成的总电流的幅值是否小于或等于预设的电流阈值,或是比较并确认飞跨电容多电平变换电路1的输出总电流控制给定值是否小于或等于预设的电流阈值。于一些实施例中,电流阈值为每一飞跨电容多电平变换电路1的额定电流乘以预设的比值,例如但不限为飞跨电容多电平变换电路1的额定电流的10%。
当步骤S3的确认结果为是,即多个输出电感Lf输出的电感电流所构成的总电流的幅值或检测飞跨电容多电平变换电路1的输出总电流控制给定值的幅值小于或等于电流阈值,而使得飞跨电容多电平变换电路1处于轻载情况下时,执行步骤S4,控制每一飞跨电容多电平变换支路10的偶数个开关Q1、Q2、Q1b及Q2b切换,使得多个飞跨电容多电平变换支路10中的至少一飞跨电容多电平变换支路10的输出电感Lf的电感电流的流向与多个输出电感Lf输出的电感电流所构成的总电流的流向相反。执行完步骤S4后执行步骤S5,根据偶数个开关Q1、Q2、Q1b及Q2b切换,基于每一飞跨电容多电平变换支路10的输出电感Lf的电感电流,控制每一飞跨电容C1及C2的飞跨电压改变以接近各飞跨电容C1及C2对应的基准电压。执行完步骤S5后,再重新执行步骤S2。
由于多个飞跨电容多电平变换支路10中的至少一飞跨电容多电平变换支路10的输出电感Lf的电感电流的流向的改变,使得多个相互并联的飞跨电容多电平变换支路10之间增加环流的效果,从而提升对于飞跨电容C1及C2的电压调节能力。此外,由于多个飞跨电容多电平变换支路10中的至少一飞跨电容多电平变换支路10的输出电感Lf的电感电流的流向与多个输出电感Lf输出的电感电流所构成的总电流的流向相反,而使得多个相互并联的飞跨电容多电平变换支路10之间的环流效果对于飞跨电容多电平变换电路1是相互进行内部抵销,而不会改变多个输出电感Lf输出的电感电流所构成的总电流的大小。
此外,为了降低飞跨电容多电平变换电路1内部元件的损耗,本公开的飞跨电容多电平变换电路1还可经由控制输出电感Lf的电感电流的幅值较低而实现上述目的,于本实施例中,于步骤S4中,控制偶数个开关Q1、Q2、Q1b及Q2b切换,并将与多个输出电感Lf输出的电感电流所构成的总电流的流向相反的每一飞跨电容多电平变换支路10的输出电感Lf的电感电流定义为第一电流值,且使得第一电流值为预设的电流阈值,再除以多个飞跨电容多电平变换支路10的个数,以降低输出电感Lf的电感电流的幅值。
且于步骤S4中,还可控制每一飞跨电容多电平变换支路10的偶数个开关Q1、Q2、Q1b及Q2b切换,使得多个飞跨电容多电平变换支路10中的剩余的飞跨电容多电平变换支路10的输出电感Lf的电感电流的流向与多个输出电感Lf输出的电感电流所构成的总电流的流向相同,其中,控制偶数个开关Q1、Q2、Q1b及Q2b切换,并将与多个输出电感Lf输出的电感电流所构成的总电流的流向相同的每一飞跨电容多电平变换支路10的输出电感Lf的电感电流定义为第二电流值,且使得第二电流值为每一第一电流值的总和加上多个输出电感Lf输出的电感电流所构成的总电流,再除以剩余的飞跨电容多电平变换支路10的个数。
此外,于步骤S4中,为了计算出多个飞跨电容多电平变换支路10中输出电感Lf的电感电流的流向与多个输出电感Lf输出的电感电流所构成的总电流的流向相反的至少一飞跨电容多电平变换支路10的数量,可利用下列公式进行计算,
Figure BDA0002316358200000071
其中,CEIL(X)为大于或等于X的数值的最小整数值,n为多个飞跨电容多电平变换支路10的总个数,Iref为多个输出电感Lf输出的电感电流所构成的总电流,Inom为额定电流,Ith为电流阈值与额定电流之间的比值。而上述公式中,当X=3.5时,CEIL(X)=4,又或者,当X=1.5时,CEIL(X)=2,当然,X的数值并不以此为限。
而于一些实施例中,当步骤S2的确认结果为是,即多个飞跨电容C1及C2中每一飞跨电容C1及/或C2两端的飞跨电压满足预设条件,而使得飞跨电容C1及C2的飞跨电压位于预设电压区间内时,即代表飞跨电容C1及C2的飞跨电压的偏差值是在飞跨电容多电平变换电路1的容许范围之内,而使得飞跨电容多电平变换电路1是运行于正常模式,此时,执行步骤S6,控制每一飞跨电容多电平变换支路10的偶数个开关Q1、Q2、Q1b及Q2b切换,使控制每一飞跨电容多电平变换支路10的输出电感Lf的电感电流为多个输出电感Lf输出的电感电流所构成的总电流除以多个飞跨电容多电平变换支路10的个数。执行步骤S6后则执行步骤S5。
而于一些实施例中,当步骤S3的确认结果为否时,即多个输出电感Lf输出的电感电流所构成的总电流的幅值大于电流阈值时,执行步骤S6。
综上所述,本公开的适用于飞跨电容多电平变换电路的电压平衡控制方法是确认多个输出电感输出的电感电流所构成的总电流的幅值小于或等于电流阈值时,以控制输出电感的电感电流,进而改变飞跨电压,因此,本公开的电压平衡控制方法是于轻载状态下对电感电流的流向进行控制,而不会对电流方向产生误判,且还可在较小的电感电流的情况下,控制飞跨电容的飞跨电压,故本公开的电压平衡控制方法可以轻易地实现飞跨电容的电容电压平衡控制。此外,由于多个飞跨电容多电平变换支路中的至少一飞跨电容多电平变换支路的输出电感的电感电流的流向与多个输出电感输出的电感电流所构成的总电流的流向相反,而使得多个相互并联的飞跨电容多电平变换支路之间的环流效果对于飞跨电容多电平变换电路是相互进行内部抵销,而不会改变多个输出电感输出的电感电流所构成的总电流的大小。

Claims (5)

1.一种电压平衡控制方法,适用于一飞跨电容多电平变换电路,所述飞跨电容多电平变换电路包含相互并联且接收一直流输入电压的多个飞跨电容多电平变换支路,每个所述飞跨电容多电平变换支路包含至少一飞跨电容、从所述直流输入电压的一正极依次串接到所述直流输入电压的一负极的偶数个开关和一输出电感,每一所述飞跨电容的两端分别跨接至所述偶数个开关所串接的一中间点两侧的对应相邻两个所述开关的连接点,每一所述输出电感的一端连接于所述中间点,每一所述输出电感的另一端连接于所述飞跨电容多电平变换电路的一输出端,其中所述飞跨电容多电平变换电路的所述电压平衡控制方法包含:
(a)依据每一所述飞跨电容多电平变换支路的所述偶数个开关的个数而对应生成偶数个控制信号,以分别控制所述偶数个开关切换,在对应的所述输出电感中生成一电感电流,并在每一所述飞跨电容的两端上形成对应的一飞跨电压;
(b)检测并确认所述多个飞跨电容中每一所述飞跨电容的两端的所述飞跨电压是否满足一预设条件,当所述步骤(b)的确认结果为否时,进入步骤(c);当所述步骤(b)的确认结果为是时,跳转至步骤(f);
(c)检测并确认多个所述输出电感输出的所述电感电流所构成的一总电流的幅值是否小于或等于一电流阈值,或是比较并确认所述飞跨电容多电平变换电路的一输出总电流控制给定值是否小于或等于该电流阈值,当所述步骤(c)的确认结果为是时,进入步骤(d);当所述步骤(c)的确认结果为否时,跳转至步骤(f);
(d)控制所述每一所述飞跨电容多电平变换支路的所述偶数个开关切换,使得所述多个飞跨电容多电平变换支路中的至少一所述飞跨电容多电平变换支路的所述输出电感的所述电感电流的流向与所述总电流的流向相反;
(e)根据所述偶数个开关的切换,基于每一所述飞跨电容多电平变换支路的所述输出电感的所述电感电流,控制每一所述飞跨电容的所述飞跨电压的改变,并返回执行所述步骤(b);以及
(f)控制每一所述飞跨电容多电平变换支路的所述偶数个开关切换,使控制每一所述飞跨电容多电平变换支路的所述输出电感的所述电感电流为多个所述输出电感输出的所述电感电流所构成的所述总电流除以所述多个飞跨电容多电平变换支路的个数,然后进入步骤(e)。
2.如权利要求1所述的电压平衡控制方法,其中所述步骤(b)中,所述预设条件为每一所述飞跨电容的所述飞跨电压是否位于一预设电压区间内。
3.如权利要求2所述的电压平衡控制方法,其中所述步骤(b)中,所述预设电压区间为不小于对应的所述飞跨电容的一基准电压的91%,且不大于对应的所述飞跨电容的所述基准电压的105%。
4.如权利要求1所述的电压平衡控制方法,其中于所述步骤(c)中,所述电流阈值为每一所述飞跨电容多电平变换支路的一额定电流乘以预设的一比值。
5.如权利要求1所述的电压平衡控制方法,其中于所述步骤(d)中,至少一所述飞跨电容多电平变换支路的所述输出电感的电流流向与所述总电流的流向相反的所述飞跨电容多电平变换支路的个数A为:
Figure FDA0003504647430000021
其中,CEIL(X)为大于或等于X的数值的最小整数值,n为所述多个飞跨电容多电平变换支路的总个数,Iref为所述总电流,Inom为所述飞跨电容多电平变换支路的一额定电流,Ith为所述电流阈值与所述额定电流之间的一比值。
CN201911279470.5A 2019-12-13 2019-12-13 适用于飞跨电容多电平变换电路的电压平衡控制方法 Active CN112994494B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201911279470.5A CN112994494B (zh) 2019-12-13 2019-12-13 适用于飞跨电容多电平变换电路的电压平衡控制方法
US17/118,961 US11418131B2 (en) 2019-12-13 2020-12-11 Voltage balance control method for flying-capacitor multilevel converter
EP20213419.3A EP3836376B1 (en) 2019-12-13 2020-12-11 Voltage balance control method for flying-capacitor multilevel converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911279470.5A CN112994494B (zh) 2019-12-13 2019-12-13 适用于飞跨电容多电平变换电路的电压平衡控制方法

Publications (2)

Publication Number Publication Date
CN112994494A CN112994494A (zh) 2021-06-18
CN112994494B true CN112994494B (zh) 2022-04-19

Family

ID=73834276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911279470.5A Active CN112994494B (zh) 2019-12-13 2019-12-13 适用于飞跨电容多电平变换电路的电压平衡控制方法

Country Status (3)

Country Link
US (1) US11418131B2 (zh)
EP (1) EP3836376B1 (zh)
CN (1) CN112994494B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11575332B1 (en) * 2020-09-29 2023-02-07 Smart Wires Inc. High current voltage-source converter
CN115149807A (zh) * 2022-06-23 2022-10-04 华为数字能源技术有限公司 多电平直流变换器和飞跨电容的电压控制方法、控制装置
CN115425847B (zh) * 2022-11-07 2023-02-28 广东希荻微电子股份有限公司 功率转换电路与电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206272519U (zh) * 2016-11-23 2017-06-20 艾默生网络能源有限公司 一种多电平逆变器
CN107306083A (zh) * 2016-04-22 2017-10-31 台达电子企业管理(上海)有限公司 飞跨电容的电压平衡控制装置与电压平衡控制方法
CN108011504A (zh) * 2016-11-01 2018-05-08 台达电子工业股份有限公司 驱动方法与驱动装置
CN109412439A (zh) * 2017-08-18 2019-03-01 丰郅(上海)新能源科技有限公司 抑制开关切换引发振荡的飞跨电容多电平逆变系统及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9160232B2 (en) 2013-02-15 2015-10-13 St-Ericsson Sa Efficient regulation of capacitance voltage(s) in a switched mode multilevel power converter
US9608512B2 (en) * 2013-03-15 2017-03-28 Maxim Integrated Products, Inc. Soft start systems and methods for multi-stage step-up converters
US9246407B2 (en) * 2013-03-29 2016-01-26 General Electric Company Voltage balancing system and method for multilevel converters
US10840805B2 (en) * 2013-09-24 2020-11-17 Eta Devices, Inc. Integrated power supply and modulator for radio frequency power amplifiers
US9325252B2 (en) * 2014-01-13 2016-04-26 Rockwell Automation Technologies, Inc. Multilevel converter systems and sinusoidal pulse width modulation methods
US9318974B2 (en) * 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
JP6454939B2 (ja) * 2014-10-29 2019-01-23 パナソニックIpマネジメント株式会社 電力変換装置、およびそれを用いたパワーコンディショナ
US20160352251A1 (en) * 2015-05-31 2016-12-01 Abb Technology Ag Active Neutral-Point-Clamped (ANPC) Converters and Operating Methods Thereof
US10924031B2 (en) * 2018-05-22 2021-02-16 The Governors Of The University Of Alberta Internal paralleled active neutral point clamped converter with logic-based flying capacitor voltage balancing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107306083A (zh) * 2016-04-22 2017-10-31 台达电子企业管理(上海)有限公司 飞跨电容的电压平衡控制装置与电压平衡控制方法
CN108011504A (zh) * 2016-11-01 2018-05-08 台达电子工业股份有限公司 驱动方法与驱动装置
CN206272519U (zh) * 2016-11-23 2017-06-20 艾默生网络能源有限公司 一种多电平逆变器
CN109412439A (zh) * 2017-08-18 2019-03-01 丰郅(上海)新能源科技有限公司 抑制开关切换引发振荡的飞跨电容多电平逆变系统及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Design and Control of Fault-Tolerant Nonisolated Multiphase Multilevel DC–DC Converters for Automotive Power Systems;Michael Gleissner,et al;《IEEE Transactions on Industry Applications 》;20151102;第52卷(第2期);第1785-1795页 *
Logic-Equations Method for Active Voltage-Control of a Flying-Capacitor Multilevel Converter Topology;Vahid Dargahi,et al;《IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society》;20181231;第1291-1298页 *
New Flying-Capacitor-Based Multilevel Converter with Optimized Number of Switches and Capacitors Controlled with a New Logic-Form-Equation Based Active Voltage Balancing Technique;Vahid Dargahi1,et al;《2016 IEEE Applied Power Electronics Conference and Exposition 》;20160512;第1481-1488页 *

Also Published As

Publication number Publication date
EP3836376A1 (en) 2021-06-16
US11418131B2 (en) 2022-08-16
CN112994494A (zh) 2021-06-18
EP3836376B1 (en) 2022-03-02
US20210184594A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
CN112994494B (zh) 适用于飞跨电容多电平变换电路的电压平衡控制方法
CN108923632B (zh) 一种多电平boost装置
KR102653533B1 (ko) Dc/dc 컨버터 및 그 컨버터 제어
US20180026518A1 (en) Multi-Stage Multilevel DC-DC Step-Down Converter
CN102857130B (zh) 多电平功率变换器及其制造方法和操作方法
JP4745234B2 (ja) 電源装置
CN107612405B (zh) 一种光伏固态变压器
KR20140123099A (ko) 차량용 전력 변환 장치 및 차량
Bayat et al. A new cascaded multilevel inverter with reduced number of switches
WO2021255866A1 (ja) 電力変換装置
EP3726722A1 (en) Interleaved power converter
US20220045622A1 (en) Flying capacitor (fc)-type 3-level power conversion device
CN113794373B (zh) 多电平直流转换器及供电系统
Dahono et al. A family of modular multilevel bidirectional DC-DC converters for high voltage-ratio and low-ripple applications
TWI796697B (zh) 模組化多電位換流器的控制方法及控制系統與輸電系統
US9843272B2 (en) Power converter capable of outputting a plurality of different levels of voltages
Lagier et al. Analysis of voltage and current unbalance in a multi-converter topology for a DC-based offshore wind farm
Changizian et al. A novel FPGA control scheme to improve power factor and reduce the harmonic distortion in a three phase VIENNA rectifier
Mo et al. Model predictive control of Z-source neutral point clamped inverter
KR101224589B1 (ko) 멀티레벨 인버터
CN113765425A (zh) 模块化多电平换流器的控制方法及控制系统与输电系统
Sandeep A five-level switched-capacitor boosting inverter with reduced switch current stress
US20190238065A1 (en) Control of phase currents of an inverter
US20230091474A1 (en) Power supply conversion topology of multiphase switch capacitor resonant cavity conversion circuit with full-wave output rectification and power supply conversion structures based on power supply conversion topology
Jiang et al. A novel wireless control strategy for input-series output-parallel inverter system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant