CN112986943B - 一种计算蜂窝复合材料目标电磁散射的方法 - Google Patents

一种计算蜂窝复合材料目标电磁散射的方法 Download PDF

Info

Publication number
CN112986943B
CN112986943B CN202110224534.2A CN202110224534A CN112986943B CN 112986943 B CN112986943 B CN 112986943B CN 202110224534 A CN202110224534 A CN 202110224534A CN 112986943 B CN112986943 B CN 112986943B
Authority
CN
China
Prior art keywords
honeycomb
reflection
equivalent
target
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110224534.2A
Other languages
English (en)
Other versions
CN112986943A (zh
Inventor
魏仪文
李佳敏
高孟言
柴水荣
郭立新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202110224534.2A priority Critical patent/CN112986943B/zh
Publication of CN112986943A publication Critical patent/CN112986943A/zh
Application granted granted Critical
Publication of CN112986943B publication Critical patent/CN112986943B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明涉及雷达技术领域,公开了一种计算蜂窝复合材料目标电磁散射的方法,包括以下步骤:S1、根据强干扰理论确定蜂窝复合材料的等效介电常数和等效磁导率;S2、根据等效介电常数和等效磁导率,采用广义传播矩阵法确定带有PEC基板的蜂窝复合材料在不同入射角下的反射系数;S3、根据反射系数计算入射电磁波在蜂窝复合材料目标表面产生的感应电流,采用物理光学积分法确定每次反射时产生感应电流的散射场,叠加得到总散射场,这种计算方法,能够简化复杂蜂窝状复合材料的散射场的计算,在良好的精度下大大降低计算成本。

Description

一种计算蜂窝复合材料目标电磁散射的方法
技术领域
本发明涉及雷达技术领域,特别涉及一种计算蜂窝复合材料目标电磁散射的方法。
背景技术
如今,蜂窝复合材料因其高强度-重量比,耐高温性和高微波吸收性而广泛用于航空航天和飞行器设计领域。因此,蜂窝结构覆盖的目标电磁散射成为重要的课题。克服此问题有三个挑战。第一,蜂窝复合材料的成分复杂度高,所以很难描述其电磁参数。第二,蜂窝的精细结构需要大量的网格来描述其几何轮廓,这些网格将导致电磁仿真中巨大的计算量。第三,每个六边形蜂窝是电小尺寸,而目标通常是电大尺寸,解决具有不同网格尺寸的多尺度问题是一个巨大的挑战。所有这些问题使人们非常关注如何从具有复合材料的目标中有效地建立散射模型。
在电磁散射领域中,所有的模拟方法都可以分为两类:数值方法(例如矩量法(MoM),时域有限差分法(FDTD),有限元方法(FEM)等)和高频方法(例如物理光学(PO),弹跳射线法(SBR),迭代物理光学(IPO)等)。目标和复杂的蜂窝都将在网格划分中产生大量未知,处理这些未知数远远超出了数值方法的能力。因此,高频方法更为实用,在高频法中,SBR被广泛用于解决复杂目标的散射。然而,在这个问题中,蜂窝单元电尺寸很小,每个单元的长度仅为约2-4毫米,高频方法在解决电小问题时不够精确。而且,蜂窝内壁中通常涂有损耗材料。每当射线撞击界面时,它将分成两束射线(反射射线和透射射线)。这将大大增加计算成本。
为了克服上述问题,我们提出了一种从蜂窝复合材料覆盖的目标上获得散射特性的新方法。根据等效原理,周期性蜂窝结构可以用强干涉理论等效为具有一定介电常数和磁导率的介质层。然后通过广义传播矩阵法推导了各向异性材料在每个入射角的反射系数。然后将得到的反射系数代入SBR方法中,得到覆盖蜂窝复合材料的目标雷达散射截面。这样,可以简化复杂蜂窝状复合材料的散射计算,在良好的精度下大大降低计算成本。
发明内容
本发明提供一种计算蜂窝复合材料目标电磁散射的方法,能够简化复杂蜂窝状复合材料的散射场的计算,在良好的精度下大大降低计算成本。
本发明提供了一种计算蜂窝复合材料目标电磁散射的方法,包括以下步骤:
S1、根据强干扰理论确定蜂窝复合材料的等效介电常数和等效磁导率;
S2、根据等效介电常数和等效磁导率,采用广义传播矩阵法确定带有PEC(Perfectly Electrical Conductor)基板的蜂窝复合材料在不同入射角下的反射系数;
S3、根据反射系数计算入射电磁波在蜂窝复合材料目标表面产生的感应电流,采用物理光学积分法确定每次反射时产生感应电流的散射场,叠加得到总散射场。
上述步骤S1计算等效介电常数和等效磁导率的方法为:
将蜂窝看作具有等效介电常数ε=diag(ε||)和等效磁导率μ=diag(μ||)的单轴介质,垂直于蜂窝轴线方向的等效介电常数ε和平行于蜂窝轴线方向的等效介电常数ε||分别表示为:
ε||=(1-t/a)2εz+t/a·(2-t/a)εa
其中,εa代表蜂窝壁的相对介电常数,t为蜂窝壁的厚度,2a为两个相邻的蜂窝单元格之间的距离,εzs分别是蜂窝填充材料平行于蜂窝轴线方向的等效介电常数和垂直于蜂窝轴线方向的等效介电常数,表示为:
εz=[1-d/(a-t)]2+d/(a-t)[2-d/(a-t)]εb
其中,εb是涂覆在蜂窝内壁表面上的有损耗材料的相对介电常数;t为蜂窝框架的厚度,2a为两个相邻的蜂窝单元格之间的距离,d是涂覆在蜂窝壁内表面上的有损耗材料的厚度;
相应地,垂直于蜂窝轴线方向的等效磁导率μ和平行于蜂窝轴线方向的等效磁导率μ||分别表示为:
μ||=(1-t/a)2μz+t/a·(2-t/a)μa
其中,μa代表蜂窝壁的相对磁导率,μz,μs分别是蜂窝填充材料平行于蜂窝轴线方向的等效磁导率和垂直于蜂窝轴线方向的等效磁导率,表示为:
μz=[1-d/(a-t)]2+d/(a-t)[2-d/(a-t)]μb
其中,μb是涂覆在蜂窝壁内表面上的有损耗材料的相对磁导率;t为蜂窝框架的厚度,2a为两个相邻的蜂窝单元格之间的距离,d是涂覆在蜂窝壁内表面上的有损耗材料的厚度。
上述步骤S2计算蜂窝复合材料反射系数的方法为:
蜂窝和PEC基板的反射系数Rhh,Rhv,Rvh,Rvv的表达式为:
Rhv=Rvh=0
其中,exp(-j2kh)为空间相位延迟,h为蜂窝单元格的高度,θ为入射角,
上述步骤S3计算入射电磁波在蜂窝复合材料目标表面产生感应电流的散射场的方法为:
将入射电磁波认为是一系列平行传播的射线管,射线从射线管中发出,多次反射追踪N阶反射射线的方向,射线管初始的传播方向,即入射波传播方向为电场矢量为Εi,则磁场矢量为:
第N次反射的反射方向为:
其中为第N次反射前入射电磁波的方向,/>为目标与该射线管相交位置处的单位法向量;
第N次反射的反射电场强度为:
其中为第N次反射前的入射电场,R(N)为第N次反射的反射系数,j为虚数单位,k为电磁波波数,k=2π/λ,λ为电磁波波长,r(N)为第N次反射和第N-1次反射之间射线传播的距离;
第N次反射磁场强度为:
其中为第N次反射前入射电磁波的方向;
射线在目标表面产生感应电磁流分别为:
其中R是蜂窝复合材料的反射系数,进而通过对所有感应电流的辐射求和来获得散射场;
其中为目标与射线管相交位置处的单位法向量,/>为第N次反射后的磁场矢量,/>
根据物理光学积分,得到每次反射感应电流散射场为:
其中,r为射线与目标相交点到接收雷达的距离,为散射方向单位向量,η=120π为真空中的波阻抗,Δs为射线管与目标表面相交的面积;
目标总散射场为
目标雷达散射截面(RCS)为:
其中,
与现有技术相比,本发明的有益效果在于:
本发明利用强干扰理论和广义传播矩阵法得到蜂窝复合材料的等效介电常数,等效磁导率和反射系数,进而利用物理光学积分法计算得每次反射产生的散射场再叠加得到总散射场。实验表明,本发明的方法具有较高的仿真精度,而且对计算机的资源占用也比较小,能够简化复杂蜂窝状复合材料的散射场的计算,在良好的精度下大大降低计算成本。
附图说明
图1为蜂窝单元的几何形状。
图1中的a是单位单元的俯视图;图1中的b展示出了单位单元的侧视图。
图2为蜂窝模型及其等效模型。
图2中的a显示了PEC基板上蜂窝的实际模型;图2中的b显示了等效模型。
图3为发射面与入射方向示意图。
图4为射线追踪示意图。
图5为MoM和等效模型在不同入射角下获得的反射系数的比较。
图6为MoM和等效模型在不同频率下获得的反射系数的比较。
图7为实际的蜂窝模型及其等效模型。
图8为实际模型和等效模型的双站RCS的比较。
图9为实测模型和环境。
图9中的a显示了实测模型和环境;图9中的b是模型的照片;图9中的c示出了蜂窝布置的细节。
图10为等效模型与实测数据的RCS比较。
图11为带蜂窝和不带蜂窝的飞机的单站散射。
具体实施方式
下面结合附图1-11,对本发明的一个具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
如图1所示,本发明实施例提供的一种计算蜂窝复合材料目标电磁散射的方法,包括以下步骤:
步骤1,根据强干扰理论确定蜂窝复合材料的等效介电常数和等效磁导率;
蜂窝的几何形状如图1所示。根据强干扰理论,当入射波的波长远大于单元格的大小时,可以忽略蜂窝的每个单元格之间的耦合。图1中的a是蜂窝单元的俯视图。图1中的b展示出了蜂窝单元的侧视图。材料1是蜂窝壁,蜂窝壁的厚度为t,两个相邻的蜂窝单元格之间的距离为2a。材料2是涂覆在每个蜂窝内壁表面上的有损耗材料,d是材料2的厚度。材料3是其他填充材料(通常是空气),每个单元格的高度是h。
蜂窝可以看作是具有等效介电常数ε=diag(ε||)和等效磁导率μ=diag(μ||)的单轴介质。等效介电常数表示为:
ε||=(1-t/a)2εz+t/a·(2-t/a)εa
其中,εa代表蜂窝结构的相对介电常数,εzs分别是材料3的介电常数和非介电常数。它们表示为:
εz=[1-d/(a-t)]2+d/(a-t)[2-d/(a-t)]εb
其中,εb是材料2的相对介电常数。
将以上公式中ε全部替换为μ即可得到平行于蜂窝轴线方向和垂直于蜂窝轴线方向的等效磁导率μ||,μ
步骤2,通过建立蜂窝模型的等效模型以及步骤1得到的等效介电常数和等效磁导率,采用广义传播矩阵法确定带有PEC基底的蜂窝复合材料在不同入射角下的反射系数;
基于广义传播矩阵法,我们推导了带有PEC基底的蜂窝复合材料的反射系数。图2中的a显示了PEC基板上蜂窝的实际模型。图2中的b显示了等效模型。区域0是充满空气的半空间。区域1是蜂窝复合材料,可以等效于具有特定介电常数和磁导率的材料。
根据麦克斯韦方程,我们可以获得以下矩阵方程:
其中S=[Ex,Ey,Hx,Hy]T,C是一个4×4尺寸矩阵。上式的一般解是:
S(z)=a·exp(jλz)·B
其中,a=[a1,a2,a3,a4]是一个4×4尺寸矩阵,ai(i=1,2,3,4)是对应于第i个特征值λi的特征向量。B的元素表示分别沿z轴正方向和沿z轴负方向的寻常以及非寻常波的振幅。
入射角是θ。在区域0中,特征值λ=±k0cosθ。相应的,
a0={{0,p,0,-p},{p,0,-p,0},{1,0,1,0},{0,1,0,1}}
a1可以用相同的方式获得:
a1={{0,p,0,-p},{q,0,-q,0},{1,0,1,0},{0,1,0,1}}
其中,
在区域0中,
在区域1中,
其中Γ是具有PEC基底的蜂窝的广义反射系数,其定义为:
下标o和e分别表示寻常波和非寻常波。下标+和-表示波沿z轴或与z轴相反传播。Γ12表示PEC表面的反射,
根据区域0和区域1的界面上的边界条件,我们有:
然后可以得到:
其中,Γ0110,T01,T10是区域0和区域1的界面在整个空间中单独存在时的广义反射和透射系数。根据边界条件S0(0)=S1(0)。我们有,
代入上式,可以获得广义反射系数和透射系数。
根据PEC表面的边界条件,电场的切向分量为零,Ex=0,Ey=0。
定义一个变量 是区域1中特征向量/>的元素。
代入上式,可获得蜂窝和PEC基板的广义反射系数。
在各向同性介质中,寻常波和非寻常波会退化为水平(h)极化和垂直(v)极化。广义反射系数与反射系数之间的关系如下:
总之,Rhh,Rhv,Rvh,Rvv的表达式可写成:
Rhv=Rvh=0
其中,
步骤3,将入射电磁波认为是一系列平行传播的射线管,射线从射线管中发出,多次反射追踪N阶反射射线的方向,通过步骤2得到的反射系数计算射线在目标表面产生的感应电流,进而采用物理光学积分法确定每次反射产生的感应电流散射场,叠加得到总散射场。
将发射至目标的入射电磁波认为是一系列平行传播的射线管,射线从射线管中发出,确定射线在初始传播方向上的磁场矢量。如图3所示,射线管从发射面发射出来,发射面是与入射方向垂直的虚拟平面,该平面与目标中心的距离需要足够远,使得任意延扩该平面都不会与目标相交。每一根射线管都从发射面发出,为保证精度,射线管的边长设置为入射波长的十分之一。
射线管初始的传播方向,即入射波传播方向为电场矢量为Εi,极化方向为hi,则磁场矢量为:
如图4所示,第N次反射的反射方向为:
其中为第N次反射前入射电磁波的方向,/>为目标与该射线管相交位置处的单位法向量。
第N次反射的反射电场强度为:
其中为第N次反射前的入射电场,R(N)为第N次反射的反射系数,j为虚数单位,k为电磁波波数,k=2π/λ,λ为电磁波波长,r(N)为第N次反射和第N-1次反射之间射线传播的距离;
第N次反射磁场强度为:
其中为第N次反射前入射电磁波的方向;
射线在目标表面产生感应电磁流分别为:
其中R是蜂窝复合材料的反射系数。进而可以通过对所有感应电流的辐射求和来获得散射场。
其中为目标与射线管相交位置处的单位法向量,/>为第N次反射后的磁场矢量,/>
根据物理光学积分,得到每次反射感应电流散射场为:
其中,r为射线与目标相交点到接收雷达的距离,为散射方向单位向量,η=120π为真空中的波阻抗,Δs为射线管与目标表面相交的面积。
目标总场为
目标雷达散射截面(RCS)为:
其中,一般情况下
仿真结果:
首先,我们用Feko中的MoM验证了我们理论得到的反射系数。在Feko中,仅建立一个单位单元的物理模型,然后使用周期性边界条件来模拟无限周期蜂窝结构的反射。在此模拟中,蜂窝的高度h=5mm,蜂窝框架的厚度t=0.1mm,两个相邻蜂窝单元之间的距离2a=4.763mm,涂层材料的厚度d=0.04mm,蜂窝框架的介电常数和磁导率为εa=1.6,μa=1.0,涂层材料的介电常数和磁导率为εb=(95.7,45.2),μb=1.0,入射波的频率为f=1.2GHz。图5显示了我们的方法和MoM方法的反射系数与HH和VV偏振下的入射角的比较。我们的方法与MoM的结果显示出良好的一致性。图6显示了我们的方法和MoM与入射波频率的比较,入射角为0°,也达成了良好的一致性。图5和图6都证明了预测反射系数的准确性。
然后,我们用MoM计算带有PEC基板的实际蜂窝中的散射,以及用SBR-PO方法计算等效平板(如图7所示)的散射,入射频率为10GHz,平板的大小为0.4m×0.4m,蜂窝的高度为h=5mm,入射角θi=45°。蜂窝状单元的其他参数与图5相同。图8显示了MoM从现实模型获得的RCS与从等效模型得到的SBR-PO的比较。两条曲线的良好一致性表明我们等效模型的准确性。
接着,通过与实测数据进行比较来证实所提出的模型。我们测量了蜂窝和PEC基底的单站散射。图9中的a显示了实测模型和环境,图9中的b是模型的照片,图9中的c示出了蜂窝布置的细节。被测模型的大小为0.6m×0.6m,蜂窝的高度h=5mm,蜂窝框架的厚度t=0.04mm,两个相邻蜂窝单元之间的距离2a=5.1962mm。图10显示了我们的模型和实测数据的RCS比较,入射角从0°改变为90°。两条曲线显示出良好的一致性,证明了所提出模型的准确性。
然后,将所提出的模型用于通过SBR-PO方法计算覆盖有蜂窝的飞机的散射。将模拟结果与相同尺寸的PEC机翼进行比较。图11显示了带有和不带有蜂窝涂层的飞机的RCS与不同入射角的关系。蜂窝参数与图5相同。仿真结果表明,蜂窝涂层可以大大降低目标的RCS。
本发明公开了一种计算蜂窝复合材料目标电磁散射的有效方法,涉及雷达技术领域,通过将等效反射系数模型与高频方法相结合,提出了一种新的蜂窝复合材料目标电磁散射模型。基于强干涉理论,将蜂窝复合材料视为单轴介质。然后,采用广义传播矩阵法推导了带有PEC基底的蜂窝复合材料的反射系数。最后,将所得到的反射系数引入弹跳射线法和物理光学(SBR-PO)方法中,以获得蜂窝材料覆盖的复杂目标的散射特性。通过分别与数值方法和实测数据进行比较,证明了我们方法的准确性。本发明模拟并讨论了蜂窝材料覆盖目标的散射。
以上公开的仅为本发明的几个具体实施例,但是,本发明实施例并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (3)

1.一种计算蜂窝复合材料目标电磁散射的方法,其特征在于,包括以下步骤:
S1、根据强干扰理论确定蜂窝复合材料的等效介电常数和等效磁导率;
S2、根据等效介电常数和等效磁导率,采用广义传播矩阵法确定带有PEC基板的蜂窝复合材料在不同入射角下的反射系数;
S3、根据反射系数计算入射电磁波在蜂窝复合材料目标表面产生的感应电流,采用物理光学积分法确定每次反射时产生感应电流的散射场,叠加得到总散射场;
所述步骤S1计算等效介电常数和等效磁导率的方法为:
将蜂窝看作具有等效介电常数ε=diag(ε)和等效磁导率μ=diag(μ)的单轴介质,垂直于蜂窝轴线方向的等效介电常数ε和平行于蜂窝轴线方向的等效介电常数ε||分别表示为:
ε=(1-t/a)2εz+t/a·(2-t/a)εa
其中,εa代表蜂窝壁的相对介电常数,t为蜂窝壁的厚度,2a为两个相邻的蜂窝单元格之间的距离,εzs分别是蜂窝填充材料平行于蜂窝轴线方向的等效介电常数和垂直于蜂窝轴线方向的等效介电常数,表示为:
εz=[1-d/(a-t)]2+d/(a-t)[2-d/(a-t)]εb
其中,εb是涂覆在蜂窝内壁表面上的有损耗材料的相对介电常数;t为蜂窝框架的厚度,2a为两个相邻的蜂窝单元格之间的距离,d是涂覆在蜂窝壁内表面上的有损耗材料的厚度;
相应地,垂直于蜂窝轴线方向的等效磁导率μ和平行于蜂窝轴线方向的等效磁导率μ||分别表示为:
μ||=(1-t/a)2μz+t/a·(2-t/a)μa
其中,μa代表蜂窝壁的相对磁导率,μz,μs分别是蜂窝填充材料平行于蜂窝轴线方向的等效磁导率和垂直于蜂窝轴线方向的等效磁导率,表示为:
μz=[1-d/(a-t)]2+d/(a-t)[2-d/(a-t)]μb
其中,μb是涂覆在蜂窝壁内表面上的有损耗材料的相对磁导率;t为蜂窝框架的厚度,2a为两个相邻的蜂窝单元格之间的距离,d是涂覆在蜂窝壁内表面上的有损耗材料的厚度。
2.如权利要求1所述的一种计算蜂窝复合材料目标电磁散射的方法,其特征在于,所述步骤S2计算蜂窝复合材料反射系数的方法为:
蜂窝和PEC基板的反射系数Rhh,Rhv,Rvh,Rvv的表达式为:
Rhv=Rvh=0
其中,exp(-j2kh)为空间相位延迟,h为蜂窝单元格的高度,θ为入射角,
3.如权利要求1所述的一种计算蜂窝复合材料目标电磁散射的方法,其特征在于,所述步骤S3计算入射电磁波在蜂窝复合材料目标表面产生感应电流的散射场的方法为:
将入射电磁波认为是一系列平行传播的射线管,射线从射线管中发出,多次反射追踪N阶反射射线的方向,射线管初始的传播方向,即入射波传播方向为电场矢量为Εi,则磁场矢量为:
第N次反射的反射方向为:
其中为第N次反射前入射电磁波的方向,/>为目标与该射线管相交位置处的单位法向量;
第N次反射的反射电场强度为:
其中为第N次反射前的入射电场,R(N)为第N次反射的反射系数,j为虚数单位,k为电磁波波数,k=2π/λ,λ为电磁波波长,r(N)为第N次反射和第N-1次反射之间射线传播的距离;
第N次反射磁场强度为:
其中为第N次反射前入射电磁波的方向;
射线在目标表面产生感应电磁流分别为:
其中R是蜂窝复合材料的反射系数,进而通过对所有感应电流的辐射求和来获得散射场;
其中为目标与射线管相交位置处的单位法向量,/>为第N次反射后的磁场矢量,
根据物理光学积分,得到每次反射感应电流散射场为:
其中,r为射线与目标相交点到接收雷达的距离,为散射方向单位向量,η=120π为真空中的波阻抗,Δs为射线管与目标表面相交的面积;
目标总散射场为
目标雷达散射截面(RCS)为:
其中,
CN202110224534.2A 2021-03-01 2021-03-01 一种计算蜂窝复合材料目标电磁散射的方法 Active CN112986943B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110224534.2A CN112986943B (zh) 2021-03-01 2021-03-01 一种计算蜂窝复合材料目标电磁散射的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110224534.2A CN112986943B (zh) 2021-03-01 2021-03-01 一种计算蜂窝复合材料目标电磁散射的方法

Publications (2)

Publication Number Publication Date
CN112986943A CN112986943A (zh) 2021-06-18
CN112986943B true CN112986943B (zh) 2024-01-12

Family

ID=76351484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110224534.2A Active CN112986943B (zh) 2021-03-01 2021-03-01 一种计算蜂窝复合材料目标电磁散射的方法

Country Status (1)

Country Link
CN (1) CN112986943B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115184689B (zh) * 2022-05-26 2024-03-19 西安电子科技大学 一种计算蒸发波导环境中目标电磁散射的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB884313A (en) * 1959-08-10 1961-12-13 Gen Electric Co Ltd Improvements in or relating to passive aerials
EP2887092A1 (en) * 2013-12-18 2015-06-24 BAE SYSTEMS plc Computing radar cross section
CN106202656A (zh) * 2016-06-30 2016-12-07 西安理工大学 一种蜂窝吸波结构孔径空间的设计方法
KR101781746B1 (ko) * 2016-06-30 2017-09-25 국방과학연구소 복층구조 복합체의 전자기파 투과율 계산장치 및 복층구조 복합체의 전자기파 투과율 계산방법
CN107942309A (zh) * 2017-10-19 2018-04-20 上海无线电设备研究所 一种稀薄大气层内超高速目标电磁散射快速计算方法
CN110472356A (zh) * 2019-08-21 2019-11-19 上海无线电设备研究所 一种电磁波多入射角度下的复合材料电磁参数计算方法
CN111224245A (zh) * 2020-01-13 2020-06-02 电子科技大学 一种蜂窝电磁吸波加固结构
CN111965619A (zh) * 2020-08-25 2020-11-20 西安电子科技大学 一种基于射线追踪的复杂目标时域散射信号仿真方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB884313A (en) * 1959-08-10 1961-12-13 Gen Electric Co Ltd Improvements in or relating to passive aerials
EP2887092A1 (en) * 2013-12-18 2015-06-24 BAE SYSTEMS plc Computing radar cross section
CN106202656A (zh) * 2016-06-30 2016-12-07 西安理工大学 一种蜂窝吸波结构孔径空间的设计方法
KR101781746B1 (ko) * 2016-06-30 2017-09-25 국방과학연구소 복층구조 복합체의 전자기파 투과율 계산장치 및 복층구조 복합체의 전자기파 투과율 계산방법
CN107942309A (zh) * 2017-10-19 2018-04-20 上海无线电设备研究所 一种稀薄大气层内超高速目标电磁散射快速计算方法
CN110472356A (zh) * 2019-08-21 2019-11-19 上海无线电设备研究所 一种电磁波多入射角度下的复合材料电磁参数计算方法
CN111224245A (zh) * 2020-01-13 2020-06-02 电子科技大学 一种蜂窝电磁吸波加固结构
CN111965619A (zh) * 2020-08-25 2020-11-20 西安电子科技大学 一种基于射线追踪的复杂目标时域散射信号仿真方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
半空间复杂目标的高频分析方法;李晓峰;谢拥军;陈博韬;樊君;;电子与信息学报(第02期);全文 *
蜂窝结构吸波材料的斜入射电磁吸波特性研究;许少峰;孙秦;;航空工程进展(第01期);全文 *

Also Published As

Publication number Publication date
CN112986943A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
Liu et al. Numerical simulation of bistatic scattering from a target at low altitude above rough sea surface under an EM-wave incidence at low grazing angle by using the finite element method
CN109581340A (zh) 一种基于时域弹跳射线法的等离子体电磁散射建模方法
CN110274920B (zh) 体面剖分弹跳射线法分析金属介质目标瞬态特性的方法
CN111259534A (zh) 一种梯度蜂窝吸波材料的等效电磁参数提取方法
Wang et al. Scattering from contaminated rough sea surface by iterative physical optics model
CN112986943B (zh) 一种计算蜂窝复合材料目标电磁散射的方法
Cong et al. An efficient volumetric SBR method for electromagnetic scattering from in-homogeneous plasma sheath
Tian et al. A new approximate fast method of computing the scattering from multilayer rough surfaces based on the Kirchhoff approximation
Hu et al. Study on conformal FDTD for electromagnetic scattering by targets with thin coating
Colliander et al. Electromagnetic scattering from rough surface using single integral equation and adaptive integral method
Cong et al. Numerical modeling of EM scattering from plasma sheath: a review
Xiang et al. A spectral domain approach for the calculation of the scattering of the stratified uniaxial electric anisotropic media under point source excitation with arbitrary orientation
CN115238492A (zh) 一种基于测算融合的金属-介质复合结构电磁散射预测方法
Moore et al. The scattering and absorption characteristics of material-coated periodic gratings under oblique incidence
Le et al. Efficient algorithms for mining frequent weighted itemsets from weighted items databases
Li et al. A fast and efficient method for the composite scattering of a coated object above 3D random rough surfaces
Li et al. Analysis for Scattering of Non-homogeneous Medium by Time Domain Volume Shooting and Bouncing Rays.
Xiong et al. Modeling of tapered anechoic chambers
Liu et al. On the volume-surface integral equation for scattering from arbitrary shaped composite PEC and inhomogeneous bi-isotropic objects
He et al. Diffraction by a Semi-Infinite Parallel-Plate Waveguide with Five-Layer Material Loading: Rigorous Wiener-Hopf Analysis
Man et al. Bistatic RCS prediction of composite scattering from electrically very large ship-sea geometry with a hybrid facet-based ka and shadow-corrected greco scheme
Wei et al. An efficient method to compute EM scattering from target covered with honeycomb composite material
Mao et al. The Research of Standard Model's RCS Calculation and its Analytical Efficiency Based on FASTEM-STUDIO
CN112948980B (zh) 一种蜂窝吸波结构的电磁散射特性仿真建模方法和装置
Yuan et al. Investigating the Scattering Characteristics of Artificial Field-Aligned Irregularities Based on T-Matrix Algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant