CN112981444A - 一种CoP@MoS2复合材料及其制备方法 - Google Patents

一种CoP@MoS2复合材料及其制备方法 Download PDF

Info

Publication number
CN112981444A
CN112981444A CN202110096720.2A CN202110096720A CN112981444A CN 112981444 A CN112981444 A CN 112981444A CN 202110096720 A CN202110096720 A CN 202110096720A CN 112981444 A CN112981444 A CN 112981444A
Authority
CN
China
Prior art keywords
cop
mos
powder
composite material
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110096720.2A
Other languages
English (en)
Inventor
夏田雨
郭海中
周亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202110096720.2A priority Critical patent/CN112981444A/zh
Publication of CN112981444A publication Critical patent/CN112981444A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种CoP@MoS2复合材料及其制备方法,所述方法包含如下步骤:S1、提供二甲基咪唑钴ZIF‑67;S2、将所述二甲基咪唑钴ZIF‑67加热反应以生成Co3O4粉末;S3、将所述Co3O4粉末与磷源粉末置于管式炉中,磷化后生成CoP衬底粉末;S4、将所述CoP衬底粉末分散在溶剂中以形成分散液,然后向所述分散液中加入钼源和硫源并置于反应容器中加热反应,反应完成后自然冷却至室温即得所述CoP@MoS2复合材料。该方法简单,可重复性良好,产率高,所述复合材料具有外部层状,内部中空的结构特点,能够显著增大催化剂的电化学活性表面积,提高催化剂的催化活性和催化稳定性。

Description

一种CoP@MoS2复合材料及其制备方法
技术领域
本发明涉及催化剂材料技术领域,具体涉及一种外部层状,内部中空的CoP@MoS2复合材料及其制备方法。
背景技术
近年来,用于电催化析氢的各类非贵金属硫化物、磷化物、复合物等材料发展迅速。二硫化钼(MoS2)作为其中典型的代表,科研工作者们已经对其做了大量研究。但是,MoS2(002)晶面的催化惰性以及相对较差的电导率严重限制了其催化性能。因此,针对如何提高MoS2催化位点的数量和活性以及如何改善材料的固有电导率,进而增强MoS2的电催化析氢(HER)性能等问题,科研工作者们提出了很多宝贵的解决方案。首先,由于MoS2的催化活性通常来自于边缘或缺陷处的活性位点,因此可以通过调控样品的形貌结构提高MoS2的析氢性能,例如树枝状单分子层MoS2材料具有大量暴露的枝状边缘和缺陷,能够提供催化活性位点。其次,可控相变在调节MoS2的催化活性中也起着重要作用,它不仅提高了MoS2的本征电导率,而且还激活了(002)晶面的催化活性。此外,根据理论和实验研究,MoS2催化位点的活性与位点的氢吸附自由能(ΔGH 0)息息相关,例如Pt原子掺杂的MoS2纳米片(Pt-MoS2),相对于纯MoS2而言,具有显著增强的催化活性,主要是因为掺杂Pt原子可以调控相邻S原子的氢吸附自由能。近年来,选择与导电衬底复合的方式加快电子输运的速率,或者通过衬底与MoS2的相互作用增强催化位点的活性,是提高MoS2复合材料电催化性能非常有效的策略。
目前关于CoS@MoS2的研究很多,而关于CoP@MoS2报道很少,尚缺少操作简单、可重复性高地制备性能优良的CoP@MoS2复合材料的方法。
发明内容
有鉴于此,本发明实施例提供了一种CoP@MoS2复合材料及其制备方法,以解决现有技术中MoS2的自团聚现象和导电性差、活性差等问题。
根据第一方面,本发明实施例提供了一种CoP@MoS2复合材料的制备方法,所述方法包含如下步骤:
S1、提供二甲基咪唑钴ZIF-67;
S2、将所述二甲基咪唑钴ZIF-67加热反应以生成Co3O4粉末;
S3、将所述Co3O4粉末与磷源粉末置于管式炉中,磷化后生成CoP衬底粉末;
S4、将所述CoP衬底粉末分散在溶剂中以形成分散液,向所述分散液中加入钼源和硫源并置于反应容器中加热反应,反应完成后自然冷却至室温即得所述CoP@MoS2复合材料。
可选的是,所述CoP@MoS2复合材料为外部层状、内部中空的CoP@MoS2核壳结构。
可选的是,所述钼源包括二水合钼酸钠,所述硫源包括硫脲。
可选的是,在步骤S4中,所述CoP衬底粉末、二水合钼酸钠、硫脲的质量比为:0.05-0.10:0.10-0.20:0.20-0.40。
可选的是,所述步骤S1具体包括如下步骤:
将六水合硝酸钴和2-甲基咪唑分别溶解在无水甲醇中,搅拌得到均匀溶液,分别标记为A溶液和B溶液;在搅拌过程中将A溶液快速倒入B溶液中,之后在室温下反应;反应完成后,离心收集紫色沉淀,用无水甲醇清洗干净,随后在真空中干燥,得到ZIF-67粉末。
可选的是,所述步骤S2具体包括如下步骤:
将所述ZIF-67粉末碾磨后放置于高温炉中,由室温加热至300-400℃,维持反应0.5-2小时,自然冷却至室温,得到Co3O4粉末。
可选的是,所述步骤S3具体包括如下步骤:
将所述Co3O4粉末和作为磷源的次磷酸钠粉末,分别置于管式炉的下游和上游,在保护性气体氛围中,从室温升到300-450℃,保持磷化1-10小时;随后自然冷却至室温,获得CoP衬底粉末。
可选的是,所述步骤S4具体包括如下步骤:
取一定量CoP衬底粉末放置与去离子水混合,超声并搅拌使其均匀分散以得到分散液;随后,将二水合钼酸钠和硫脲用作钼源和硫源,分别溶解在上述分散液中,搅拌。将得到的均匀溶液倒入反应釜中,再将密封后的反应釜置于干燥箱中,由室温加热至180-220℃反应。自然冷却至室温后,离心收集黑色沉淀物,用无水乙醇和去离子水洗涤干净。最后在真空干燥箱中干燥,得到所述CoP@MoS2复合材料。
本发明还提供一种CoP@MoS2复合材料,所述CoP@MoS2复合材料由上述任一种所述的方法制备,所述CoP@MoS2复合材料为外部层状、内部中空的CoP@MoS2核壳结构。
可选的是,所述CoP@MoS2复合材料的起始电位为69.6-89.6mV、过电位119-143mV、Tafel斜率为49-72mV dec-1
该方法操作非常简单,可重复性高,所述复合材料显著增大了催化剂的电化学活性表面积,提高了催化剂的稳定性。本发明利用一步水热法将MoS2纳米片原位复合在ZIF-67材料衍生出的CoP衬底上,以克服MoS2的自团聚和导电性较差的问题,成功制备出了一系列具有核壳结构的、外部层状、内部中空的CoP@MoS2复合材料。这些复合材料在酸性环境中表现出了优异的电催化析氢性能。
附图说明
通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:
图1显示为本发明的CoP衬底的制备流程。
图2显示为本发明的CoP衬底上负载MoS2的制备流程。
图3显示为本发明(a)ZIF-67样品、(b)Co3O4-1样品、(c)Co3O4-2样品和(d)Co3O4-3样品的SEM图。
图4显示为本发明一系列CoP样品的(a)线性扫描伏安曲线和(b)对应的Tafel斜率图。
图5显示为本发明(a)Co3O4样品、(b)CoP样品、(c)MoS2样品、(d)CoP@MoS2-50样品、(e)CoP@MoS2-75样品和(f)CoP@MoS2-100样品的SEM图。
图6中,(a)和(c)分别为制得的一系列CoP@MoS2复合材料的线性扫描伏安曲线及其对应的Tafel斜率对比图;(b)和(d)分别为40wt.%商业Pt/C、CoP衬底、纯MoS2和CoP@MoS2-75样品的线性扫描伏安曲线及其对应的Tafel斜率对比图;(e)为CoP衬底和一系列CoP@MoS2复合材料的电化学阻抗图谱;(f)为CoP@MoS2-75复合材料在CV循环3000圈前后的线性扫描伏安曲线对比图。
图7显示为本发明制备CoP@MoS2复合材料的流程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种CoP@MoS2复合材料的制备方法,结合图7,所述方法包含如下步骤:
S1、提供二甲基咪唑钴ZIF-67;
如图1所示,在本步骤中,ZIF-67可采用如下方法制备:
将5mmol六水合硝酸钴(Co(NO3)2·6H2O)和40mmol 2-甲基咪唑(C4H6N2)分别溶解在100mL无水甲醇中,搅拌10min得到均匀溶液,分别标记为A和B。在搅拌过程中将A溶液快速倒入B溶液中,溶液颜色由蓝色向深紫色变化,之后在室温下反应24小时。反应完成后,离心收集紫色沉淀,用无水甲醇清洗干净,随后在真空干燥70℃下干燥过夜,最终得到颗粒直径约为300nm的ZIF-67紫色粉末。
图3(a)显示为本发明ZIF-67样品的SEM图,如图所示,ZIF-67为表面光滑的十二面体结构,尺寸约为300nm。
S2、将所述二甲基咪唑钴ZIF-67加热反应以生成Co3O4粉末;
如图1所示,所述步骤S2具体包括如下步骤:
称取200mg上述制备的ZIF-67材料,碾磨10min后放置于高温箱式炉中,以3℃/min的升温速率由室温加热至T℃,维持反应0.5小时。自然冷却至室温,最终得到中间产物Co3O4黑色粉末。在一些具体的实施例中,T℃温度下反应时间为0.5-2小时。
在一些具体的实施例中,T分别为300、350和400,反应0.5小时,由上述各温度得到的Co3O4黑色粉末分别标记为Co3O4-1、Co3O4-2和Co3O4-3。如图3(b)-(d)所示,Co3O4-1在ZIF-67材料300℃氧化后,表面发生了明显的塌陷,开始出现小孔隙;随着温度的增加,Co3O4-2形成了更大的孔隙,而且值得注意的是,Co3O4-2样品不再是十二面体结构,而是转化为了立方体结构,说明在350℃的氧化温度下,立方体结构的稳定性更强;当氧化温度达到400℃时,Co3O4-3样品只保留了骨架结构。
S3、将所述Co3O4粉末与磷源粉末置于管式炉中,磷化后生成CoP衬底粉末;
如图1所示,所述步骤S3具体包括如下步骤:
称量30mg步骤(2)中制备的Co3O4粉末和600mg次磷酸钠(NaH2PO2)粉末,分别置于管式炉的下游和上游,在Ar(气流速率为100sccm)气氛围中,以3℃/min的升温速率从室温升到350℃,保持磷化2小时。随后自然冷却至室温,最终获得CoP衬底粉末。
其中,沿保护性气体如Ar气体流动的方向划分管式炉的上游区域和下游区域,Co3O4粉末放置于管式炉的下游,而磷源如次磷酸钠放置于管式炉的上游。磷源热解产生H3P,Co3O4粉末与H3P反应从而完成磷化过程。
根据步骤S2中T的温度分别为300℃、350℃和400℃得到最终对应的一系列CoP衬底,并分别标记为CoP-1、CoP-2和CoP-3。
图4显示为本发明一系列CoP样品的线性扫描伏安曲线(a)和对应的Tafel斜率图(b),如图4(a)所示,CoP-1、CoP-2和CoP-3样品在电流密度达到10mA cm-2时,过电位分别为136、139和130mV,数值相差不大。但当电流密度接近50mA cm-2时,CoP-1样品的过电位会明显高于其余样品,这种现象具体反映在样品的Tafel斜率上。如图4(b)所示,CoP-1、CoP-2和CoP-3样品的Tafel斜率分别为95、81和62mV dec-1。Tafel斜率越小,说明随着过电位的增加,电流密度增加的越快,表明CoP-2样品有着更好的HER动力学行为。
S4、将所述CoP衬底粉末分散在溶剂中以形成分散液,然后向所述分散液中加入钼源和硫源并置于反应容器中加热反应,反应完成后自然冷却至室温即得所述CoP@MoS2复合材料。
如图2所示,步骤S4具体可包括如下步骤:
取一定量制备的CoP衬底(X mg)放置于25mL去离子水中,超声并搅拌20min使其均匀分散。随后,将150mg二水合钼酸钠(Na2MoO4·2H2O)和310mg硫脲(CH4N2S)用作钼源和硫源,分别溶解在上述均匀溶液中,搅拌5min。随后将得到的均匀溶液倒入到50mL反应釜中,再将密封后的反应釜放到鼓风干燥箱中,由室温加热至200℃反应24小时。自然冷却至室温后,离心收集黑色沉淀物,用无水乙醇和去离子水洗涤干净。最后在真空干燥箱中于60℃下干燥过夜,得到最终产物CoP@MoS2复合材料。在一个具体的实施例中,在反应釜中反应的温度包括180-220℃。
在一些具体实施例中,X分别为0、50、75和100(质量单位:mg),其余反应条件均相同,将一系列相应的反应沉淀分别标记为MoS2、CoP@MoS2-50、CoP@MoS2-75和CoP@MoS2-100。其中,得到CoP@MoS2-50的各原料比例可记为CoP衬底、二水合钼酸钠、硫脲的质量比为0.05:0.15:0.31;得到CoP@MoS2-75的各原料比例可记为CoP衬底、二水合钼酸钠、硫脲的质量比为0.075:0.15:0.31;得到CoP@MoS2-100的各原料比例可记为CoP衬底、二水合钼酸钠、硫脲的质量比为0.1:0.15:0.31。在一些具体的实施例中,CoP衬底、二水合钼酸钠、硫脲的质量比为0.05-0.1:0.10-0.20:0.20-0.40。
图5显示为本发明(a)Co3O4样品、(b)CoP样品、(c)MoS2样品、(d)CoP@MoS2-50样品、(e)CoP@MoS2-75样品和(f)CoP@MoS2-100样品的SEM图。尤其是CoP@MoS2-75样品具有更明显的中空的核壳结构,CoP衬底被MoS2纳米片完全包覆起来。根据其高分辨TEM图可以确定,外围包覆的纳米片的晶格间距为0.62nm,与MoS2的(002)晶面间距相一致,表明外围的包覆物质即为MoS2纳米片。同时可以看到,大部分MoS2纳米片在CoP衬底上是以竖直方向生长的,这种(002)晶面的边缘处可以提供大量的催化活性位点,保证CoP@MoS2-75复合材料具有优异的催化性能。
图6(a)为CoP@MoS2复合材料的LSV曲线对比图,如图所示,在不同衬底量的CoP@MoS2复合材料中,CoP@MoS2-75样品表现出最优异的催化性能,其起始电位(即电流密度达到1mA cm-2时的过电位)为69.6mV,在10mA cm-2的电流密度下,过电位仅为119mV。为了进一步做作比较,对比分析了CoP@MoS2-75、CoP衬底、MoS2以及商业Pt/C的LSV曲线。如图6(b)所示,纯MoS2样品由于其形貌结构及本征导电性等因素,表现出较差的催化性能。而ZIF-67衍生的CoP衬底本身在酸性环境下已经具备一定的析氢性能,将其负载电催化性能较差的MoS2之后,它们的复合产物表现出更加优异的析氢性能。更为关键的是,催化析氢反应的活性位点是由催化剂表面提供的,也就是说,表面的MoS2纳米片为复合材料催化析氢反应提供了大量的催化位点。因此,CoP@MoS2-75复合材料具有优异催化性能可归因于CoP衬底对表面MoS2纳米片催化位点活性的调控作用。由LSV曲线演化得到的Tafel斜率如图6(c)和(d)所示,可以看到,在MoS2、CoP衬底以及CoP@MoS2复合材料中,CoP@MoS2-75样品具有最小的Tafel斜率,其数值为49mV dec-1,接近商业铂碳的32mV dec-1,这说明制备的CoP@MoS2-75样品随着过电位的增加,电流密度能够很快的增大。且Tafel斜率与HER的限速步骤密切相关,接近Volmer-Heyrovsky反应路径的理论值,表明CoP@MoS2-75样品具有更高效的催化析氢反应路径和更快的催化析氢反应速率。对比实验其它样品的性能数据如表1所示。
表1
Figure BDA0002914589240000071
此外,如表2所示,与已报道的MoS2基复合材料进行对比,例如Catkins@MoS2、MoS2/RGO、Cu7S4@MoS2、MoSe2@MoS2、Co9S8@MoS2/CNFs和MoS2/Co3S4,可以知道CoP@MoS2-75样品具备优异的催化性能。
表2
Figure BDA0002914589240000081
综上所述,在本发明中,利用一步水热法将MoS2纳米片原位复合在ZIF-67材料衍生出的CoP衬底上,以克服MoS2的自团聚和导电性较差的问题,成功制备出了一系列具有外部层状、内部中空的CoP@MoS2核壳结构复合材料。这些复合材料在酸性环境中表现出优异的电催化析氢活性,尤其是CoP@MoS2-75样品,电流密度为10mA cm-2,其过电位仅为119mV,Tafel斜率仅为49mV dec-1。除了样品独特的结构以外,CoP和MoS2之间的协同作用也为调控MoS2催化位点活性、增强材料的催化性能做出了重要贡献。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明,本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (10)

1.一种CoP@MoS2复合材料的制备方法,其特征在于,所述方法包含如下步骤:
S1、提供二甲基咪唑钴ZIF-67;
S2、将所述二甲基咪唑钴ZIF-67加热反应以生成Co3O4粉末;
S3、将所述Co3O4粉末与磷源粉末置于管式炉中,磷化后生成CoP衬底粉末;
S4、将所述CoP衬底粉末分散在溶剂中以形成分散液,向所述分散液中加入钼源和硫源并置于反应容器中加热反应,反应完成后自然冷却至室温即得所述CoP@MoS2复合材料。
2.根据权利要求1所述的方法,其特征在于,所述CoP@MoS2复合材料为外部层状、内部中空的CoP@MoS2核壳结构。
3.根据权利要求1或2所述的方法,其特征在于,所述钼源包括二水合钼酸钠,所述硫源包括硫脲。
4.根据权利要求3所述的方法,其特征在于,在步骤S4中,所述CoP衬底粉末、二水合钼酸钠、硫脲的质量比为:0.05-0.10:0.10-0.20:0.20-0.40。
5.根据权利要求1或2所述的方法,其特征在于,所述步骤S1具体包括如下步骤:
将六水合硝酸钴和2-甲基咪唑分别溶解在无水甲醇中,搅拌得到均匀溶液,分别标记为A溶液和B溶液;在搅拌过程中将A溶液快速倒入B溶液中,之后在室温下反应;反应完成后,离心收集紫色沉淀,用无水甲醇清洗干净,随后在真空中干燥,得到ZIF-67粉末。
6.根据权利要求1或2所述的方法,其特征在于,所述步骤S2具体包括如下步骤:
将所述ZIF-67粉末碾磨后放置于高温炉中,由室温加热至300-400℃,维持反应0.5-2小时;自然冷却至室温,得到Co3O4粉末。
7.根据权利要求1或2所述的方法,其特征在于,所述步骤S3具体包括如下步骤:
将所述Co3O4粉末和作为磷源的次磷酸钠粉末,分别置于管式炉的下游和上游,在保护性气体氛围中,从室温升到300-450℃,保持磷化1-10小时;随后自然冷却至室温,获得CoP衬底粉末。
8.根据权利要求1或2所述的方法,其特征在于,所述步骤S4具体包括如下步骤:
取一定量CoP衬底粉末与去离子水混合,超声并搅拌使其均匀分散以得到分散液;随后,将二水合钼酸钠和硫脲用作钼源和硫源,分别溶解在上述分散液中,搅拌;随后将得到的均匀溶液倒入反应釜中,再将密封后的反应釜置于干燥箱中,由室温加热至180-220℃反应;自然冷却至室温后,离心收集黑色沉淀物,用无水乙醇和去离子水洗涤干净;最后在真空干燥箱中干燥,得到所述CoP@MoS2复合材料。
9.一种CoP@MoS2复合材料,其特征在于,所述CoP@MoS2复合材料由权利要求1-8任一项所述的方法制备,所述CoP@MoS2复合材料为外部层状、内部中空的CoP@MoS2核壳结构。
10.根据权利要求9所述的复合材料,其特征在于,所述CoP@MoS2复合材料的起始电位为69.6-89.6 mV、过电位119-143 mV、Tafel斜率为49-72 mV dec-1
CN202110096720.2A 2021-01-25 2021-01-25 一种CoP@MoS2复合材料及其制备方法 Pending CN112981444A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110096720.2A CN112981444A (zh) 2021-01-25 2021-01-25 一种CoP@MoS2复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110096720.2A CN112981444A (zh) 2021-01-25 2021-01-25 一种CoP@MoS2复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112981444A true CN112981444A (zh) 2021-06-18

Family

ID=76344774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110096720.2A Pending CN112981444A (zh) 2021-01-25 2021-01-25 一种CoP@MoS2复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112981444A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559881A (zh) * 2021-08-12 2021-10-29 吉林化工学院 一种复合光催化剂、制备方法及其在分解水制氢中的应用
CN115347323A (zh) * 2022-09-01 2022-11-15 陕西科技大学 一种BC负载MOFs衍生CNF/CoP复合材料及其制备与应用方法
CN115672356A (zh) * 2021-07-28 2023-02-03 天津工业大学 一种CoP/MoS2复合光催化剂的制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIEHUA BAO ET AL: "Engineering water splitting sites in three-dimensional flower-like Co-Ni-P/MoS2 heterostructural hybrid spheres for accelerating electrocatalytic oxygen and hydrogen evolution", 《JOURNAL OF MATERIALS CHEMISTRY》 *
YUANCAI GE ET AL: "Ultrathin MoS2 nanosheets decorated hollow CoP heterostructures for enhanced hydrogen evolution reaction", 《ACS SUSTAINABLE CHEMISTRY&ENGINEERING》 *
周亮: "二硫化钼基纳米材料的制备及电催化析氢性能研究", 《万方数据库 硕士学位论文》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115672356A (zh) * 2021-07-28 2023-02-03 天津工业大学 一种CoP/MoS2复合光催化剂的制备方法及应用
CN113559881A (zh) * 2021-08-12 2021-10-29 吉林化工学院 一种复合光催化剂、制备方法及其在分解水制氢中的应用
CN115347323A (zh) * 2022-09-01 2022-11-15 陕西科技大学 一种BC负载MOFs衍生CNF/CoP复合材料及其制备与应用方法
CN115347323B (zh) * 2022-09-01 2024-04-02 陕西科技大学 一种应用于Li-S电池隔膜的BC负载MOFs衍生CNF/CoP复合材料及其制备与应用方法

Similar Documents

Publication Publication Date Title
CN112981444A (zh) 一种CoP@MoS2复合材料及其制备方法
Guo et al. A general self‐assembly induced strategy for synthesizing 2D ultrathin cobalt‐based compounds toward optimizing hydrogen evolution catalysis
Yang et al. Scalable synthesis of self-assembled bimetallic phosphide/N-doped graphene nanoflakes as an efficient electrocatalyst for overall water splitting
CN107399729A (zh) 一种双金属MOFs的含氮石墨化碳材料
CN110993968B (zh) 一种碳气凝胶单金属原子催化剂的制备方法及电催化应用
Ao et al. Fe-doped Co9S8 nanosheets on carbon fiber cloth as pH-universal freestanding electrocatalysts for efficient hydrogen evolution
Qiao et al. Etch-evaporation enabled defect engineering to prepare high-loading Mn single atom catalyst for Li-S battery applications
CN112968185B (zh) 植物多酚改性的超分子网络框架结构锰基纳米复合电催化剂的制备方法
Liu et al. Stabilizing sulfur vacancy defects by performing “click” chemistry of ultrafine palladium to trigger a high-efficiency hydrogen evolution of MoS 2
Li et al. Synthesis of nitrogen-rich porous carbon nanotubes coated Co nanomaterials as efficient ORR electrocatalysts via MOFs as precursor
Qi et al. Self-supported Co-doped FeNi carbonate hydroxide nanosheet array as a highly efficient electrocatalyst towards the oxygen evolution reaction in an alkaline solution
WO2018179006A1 (en) Palladium based selenides as highly stable and durable cathode materials in fuel cell for green energy production
CN111992227B (zh) 一种镍钴-二硫化钼中空纳米复合材料及其合成方法与电催化析氢应用
CN112138691A (zh) 一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法
Ding et al. An in situ grown lanthanum sulfide/molybdenum sulfide hybrid catalyst for electrochemical hydrogen evolution
CN111755705A (zh) 三原子级分散的金属团簇负载氮掺杂纳米碳燃料电池催化剂
Wang et al. Epitaxial growth of prussian blue analogue derived NiFeP thin film for efficient electrocatalytic hydrogen evolution reaction
Wang et al. MOFs-derived hybrid nanosheet arrays of nitrogen-rich CoS2 and nitrogen-doped carbon for efficient hydrogen evolution in both alkaline and acidic media
Peng et al. N, S-Doped hollow carbon nanosheet-encapsulated Co 9 S 8 nanoparticles as a highly efficient bifunctional electrocatalyst for rechargeable zinc–air batteries
Jin et al. Construction of hierarchical CoP@ Ni 2 P core–shell nanoarrays for efficient electrocatalytic hydrogen evolution in alkaline solution
Chen et al. Sulfur-induced electronic optimization of Mo5N6 for hydrogen evolution through topochemical substitution
Han et al. Microwave‐assisted synthesis of highly active single‐atom Fe/N/C catalysts for high‐performance aqueous and flexible all‐solid‐state Zn‐air batteries
Huang et al. Fe–N–C nanostick derived from 1D Fe-ZIFs for electrocatalytic oxygen reduction
CN112886024B (zh) 杨梅状钴镍硼复合碳材料质子膜燃料电池催化剂的制备方法
CN109585860A (zh) 一种硫掺杂氧化钴与硫、氮、氧掺杂碳原位复合电极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210618