CN112993031A - 双渐变沟道结构hemt射频器件及其制备方法 - Google Patents

双渐变沟道结构hemt射频器件及其制备方法 Download PDF

Info

Publication number
CN112993031A
CN112993031A CN202110170407.9A CN202110170407A CN112993031A CN 112993031 A CN112993031 A CN 112993031A CN 202110170407 A CN202110170407 A CN 202110170407A CN 112993031 A CN112993031 A CN 112993031A
Authority
CN
China
Prior art keywords
layer
gan
column
cap layer
frequency device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110170407.9A
Other languages
English (en)
Other versions
CN112993031B (zh
Inventor
孙慧卿
丁霄
王鹏霖
黄志辉
郭志友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202110170407.9A priority Critical patent/CN112993031B/zh
Publication of CN112993031A publication Critical patent/CN112993031A/zh
Application granted granted Critical
Publication of CN112993031B publication Critical patent/CN112993031B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明涉及双渐变沟道结构HEMT射频器件及其制备方法,包括依次层叠于衬底上的第一GaN层、第一Al组分渐变AlGaN层、第二GaN层、第二Al组分渐变AlGaN层以及GaN帽层,其中,柱状凹槽分别沿GaN帽层两端延伸至第一GaN层中一定深度,n型GaN柱分别设置于柱状凹槽中;漏极和源极分别设置于n型GaN柱的表面,T型栅极设置于GaN帽层的表面。该结构中GaN柱连接渐变AlGaN层与GaN层形成三维电子气,将渐变层变为渐变沟道,调节电场的分布,提高了器件的击穿电压和截止频率,该双沟道使得源栅和栅漏之间的通道电阻减小,从而提高器件的跨导和截止频率线性度,使其在高频下保持较好的功率性能和线性度。

Description

双渐变沟道结构HEMT射频器件及其制备方法
技术领域
本发明涉及HEMT射频器件领域,尤其涉及一种双渐变沟道结构HEMT射频器件及其制备方法。
背景技术
高电子迁移率晶体管(HEMT)是一种场效应晶体管,其是由两种带隙不同的材料形成异质结,为载流子提供沟道,HEMT可以在极高频下工作,所以逐渐成为5G基站射频功放主流。相较于基于Si的横向扩散金属氧化物半导体和GaAs,在基站端GaN HEMT射频器件更能有效满足5G的高功率、高通信频段和高效率等要求,所以GaN HEMT射频性能的研究受到了许多关注。
GaN HEMT器件的射频特性参数主要有截止频率(fT)、最高振荡频率(fmax)、击穿电压(BV)、最大可用增益(MAG)、最大稳定增益(MSG)、功率附加效率(PAE)、最小噪声系数(NFmin)、输出功率和线性品质因素(OPI3/PDC)等。等比例缩小器件的方法提高了频率特性,但恶化了器件的击穿电压。如何在保障击穿电压的同时,提高截止频率、功率附加效率,减小器件的通道电阻,提高器件的跨导和截止频率的线性度,是亟待解决的问题之一。
发明内容
针对现有技术中存在的技术问题,本发明的首要目的是提供一种双渐变沟道结构HEMT射频器件及其制备方法,该HEMT射频器件中采用双AlGaN渐变层与GaN层形成异质结,第一Al组分渐变AlGaN层和第二Al组分渐变AlGaN层与第一n型GaN柱和第二n型GaN柱连接,第一n型GaN柱连接至漏极,第二n型GaN柱连接至源极,该结构使得Al组分渐变AlGaN层与GaN层形成三维电子气,将渐变层变为渐变沟道,调节电场的分布,提高了器件的击穿电压和截止频率,并且第一Al组分渐变AlGaN层自上而下Al组分逐渐增加,保证了两沟道之间的连通性。该双沟道使得源栅和栅漏之间的通道电阻减小,从而提高器件的跨导和截止频率线性度,使其在高频下保持较好的功率性能和线性度。另一方面,基于本发明的器件结构,其制备工艺相较于其它结构的器件简单易操作,易于工业化生产。
基于上述目的,本发明至少提供如下技术方案:
双渐变沟道结构HEMT射频器件,包括:依次层叠于衬底上的AlN缓冲层、第一GaN层、第一Al组分渐变AlGaN层、第二GaN层、第二Al组分渐变AlGaN层以及GaN帽层,其中,所述GaN帽层、第二Al组分渐变AlGaN层、第二GaN层、第一Al组分渐变AlGaN层以及第一GaN层组成的叠层两端沿所述GaN帽层指向第一GaN层的方向设置有柱状凹槽,所述柱状凹槽沿所述GaN帽层延伸至所述第一GaN层中一定深度,第一n型GaN柱和第二n型GaN柱分别设置于所述柱状凹槽中;
漏极设置于所述第一n型GaN柱的表面,源极设置于所述第二n型GaN柱的表面,钝化层设置于所述GaN帽层的表面,所述钝化层中开设有开口,T型栅极设置于所述钝化层的表面,通过该开口与所述GaN帽层连接。
进一步地,沿所述GaN帽层指向所述衬底的方向,所述第一Al组分渐变AlGaN层中的Al组分由0增加至0.1。
进一步地,沿所述GaN帽层指向所述衬底的方向,所述第二Al组分渐变AlGaN层中的Al组分由0.1减小至0。
进一步地,所述n型GaN柱由所述GaN帽层延伸至所述第一GaN层厚度的三分之一至二分之一位置处。
进一步地,所述第一Al组分渐变AlGaN层的厚度为6~8nm,所述第一GaN层的厚度为20~30nm。
进一步地,所述第二Al组分渐变AlGaN层的厚度为8~10nm,所述第二GaN层的厚度为5~10nm。
进一步地,GaN帽层的厚度为2~5nm,所述n型GaN柱的厚度为35~40nm。
进一步地,所述钝化层优选氮化硅。
本发明还提供一种双渐变沟道结构HEMT射频器件的制备方法,包括以下步骤:
在衬底上依次外延生长AlN缓冲层、第一GaN层、第一Al组分渐变AlGaN层、第二GaN层、第二Al组分渐变AlGaN层以及GaN帽层;
沿所述GaN帽层两端朝向所述衬底的方向刻蚀至所述第一GaN层一定深度形成柱状凹槽;
在所述柱状凹槽内外延生长n型GaN柱层;
在GaN帽层和n型GaN柱层上淀积钝化层,刻蚀所述钝化层,在所述n型GaN柱层区域形成源极和漏极窗口;
在所述源极和漏极窗口沉积金属层形成与n型GaN柱连接的源极和漏极;
刻蚀所述钝化层,在所述源极和漏极之间形成T型开口;
在所述T型开口中沉积金属层形成T型栅极。
进一步地,沿所述GaN帽层指向所述衬底的方向,所述第一Al组分渐变AlGaN层中的Al组分由0增加至0.1,所述第二Al组分渐变AlGaN层中的Al组分由0.1减小至0;所述n型GaN柱由所述GaN帽层延伸至所述第一GaN层厚度的三分之一至二分之一位置处。
附图说明
图1是本发明一实施例的双渐变沟道结构HEMT射频器件的剖面结构示意图。
具体实施方式
接下来将结合本发明的附图对本发明实施例中的技术方案进行清楚、完整地描述,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其它实施例,均属于本发明保护的范围。
下面来对本发明做进一步详细的说明。参见图1,本发明一实施例提供一种双渐变沟道结构HEMT射频器件,包括衬底1,和依次层叠于衬底1上的AlN缓冲层2、第一GaN层3、第一Al组分渐变AlGaN层6、第二GaN层7、第二Al组分渐变AlGaN层8以及GaN帽层9。
其中,GaN帽层9、第二Al组分渐变AlGaN层8、第二GaN层7、第一Al组分渐变AlGaN层6以及第一GaN层3组成的叠层两端,沿GaN帽层9指向第一GaN层3的方向设置有柱状凹槽,如图1所示,柱状凹槽沿GaN帽层延伸至第一GaN层3中一定深度,第一n型GaN柱4和第二n型GaN柱5分别设置于柱状凹槽中。优选地,柱状凹槽延伸至第一GaN层3中第一GaN层3厚度的三分之一至二分之一位置处。在一优选实施例中,柱状凹槽延伸至第一GaN层3中第一GaN层3厚度的三分之一位置处。
漏极10设置于所述第一n型GaN柱4的表面,源极11设置于所述第二n型GaN柱5的表面,钝化层13设置于GaN帽层9的表面,位于源极11和漏极10之间。钝化层13中开设有开口,如图1所示,T型栅极12的栅足部设置于钝化层13的开口中,通过该开口与GaN帽层9连接。钝化层13优选氮化硅。
该实施例中,衬底1优选Si衬底。第一GaN层3的厚度优选20~30nm。第一Al组分渐变AlGaN层6中Al组分自上向下由0增加至0.1,其厚度优选6~8nm。第二GaN层7的厚度优选5~10nm。第二Al组分渐变AlGaN层8中Al组分自下向上由0增加至0.1,其厚度优选8~10nm。GaN帽层9的厚度优选2~5nm。
第一n型GaN柱4和第二n型GaN柱5分别与第一Al组分渐变AlGaN层6和第二Al组分渐变AlGaN层8连接,Al组分渐变AlGaN层与GaN层形成三维电子气,将渐变层变为渐变沟道,Al组分渐变AlGaN层和GaN形成异质结的沟道,调节电场的分布,提高了器件的击穿电压和截止频率,并且第一Al组分渐变AlGaN层6自上而下Al组分逐渐增加,保证了两沟道之间的连通性。双沟道使得源栅和栅漏之间的通道电阻减小,从而提高器件的跨导和截止频率线性度,使其在高频下保持较好的功率性能和线性度。
基于上述器件结构,本发明还提供一种双渐变沟道结构的HEMT射频器件的制备方法,包括如下步骤:
首先,在衬底上依次外延生长AlN缓冲层、第一GaN层、第一Al组分渐变AlGaN层、第二GaN层、第二Al组分渐变AlGaN层以及GaN帽层。该实施例中,选用金属有机化学气相沉积(MOCVD)工艺进行外延生长,也可以根据实际的需要选择合适的外延生长工艺。
选用MOCVD工艺在Si衬底上生长一薄层Al,生长温度为940℃时通入H2 10min。调整生长温度至1060℃时通入TMA,时间为12s。
接着采用脉冲式MOCVD生长工艺在Al层上生长AlN缓冲层。即生长过程中TMA是持续通入的,而NH3是采用脉冲式的通入方式,即分别在T1时间内通入NH3,在T2时间内NH3不通入反应室。
继续采用MOCVD工艺在AlN缓冲层上生长GaN层,通入H2、NH3和镓源,设定生长温度为920℃,生长厚度为20nm~30nm。之后在GaN层上生长渐变AlxGa1-xN层,通入H2、NH3、镓源和铝源,渐变AlxGa1-xN层的生长厚度为6nm~8nm。其中渐变AlxGa1-xN层的生长过程中,铝源的流量逐渐减少至零,即获得由下至上Al元素摩尔含量x由10%~0%渐变的AlxGa1-xN层。
接着在渐变AlxGa1-xN层上生长GaN层,通入H2、NH3和镓源,设定生长温度为920℃,生长厚度为5nm~10nm。之后在GaN层上生长Al组分渐变的AlxGa1-xN层,通入H2、NH3、镓源和铝源,渐变AlxGa1-xN层的生长厚度为8nm~10nm,铝源的流量由零逐渐增加,即获得由下至上Al元素摩尔含量x由0%~10%渐变的AlxGa1-xN层。接着在渐变AlxGa1-xN层上生长GaN帽层,通入H2、NH3和镓源,保持生长温度为920℃,GaN帽层的生长厚度为2nm~5nm。
沿GaN帽层两端朝向衬底的方向刻蚀至第一GaN层一定深度形成柱状凹槽。该实施例中,选用氯基电感耦合等离子体(ICP)刻蚀工艺,从GaN帽层两端向下刻蚀至GaN层3深度10nm左右处,在两端形成柱状凹槽。
在柱状凹槽内外延生长n型GaN柱层。具体地,继续选用MOCVD工艺在两端带有凹槽的GaN层上外延生长出厚度为35nm~40nm的n型GaN柱。此时n型GaN柱的表面与GaN帽层的表面齐平。
在GaN帽层和n型GaN柱层上淀积钝化层,刻蚀钝化层,在n型GaN柱层区域形成源极和漏极窗口。该实施例中,钝化层优选氮化硅。
在源极和漏极窗口沉积金属层形成与n型GaN柱连接的源极和漏极。具体地,选用电子束蒸发法淀积Ti/Al/Ni/Au复合金属层制作成源极和漏极,源极和漏极分别淀积于n型GaN柱表面,与两侧n型GaN柱连接。
接着刻蚀钝化层,在源极和漏极之间形成T型开口。在开口中沉积金属层形成T型栅极。具体地,在离漏极约70nm处的钝化层表面沉积电子束胶层,利用电子束直写工艺,在电子束胶层表面形成栅足图形。以电子束胶层为掩膜,ICP刻蚀下方的SiN钝化层,形成栅槽。接着去胶后再匀涂电子束胶,利用电子束曝光套刻栅头图形,沉淀金属后进行剥离,形成T型栅极,如图1所示,T型栅极的栅足通过钝化层中的开口与GaN帽层连接,T型栅极的栅头位于钝化层的表面。最后用绝缘介质材料分别覆盖源极、漏极和栅极。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.双渐变沟道结构HEMT射频器件,其特征在于,包括:依次层叠于衬底上的AlN缓冲层、第一GaN层、第一Al组分渐变AlGaN层、第二GaN层、第二Al组分渐变AlGaN层以及GaN帽层,其中,所述GaN帽层、第二Al组分渐变AlGaN层、第二GaN层、第一Al组分渐变AlGaN层以及第一GaN层组成的叠层两端沿所述GaN帽层指向第一GaN层的方向设置有柱状凹槽,所述柱状凹槽沿所述GaN帽层延伸至所述第一GaN层中一定深度,第一n型GaN柱和第二n型GaN柱分别设置于所述柱状凹槽中;
漏极设置于所述第一n型GaN柱的表面,源极设置于所述第二n型GaN柱的表面,钝化层设置于所述GaN帽层的表面,所述钝化层中开设有开口,T型栅极设置于所述钝化层的表面,通过该开口与所述GaN帽层连接。
2.根据权利要求1的所述双渐变沟道结构HEMT射频器件,其特征在于,沿所述GaN帽层指向所述衬底的方向,所述第一Al组分渐变AlGaN层中的Al组分由0增加至0.1。
3.根据权利要求1或2的所述双渐变沟道结构HEMT射频器件,其特征在于,沿所述GaN帽层指向所述衬底的方向,所述第二Al组分渐变AlGaN层中的Al组分由0.1减小至0。
4.根据权利要求1的所述双渐变沟道结构HEMT射频器件,其特征在于,所述n型GaN柱由所述GaN帽层延伸至所述第一GaN层厚度的三分之一至二分之一位置处。
5.根据权利要求2的所述双渐变沟道结构HEMT射频器件,其特征在于,所述第一Al组分渐变AlGaN层的厚度为6~8nm,所述第一GaN层的厚度为20~30nm。
6.根据权利要求3的所述双渐变沟道结构HEMT射频器件,其特征在于,所述第二Al组分渐变AlGaN层的厚度为8~10nm,所述第二GaN层的厚度为5~10nm。
7.根据权利要求4至6之一的所述双渐变沟道结构HEMT射频器件,其特征在于,GaN帽层的厚度为2~5nm,所述n型GaN柱的厚度为35~40nm。
8.根据权利要求1的所述双渐变沟道结构HEMT射频器件,其特征在于,所述钝化层优选氮化硅。
9.双渐变沟道结构HEMT射频器件的制备方法,其特征在于,包括以下步骤:
在衬底上依次外延生长AlN缓冲层、第一GaN层、第一Al组分渐变AlGaN层、第二GaN层、第二Al组分渐变AlGaN层以及GaN帽层;
沿所述GaN帽层两端朝向所述衬底的方向刻蚀至所述第一GaN层一定深度形成柱状凹槽;
在所述柱状凹槽内外延生长n型GaN柱层;
在GaN帽层和n型GaN柱层上淀积钝化层,刻蚀所述钝化层,在所述n型GaN柱层区域形成源极和漏极窗口;
在所述源极和漏极窗口沉积金属层形成与n型GaN柱连接的源极和漏极;
刻蚀所述钝化层,在所述源极和漏极之间形成T型开口;
在所述T型开口中沉积金属层形成T型栅极。
10.根据权利要求9的所述制备方法,其特征在于,沿所述GaN帽层指向所述衬底的方向,所述第一Al组分渐变AlGaN层中的Al组分由0增加至0.1,所述第二Al组分渐变AlGaN层中的Al组分由0.1减小至0;所述n型GaN柱由所述GaN帽层延伸至所述第一GaN层厚度的三分之一至二分之一位置处。
CN202110170407.9A 2021-02-08 2021-02-08 双渐变沟道结构hemt射频器件及其制备方法 Active CN112993031B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110170407.9A CN112993031B (zh) 2021-02-08 2021-02-08 双渐变沟道结构hemt射频器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110170407.9A CN112993031B (zh) 2021-02-08 2021-02-08 双渐变沟道结构hemt射频器件及其制备方法

Publications (2)

Publication Number Publication Date
CN112993031A true CN112993031A (zh) 2021-06-18
CN112993031B CN112993031B (zh) 2022-10-18

Family

ID=76349113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110170407.9A Active CN112993031B (zh) 2021-02-08 2021-02-08 双渐变沟道结构hemt射频器件及其制备方法

Country Status (1)

Country Link
CN (1) CN112993031B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038898A (zh) * 2021-09-24 2022-02-11 威科赛乐微电子股份有限公司 一种GaAs复合型纳米线的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681830A (zh) * 2012-09-11 2014-03-26 中国科学院微电子研究所 双沟道晶体管及其制备方法
CN105355657A (zh) * 2015-11-27 2016-02-24 西安电子科技大学 多沟道鳍式结构的绝缘栅AlGaN/GaN高电子迁移率晶体管
US20190006501A1 (en) * 2017-06-30 2019-01-03 Epistar Corporation Semiconductor device
US20190252535A1 (en) * 2018-02-14 2019-08-15 Hrl Laboratories, Llc Highly Scaled Linear GaN HEMT Structures
US20210013307A1 (en) * 2018-02-14 2021-01-14 Hrl Laboratories, Llc Binary III-Nitride 3DEG heterostructure HEMT with graded channel for high linearity and high power applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681830A (zh) * 2012-09-11 2014-03-26 中国科学院微电子研究所 双沟道晶体管及其制备方法
CN105355657A (zh) * 2015-11-27 2016-02-24 西安电子科技大学 多沟道鳍式结构的绝缘栅AlGaN/GaN高电子迁移率晶体管
US20190006501A1 (en) * 2017-06-30 2019-01-03 Epistar Corporation Semiconductor device
US20190252535A1 (en) * 2018-02-14 2019-08-15 Hrl Laboratories, Llc Highly Scaled Linear GaN HEMT Structures
US20210013307A1 (en) * 2018-02-14 2021-01-14 Hrl Laboratories, Llc Binary III-Nitride 3DEG heterostructure HEMT with graded channel for high linearity and high power applications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIAO ZHANG 等: "Study of AlGaN/GaN Vertical Superjunction HEMT for Improvement of Breakdown Voltage and Specific On-Resistance", 《IEEE ACCESS》 *
SIYU DENG 等: ""High performance enhancement-mode HEMT with 3DEG to conduct current and 3DHG as back barrier"", 《SUPERLATTICES AND MICROSTRUCTURES》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038898A (zh) * 2021-09-24 2022-02-11 威科赛乐微电子股份有限公司 一种GaAs复合型纳米线的制备方法

Also Published As

Publication number Publication date
CN112993031B (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
KR100955249B1 (ko) 질화물 반도체 소자 및 그 제조 방법
JP6018360B2 (ja) 化合物半導体装置及びその製造方法
JP5587564B2 (ja) 電界効果トランジスタおよび電界効果トランジスタの製造方法
CN102130159B (zh) 高电子迁移率晶体管
JP2007165431A (ja) 電界効果型トランジスタおよびその製造方法
CN112993032B (zh) 漏极阶梯场板结构射频hemt器件及其制备方法
JP5101143B2 (ja) 電界効果トランジスタ及びその製造方法
CN112993031B (zh) 双渐变沟道结构hemt射频器件及其制备方法
JP5509544B2 (ja) 半導体装置及びその製造方法
CN112951910A (zh) BAlN/GaN高电子迁移率晶体管及其制作方法
CN110504316B (zh) 具有分割子器件的GaN高电子迁移率晶体管及制造方法
CN115799331B (zh) 一种基于蓝宝石衬底的多凹槽AlGaN/GaN HEMT器件
CN113257910B (zh) 梳型栅结构hemt射频器件及其制备方法
CN114361121B (zh) 一种带有p-SnO栅帽层的新型金刚石基垂直GaN-HEMT器件及其制备方法
CN113937155B (zh) 一种组份渐变复合势垒层hemt器件及其制备方法
CN106449406B (zh) 一种垂直结构GaN基增强型场效应晶体管及其制造方法
JP4869576B2 (ja) 窒化物半導体装置及びその製造方法
CN114725214A (zh) 一种多层钝化凹槽栅mis-hemt器件及其制备方法
CN112885899A (zh) 一种自对准低欧姆接触电阻GaN HEMT器件及其制造方法
CN113725297A (zh) 一种具有盖帽层的常开型氧化镓基hfet器件及其制备方法
CN109346522B (zh) 一种半导体结构及其形成方法
CN113745333A (zh) 一种含δ掺杂势垒层的常关型氧化镓基MIS-HEMT器件及其制备方法
CN113270494B (zh) 双渐变沟道氮化镓基垂直结构射频器件及其制备方法
KR100458163B1 (ko) 이리듐 함유 게이트 전극을 갖춘 hfet 소자 및 반도체소자와 이들의 제조방법
CN115274845B (zh) 一种凹陷式Fin-MESFET栅结构HEMT及制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant