CN112979009B - 一种基于铁碳微电解技术去除废水中四溴双酚a工艺 - Google Patents

一种基于铁碳微电解技术去除废水中四溴双酚a工艺 Download PDF

Info

Publication number
CN112979009B
CN112979009B CN202110112477.9A CN202110112477A CN112979009B CN 112979009 B CN112979009 B CN 112979009B CN 202110112477 A CN202110112477 A CN 202110112477A CN 112979009 B CN112979009 B CN 112979009B
Authority
CN
China
Prior art keywords
iron
wastewater
carbon
parts
follows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110112477.9A
Other languages
English (en)
Other versions
CN112979009A (zh
Inventor
魏东洋
白洁琼
安坤
寇蓉蓉
叶晔
王龙乐
魏良良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Japan Friendly Environmental Protection Center Environmental Development Center Of Ministry Of Ecological Environment
South China Institute of Environmental Science of Ministry of Ecology and Environment
Original Assignee
China Japan Friendly Environmental Protection Center Environmental Development Center Of Ministry Of Ecological Environment
South China Institute of Environmental Science of Ministry of Ecology and Environment
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Japan Friendly Environmental Protection Center Environmental Development Center Of Ministry Of Ecological Environment, South China Institute of Environmental Science of Ministry of Ecology and Environment filed Critical China Japan Friendly Environmental Protection Center Environmental Development Center Of Ministry Of Ecological Environment
Priority to CN202110112477.9A priority Critical patent/CN112979009B/zh
Publication of CN112979009A publication Critical patent/CN112979009A/zh
Application granted granted Critical
Publication of CN112979009B publication Critical patent/CN112979009B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46176Galvanic cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Sorption (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明公开了一种基于铁碳微电解技术去除废水中四溴双酚A工艺,具体按照以下步骤进行:制备球形的铁碳填料,铁碳填料主要包括以下重量份原料:铁屑35‑45份、石墨15‑18份、活性炭20‑25份、酚醛胶粘黏剂5‑8份,将铁屑加入真空熔炼炉内熔炼,将熔炼后的液体铁经过雾化喷头喷出,冷却形成球形粉末,并在铁屑球形粉末表面打上孔槽,将石墨和活性炭粉碎混合后再和铁屑球形粉末、酚醛胶粘黏剂一起加入离心机内,制备出铁碳填料;将废水通入净化罐内,调节废水pH值区于3‑4之间;使废水通过电解净化管内的填料;向净化筒内加入氢氧化钠,使净化水的pH为6‑10,搅拌后静置沉淀,取净化水的上清液;本发明工艺简单,成本较低,适合广泛推广。

Description

一种基于铁碳微电解技术去除废水中四溴双酚A工艺
技术领域
本发明涉及污水处理技术领域,尤其涉及一种基于铁碳微电解技术去除废水中四溴双酚A工艺。
背景技术
四溴双酚A属于被大量使用并在环境中广泛存在的持久性有机污染物。它在环境中具有长期残留性、生物蓄积性、半挥发性、高毒性及致癌、致畸和致突变性,能够在大气中长距离迁移并能沉积回地球,造成大气、水体、沉积物和土壤等环境介质及相关生态系统的污染。四溴双酚A在环境中存在的浓度一般比较低,化学性质稳定,具有很高的生物富集系数,可通过食物链对生态系统和人类健康造成严重损害。
通常,四溴双酚A在受污染水体中含量很低,且难以通过直接吸附的方式去除,且直接吸附的方式并不能去除污染物质,只能对污染物质进行转移,而目前的铁碳微电解技术可以有效的去除废水中的有害金属。
铁屑(较多使用铸铁屑)为铁-碳合金,当浸没在废水溶液中时,就构成一个完整的微电池回路,形成一种内部电解反应,这就是微电解。而在铸铁屑中再加入惰性碳(如石墨、焦炭、活性炭、煤等)颗粒时,铁屑与炭粒接触,形成的大原电池即为铁碳微电解法。
目前的铁碳微电解法的铁碳填料密度较低,形成的填层与废水中污染物的接触面积较小,对污染物的去除效率较低,且目前的填料基本为平展的填料,其形成的填层去除路径较短,也会导致填层对污染物的去除效率较低,且目前的铁碳电解法成本较高,不适合广泛推广。
发明内容
为解决上述技术问题,本发明提供了一种基于铁碳微电解技术去除废水中四溴双酚A工艺。
本发明的技术要点为:
一种基于铁碳微电解技术去除废水中四溴双酚A工艺,具体按照以下步骤进行:
S1:铁碳填料制备
本工艺中使用的铁碳填料主要包括以下重量份原料:铁屑35-45份、石墨15-18份、活性炭20-25份、酚醛胶粘黏剂5-8份,将铁屑加入真空熔炼炉内熔炼成液体铁,将熔炼后的液体铁经过雾化喷头喷向冷却室,压力设置为:使喷出的液体铁瞬间冷却,并形成粒径在50-100μm之间的球形粉末,将制备出的铁屑球形粉末的表面通过激光打孔机打上多个孔径为5-10μm的孔槽,且孔槽深度为:20-40μm,将石墨和活性炭放入粉碎机内混合并粉碎制备出粒径为1-3μm的混合粉末,将制备出的混合粉末和铁屑球形粉末加入离心机内,并向离心机内加入酚醛胶粘黏剂,设置离心机内温度为:60-80℃转速为:1600-1800r/min,离心时间为:5-15min制备出铁碳填料;
S2:废水预处理
将废水通入净化罐内,进行初步过滤,初步过滤包括:利用筛网过滤掉大块的沉淀物质、利用吸附剂吸附掉废水中的悬浮杂质,经过初步过滤的废水进入单独的储水室内,向储水室中加入硫酸溶液,调节废水pH值区于3-4之间;
S3:废水通过铁碳填料
将S1中制备出的铁碳填料装入一个螺旋状的电解净化管内,电解净化管的一端连通至S2中装有经过初步过滤后废水的储水室内,并在连接处设置一个增压泵,在所述电解净化管的另一端连通至一个用于存放净化后水的净化筒,并在连接处设置一个曝气泵,使废水在通过电解净化管时,不断有气体与废水、铁碳填料接触;
S4:净化筒内净化水处理
向净化筒内加入净化水体积10%的20mL/L氢氧化钠溶液,使净化水的pH值区于6-10之间,搅拌15-30min后静置沉淀1-2h,取上清液的净化水;
S5:设备反洗
向净化筒内输入清水,使清水从电解净化管的出水端输入电解净化管并流至储水室内,通过一个超声发生器向电解净化管内输出超声波辅助清洗,设置净化筒内压力为:10-15MPa,冲洗10min后,将储水室内的水排干完成反洗。
进一步的,S1中真空炉内真空度为:6×10-3Pa,可快速的熔化铁屑,加快铁碳颗粒的制备。
进一步的,所述S1中使用的所述酚醛胶粘黏剂替换为环氧碳复合材料胶,所述环氧碳复合材料胶经过以下重量份原料混合而成:四氢呋喃聚醚环氧树脂65份、硼改性苯酚55份、炭黑粉15份、固化剂10份,更加环保,且粘黏性更强,耐高温性能更好。
进一步的,在所述S3中,控制电解净化管进水端废水的流量为:8-10kg/min,增加压力,使废水给予电解净化管内铁碳填层适度的冲击力,使废水中的有害成分与铁碳填料充分接触。
进一步的,在S3中,曝气泵工作的同时,加入一台超声发生器进行辅助净化,超声波可使铁碳填料内部结构发生细微的变化,使废水中的有害成分与铁碳填料发生更有效的摩擦和反应。
更进一步的,所述S3中所述超声发生器的超声波频率为:20-55KHz,防止超声波频率过高导致的填料结构受损。
进一步的,在S1中,加入酚醛胶粘黏剂离心后,继续设置离心转速为:400-600r/min,离心时间为:25-30min,离心完成后,静止2-3h,制备出铁碳填料,防止继续过快的离心转速导致的混合粉末喷出。
更进一步的,在第二次离心时,设置离心机内温度为:25-30℃,降低温度,使铁碳填料可以更快的固化。
进一步的,S2中的吸附剂为:活性白土吸附剂,此款吸附剂的成本较低,且吸附效率较高,不会对后续的铁碳电解反应产生影响。
更进一步的,活性白土吸附剂是以粘土为原料经无机酸化处理,再经水漂洗、干燥制成的吸附剂。
与现有技术相比,本发明的有益效果在于:
第一,本发明通过真空熔炼炉和雾化喷头制备出球形的铁屑粉末,提高了铁屑自身的导电性能,并在制备出的球形铁屑粉末表面通过激光打孔机开设多个用于容纳石墨、活性炭混合粉末的孔槽,并通过粘黏剂使混合粉末附着于铁屑球型粉末的孔槽内,并通过粘黏剂将球形铁屑粉末粘黏在一起,形成铁碳填层,相比于传统的铁碳填层其过滤吸附效果更佳,且微电解的效果更佳,从而提高了铁碳填层对废水中四溴双酚A的去除率。
第二,本发明通过在制备铁碳填料过程中设置两段离心过程,并且所述两段离心过程采用不同的离心转速和温度,提高铁碳填料的制备速度的同时保证铁碳填料的质量。
第三,本发明将制备好的铁碳填料放置于一个用于铁碳微电解的螺旋转的电解净化管,不仅提高了废水中有害物质与填料的接触机会更延伸了填料的电解面积,大大提高了填料对废水中四溴双酚A的去除效果,并在电解净化管上设置曝气泵和超声发生器,进一步的提高了铁碳填料对废水的净化效果。
具体实施方式
实施例1:
一种基于铁碳微电解技术去除废水中四溴双酚A工艺,具体按照以下步骤进行:
S1:铁碳填料制备
本工艺中使用的铁碳填料主要包括以下重量份原料:铁屑35份、石墨15份、活性炭20份、酚醛胶粘黏剂5份,将铁屑加入真空熔炼炉内熔炼成液体铁,将熔炼后的液体铁经过雾化喷头喷向冷却室,压力设置为:使喷出的液体铁瞬间冷却,并形成粒径在100μm之间的球形粉末,将制备出的铁屑球形粉末的表面通过激光打孔机打上多个孔径为10μm的孔槽,且孔槽深度为40μm,将石墨和活性炭放入粉碎机内混合并粉碎制备出粒径为3μm的混合粉末,将制备出的混合粉末和铁屑球形粉末加入离心机内,并向离心机内加入酚醛胶粘黏剂,设置离心机内温度为:75℃转速为:1800r/min,离心时间为:10min制备出铁碳填料;
S2:废水预处理
将废水通入净化罐内,进行初步过滤,初步过滤包括:利用筛网过滤掉大块的沉淀物质、利用吸附剂吸附掉废水中的悬浮杂质,经过初步过滤的废水进入单独的储水室内,向储水室中加入硫酸溶液,调节废水pH值至3;
S3:废水通过铁碳填料
将S1中制备出的铁碳填料装入一个螺旋状的电解净化管内,电解净化管的一端连通至S2中装有经过初步过滤后废水的储水室内,并在连接处设置一个增压泵,在所述电解净化管的另一端连通至一个用于存放净化后水的净化筒,并在连接处设置一个曝气泵,使废水在通过电解净化管时,不断有气体与废水、铁碳填料接触;
S4:净化筒内净化水处理
向净化筒内加入净化水体积10%的20mL/L氢氧化钠溶液,使净化水的pH值为6,搅拌15min后静置沉淀1h,取上清液的净化水;
S5:设备反洗
向净化筒内输入清水,使清水从电解净化管的出水端输入电解净化管并流至储水室内,通过一个超声发生器向电解净化管内输出超声波辅助清洗,设置净化筒内压力为:15MPa,冲洗10min后,将储水室内的水排干完成反洗。
S1中真空炉内真空度为:6×10-3Pa。
在所述S3中,控制电解净化管进水端废水的流量为:10kg/min。
S2中的吸附剂为:活性白土吸附剂。
活性白土吸附剂是以粘土为原料经无机酸化处理,再经水漂洗、干燥制成的吸附剂。
实施例2:
与所述实施例1不同之处在于
一种基于铁碳微电解技术去除废水中四溴双酚A工艺,具体按照以下步骤进行:
S1:铁碳填料制备
本工艺中使用的铁碳填料主要包括以下重量份原料:铁屑40份、石墨16份、活性炭22份、酚醛胶粘黏剂7份,将铁屑加入真空熔炼炉内熔炼成液体铁,将熔炼后的液体铁经过雾化喷头喷向冷却室,压力设置为:使喷出的液体铁瞬间冷却,并形成粒径在60μm之间的球形粉末,将制备出的铁屑球形粉末的表面通过激光打孔机打上多个孔径为7μm的孔槽,且孔槽深度为20μm,将石墨和活性炭放入粉碎机内混合并粉碎制备出粒径为2μm的混合粉末,将制备出的混合粉末和铁屑球形粉末加入离心机内,并向离心机内加入酚醛胶粘黏剂,设置离心机内温度为:75℃转速为:1800r/min,离心时间为:10min制备出铁碳填料;
S2:废水预处理
将废水通入净化罐内,进行初步过滤,初步过滤包括:利用筛网过滤掉大块的沉淀物质、利用吸附剂吸附掉废水中的悬浮杂质,经过初步过滤的废水进入单独的储水室内,向储水室中加入硫酸溶液,调节废水pH值至4;
S3:废水通过铁碳填料
将S1中制备出的铁碳填料装入一个螺旋状的电解净化管内,电解净化管的一端连通至S2中装有经过初步过滤后废水的储水室内,并在连接处设置一个增压泵,在所述电解净化管的另一端连通至一个用于存放净化后水的净化筒,并在连接处设置一个曝气泵,使废水在通过电解净化管时,不断有气体与废水、铁碳填料接触;
S4:净化筒内净化水处理
向净化筒内加入净化水体积10%的20mL/L氢氧化钠溶液,使净化水的pH值为8,搅拌15min后静置沉淀1h,取上清液的净化水;
S5:设备反洗
向净化筒内输入清水,使清水从电解净化管的出水端输入电解净化管并流至储水室内,通过一个超声发生器向电解净化管内输出超声波辅助清洗,设置净化筒内压力为:15MPa,冲洗10min后,将储水室内的水排干完成反洗。
S1中真空炉内真空度为:6×10-3Pa。
在所述S3中,控制电解净化管进水端废水的流量为:10kg/min。
S2中的吸附剂为:活性白土吸附剂。
活性白土吸附剂是以粘土为原料经无机酸化处理,再经水漂洗、干燥制成的吸附剂。
实施例3:
与所述实施例2不同之处在于
一种基于铁碳微电解技术去除废水中四溴双酚A工艺,其特征在于,具体按照以下步骤进行:
S1:铁碳填料制备
本工艺中使用的铁碳填料主要包括以下重量份原料:铁屑45份、石墨18份、活性炭25份、酚醛胶粘黏剂8份,将铁屑加入真空熔炼炉内熔炼成液体铁,将熔炼后的液体铁经过雾化喷头喷向冷却室,压力设置为:使喷出的液体铁瞬间冷却,并形成粒径在50μm之间的球形粉末,将制备出的铁屑球形粉末的表面通过激光打孔机打上多个孔径为5μm的孔槽,且孔槽深度为20μm,将石墨和活性炭放入粉碎机内混合并粉碎制备出粒径为1μm的混合粉末,将制备出的混合粉末和铁屑球形粉末加入离心机内,并向离心机内加入酚醛胶粘黏剂,设置离心机内温度为:75℃转速为:1800r/min,离心时间为:10min制备出铁碳填料;
S2:废水预处理
将废水通入净化罐内,进行初步过滤,初步过滤包括:利用筛网过滤掉大块的沉淀物质、利用吸附剂吸附掉废水中的悬浮杂质,经过初步过滤的废水进入单独的储水室内,向储水室中加入硫酸溶液,调节废水pH值至4;
S3:废水通过铁碳填料
将S1中制备出的铁碳填料装入一个用于对废水进行铁碳微电解的螺旋状的电解净化管内,电解净化管的一端连通至S2中装有经过初步过滤后废水的储水室内,并在连接处设置一个增压泵,在所述电解净化管的另一端连通至一个用于存放净化后水的净化筒,并在连接处设置一个曝气泵,使废水在通过电解净化管时,不断有气体与废水、铁碳填料接触;
S4:净化筒内净化水处理
向净化筒内加入净化水体积10%的20mL/L氢氧化钠溶液,使净化水的pH值为10,搅拌15min后静置沉淀1h,取上清液的净化水;
S5:设备反洗
向净化筒内输入清水,使清水从电解净化管的出水端输入电解净化管并流至储水室内,通过一个超声发生器向电解净化管内输出超声波辅助清洗,设置净化筒内压力为:15MPa,冲洗10min后,将储水室内的水排干完成反洗。
S1中真空炉内真空度为:6×10-3Pa。
在所述S3中,控制电解净化管进水端废水的流量为:10kg/min。
S2中的吸附剂为:活性白土吸附剂。
活性白土吸附剂是以粘土为原料经无机酸化处理,再经水漂洗、干燥制成的吸附剂。
实施例4:
与所述实施例3不同之处在于
所述S1中使用的所述酚醛胶粘黏剂替换为环氧碳复合材料胶,所述环氧碳复合材料胶经过以下重量份原料混合而成:四氢呋喃聚醚环氧树脂65份、硼改性苯酚55份、炭黑粉15份、固化剂10份。
实施例5:
与所述实施例4不同之处在于
在S3中,曝气泵工作的同时,加入一台超声发生器进行辅助净化。
所述S3中所述超声发生器的超声波频率为:20KHz。
实施例6:
与所述实施例5不同之处在于
在S3中,曝气泵工作的同时,加入一台超声发生器进行辅助净化。
所述S3中所述超声发生器的超声波频率为:55KHz。
实施例7:
与所述实施例6不同之处在于
在S1中,加入酚醛胶粘黏剂离心后,继续设置离心转速为:550r/min,离心时间为:28min,离心完成后,静止2.5h,制备出铁碳填料。
实施例8:
与所述实施例7的不同之处在于
在第二次离心时,设置离心机内温度为:25-30℃。
对实施例1-8取得的上清液中四溴双酚A的含量进行检测,并计算出四溴双酚A的去除率,得出表1。
表1:各个实施例中四溴双酚A去除率
实施例 四溴双酚A去除率
现有技术 92.75%
1 98.87%
2 98.98%
3 99.12%
4 99.28%
5 99.68%
6 99.71%
7 99.77%
8 99.82%
通过表1可以得出,上述的各个实施例中去除废水中四溴双酚A所使用的工艺对四溴双酚A的去除率均远远超过现有技术,且实施例5中设置的超声发生器大大的提高了铁碳微电解对废水中四溴双酚A的去除效果,在通过实施例7和实施例8中对经过第一次离心后的铁碳填料进行第二次离心,使铁碳填料的实际使用效果提升至最高,其对废水中四溴双酚A的去除效果达到了99.82%。

Claims (10)

1.一种基于铁碳微电解技术去除废水中四溴双酚A工艺,其特征在于,具体按照以下步骤进行:
S1:铁碳填料制备
本工艺中使用的铁碳填料主要包括以下重量份原料:铁屑35-45份、石墨15-18份、活性炭20-25份、酚醛胶粘黏剂5-8份,将铁屑加入真空熔炼炉内熔炼成液体铁,将熔炼后的液体铁经过雾化喷头喷向冷却室,压力设置为:使喷出的液体铁瞬间冷却,并形成粒径在50-100μm之间的球形粉末,将制备出的铁屑球形粉末的表面通过激光打孔机打上多个孔径为5-10μm的孔槽,且孔槽深度为:20-40μm,将石墨和活性炭放入粉碎机内混合并粉碎制备出粒径为1-3μm的混合粉末,将制备出的混合粉末和铁屑球形粉末加入离心机内,并向离心机内加入酚醛胶粘黏剂,设置离心机内温度为:60-80℃转速为:1600-1800r/min,离心时间为:5-15min制备出铁碳填料;
S2:废水预处理
将废水通入净化罐内,进行初步过滤,初步过滤包括:利用筛网过滤掉大块的沉淀物质、利用吸附剂吸附掉废水中的悬浮杂质,经过初步过滤的废水进入单独的储水室内,向储水室中加入硫酸溶液,调节废水pH值区于3-4之间;
S3:废水通过铁碳填料
将S1中制备出的铁碳填料装入一个螺旋状的电解净化管内,电解净化管的一端连通至S2中装有经过初步过滤后废水的储水室内,并在连接处设置一个增压泵,在所述电解净化管的另一端连通至一个用于存放净化后水的净化筒,并在连接处设置一个曝气泵,使废水在通过电解净化管时,不断有气体与废水、铁碳填料接触;
S4:净化筒内净化水处理
向净化筒内加入净化水体积10%的20mL/L氢氧化钠溶液,使净化水的pH值区于6-10之间,搅拌15-30min后静置沉淀1-2h,取上清液的净化水;
S5:设备反洗
向净化筒内输入清水,使清水从电解净化管的出水端输入电解净化管并流至储水室内,通过一个超声发生器向电解净化管内输出超声波辅助清洗,设置净化筒内压力为:10-15MPa,冲洗10min后,将储水室内的水排干完成反洗。
2.根据权利要求1所述的一种基于铁碳微电解技术去除废水中四溴双酚A工艺,其特征在于,S1中真空炉内真空度为:6×10-3Pa。
3.根据权利要求1所述的一种基于铁碳微电解技术去除废水中四溴双酚A工艺,其特征在于,所述S1中使用的所述酚醛胶粘黏剂替换为环氧碳复合材料胶,所述环氧碳复合材料胶经过以下重量份原料混合而成:四氢呋喃聚醚环氧树脂65份、硼改性苯酚55份、炭黑粉15份、固化剂10份。
4.根据权利要求1所述的一种基于铁碳微电解技术去除废水中四溴双酚A工艺,其特征在于,在所述S3中,控制电解净化管进水端废水的流量为:8-10kg/min。
5.根据权利要求1所述的一种基于铁碳微电解技术去除废水中四溴双酚A工艺,其特征在于,在S3中,曝气泵工作的同时,加入一台超声发生器进行辅助净化。
6.根据权利要求5所述的一种基于铁碳微电解技术去除废水中四溴双酚A工艺,其特征在于,所述S3中所述超声发生器的超声波频率为:20-55KHz。
7.根据权利要求1所述的一种基于铁碳微电解技术去除废水中四溴双酚A工艺,其特征在于,在S1中,加入酚醛胶粘黏剂离心后,继续设置离心转速为:400-600r/min,离心时间为:25-30min,离心完成后,静止2-3h,制备出铁碳填料。
8.根据权利要求7所述的一种基于铁碳微电解技术去除废水中四溴双酚A工艺,其特征在于,在第二次离心时,设置离心机内温度为:25-30℃。
9.根据权利要求1所述的一种基于铁碳微电解技术去除废水中四溴双酚A工艺,其特征在于,S2中的吸附剂为:活性白土吸附剂。
10.根据权利要求9所述的一种基于铁碳微电解技术去除废水中四溴双酚A工艺,其特征在于,活性白土吸附剂是以粘土为原料经无机酸化处理,再经水漂洗、干燥制成的吸附剂。
CN202110112477.9A 2021-01-27 2021-01-27 一种基于铁碳微电解技术去除废水中四溴双酚a工艺 Active CN112979009B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110112477.9A CN112979009B (zh) 2021-01-27 2021-01-27 一种基于铁碳微电解技术去除废水中四溴双酚a工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110112477.9A CN112979009B (zh) 2021-01-27 2021-01-27 一种基于铁碳微电解技术去除废水中四溴双酚a工艺

Publications (2)

Publication Number Publication Date
CN112979009A CN112979009A (zh) 2021-06-18
CN112979009B true CN112979009B (zh) 2022-07-29

Family

ID=76345570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110112477.9A Active CN112979009B (zh) 2021-01-27 2021-01-27 一种基于铁碳微电解技术去除废水中四溴双酚a工艺

Country Status (1)

Country Link
CN (1) CN112979009B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321275B (zh) * 2021-08-02 2021-11-30 清大国华环境集团股份有限公司 一种铁碳微电解填料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2933554Y (zh) * 2006-08-09 2007-08-15 辽宁省环境科学研究院 一种稳定运行的新型微电解装置
CN101837461A (zh) * 2010-05-18 2010-09-22 张耀平 等离子喷雾生产金属粉末的方法
CN104761024A (zh) * 2015-04-22 2015-07-08 湖北泉盛环保科技有限公司 高效多相催化氧化铁碳微电解填料及其制备方法
CN106244755A (zh) * 2016-08-19 2016-12-21 环境保护部华南环境科学研究所 一种海绵铁生产装置
CN107129014A (zh) * 2017-06-15 2017-09-05 中科院广州能源所盱眙凹土研发中心 纳米铁碳微电解填料的制备方法
CN109851104A (zh) * 2019-02-21 2019-06-07 北京伟创力科技股份有限公司 一种油气田高含盐废水处理方法及设备
CN109911992A (zh) * 2019-03-20 2019-06-21 浙江省环境保护科学设计研究院 一种铁基多金属合金微电解填料的制备方法和应用
CN109911990A (zh) * 2019-03-04 2019-06-21 中国科学院过程工程研究所 一种高活性铁碳微电解填料的制备方法
CN110627166A (zh) * 2019-09-16 2019-12-31 浙江工业大学 一种铁碳微电解填料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070241063A1 (en) * 2006-04-18 2007-10-18 Quebec Metal Powders Ltd. Process for treating water using atomized ferrous powders containing 0.25 to 4 wt% carbon and 1 to 6 wt% oxygen
CN106944054B (zh) * 2017-03-16 2019-07-16 华南理工大学 一种零价铁柱撑蒙脱石修复材料及其制备方法与应用
CN108793390A (zh) * 2018-05-25 2018-11-13 广东博宇集团有限公司 一种用于净化水族箱水质的催化剂填料及其制备方法和用途

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2933554Y (zh) * 2006-08-09 2007-08-15 辽宁省环境科学研究院 一种稳定运行的新型微电解装置
CN101837461A (zh) * 2010-05-18 2010-09-22 张耀平 等离子喷雾生产金属粉末的方法
CN104761024A (zh) * 2015-04-22 2015-07-08 湖北泉盛环保科技有限公司 高效多相催化氧化铁碳微电解填料及其制备方法
CN106244755A (zh) * 2016-08-19 2016-12-21 环境保护部华南环境科学研究所 一种海绵铁生产装置
CN107129014A (zh) * 2017-06-15 2017-09-05 中科院广州能源所盱眙凹土研发中心 纳米铁碳微电解填料的制备方法
CN109851104A (zh) * 2019-02-21 2019-06-07 北京伟创力科技股份有限公司 一种油气田高含盐废水处理方法及设备
CN109911990A (zh) * 2019-03-04 2019-06-21 中国科学院过程工程研究所 一种高活性铁碳微电解填料的制备方法
CN109911992A (zh) * 2019-03-20 2019-06-21 浙江省环境保护科学设计研究院 一种铁基多金属合金微电解填料的制备方法和应用
CN110627166A (zh) * 2019-09-16 2019-12-31 浙江工业大学 一种铁碳微电解填料及其制备方法

Also Published As

Publication number Publication date
CN112979009A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
CN101628761B (zh) 废旧电池处理过程中产生的镍钴锰废水的处理方法
CN102276093B (zh) 一种造纸法烟草薄片生产废水的处理方法
CN205269237U (zh) 一种工业用污水处理过滤装置
CN102190392B (zh) 中水回用ro浓水达标排放工艺
CN112979009B (zh) 一种基于铁碳微电解技术去除废水中四溴双酚a工艺
CN108191093A (zh) 一种适用于稠油污水处理的气浮-动态膜耦合分离装置及分离方法
CN106430833A (zh) 一种含油废水的处理方法
CN103723867B (zh) 一种双效气浮高藻水处理设备及其处理工艺
CN109721213A (zh) 用于处理重金属废水的多级人工湿地系统
CN101434439A (zh) 玻璃纤维废水预处理方法
CN204281479U (zh) 一种涂装废水的处理系统
CN103936208A (zh) 高效微电解多相流气浮反应器
CN206033436U (zh) 一种钢铁行业生产污水高回收率脱盐回用系统
CN109626677B (zh) 一种焦化废水深度处理工艺
CN111115902A (zh) 一种高盐有机废水除油除氟工艺
CN103112970A (zh) 一种重金属回收及零排放系统及工艺
CN109293074A (zh) 一种去除化学镀镍废水中次亚磷的装置及方法
CN103073165A (zh) 污水化学生物处理装置
CN211999160U (zh) 一种工业废水深度处理回用中的预处理设备
CN112811658B (zh) 一种电镀污水处理方法
CN106145437A (zh) 一种油气田钻井压裂返排液的处理方法及系统
CN201634532U (zh) 中水回用ro浓水达标排放系统
CN201458853U (zh) 一种氰化物漂洗水的回用回收装置
CN204999771U (zh) 一种难降解废水的处理系统
CN108059292A (zh) 锂离子电池生产废水零排放的处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant