CN112962122B - 一种高矫顽力B掺杂FePt薄膜的制备方法 - Google Patents

一种高矫顽力B掺杂FePt薄膜的制备方法 Download PDF

Info

Publication number
CN112962122B
CN112962122B CN202110137365.9A CN202110137365A CN112962122B CN 112962122 B CN112962122 B CN 112962122B CN 202110137365 A CN202110137365 A CN 202110137365A CN 112962122 B CN112962122 B CN 112962122B
Authority
CN
China
Prior art keywords
film
salt
electrodeposition
feb
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110137365.9A
Other languages
English (en)
Other versions
CN112962122A (zh
Inventor
应耀
游阿峰
郑精武
车声雷
王慧斌
乔梁
余靓
李旺昌
李涓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202110137365.9A priority Critical patent/CN112962122B/zh
Publication of CN112962122A publication Critical patent/CN112962122A/zh
Application granted granted Critical
Publication of CN112962122B publication Critical patent/CN112962122B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/22Heat treatment; Thermal decomposition; Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/24Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
    • H01F41/26Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids using electric currents, e.g. electroplating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

本发明公开一种通过电沉积和带电化学镀协同制备多层膜扩散获得高矫顽力B掺杂FePt薄膜的方法。一定含量的
Figure DDA0002927223450000011
和多层结构使FePtB薄膜退火后的矫顽力达23kOe。比现有的电沉积薄膜矫顽力大的多。交替的多层结构[Pt/FeB]n薄膜通过氢气氛围退火促进永磁相的形成,但薄膜内仍存在小部分软磁相,形成两相共存,两相共存提升了薄膜的矫顽力。本发明通过控制通电时间、电流密度以及薄膜层数可以调控薄膜厚度和矫顽力大小,也可以通过配制的镀液浓度调控各电沉积元素的含量,极大拓展了应用范围。同时,电沉积具有设备简单,操作方便的特点,提升了实用性价值。在尺寸方面可以实现几微米致几十微米的厚度,为微型化零件在微电机中的应用提供了有效方案。

Description

一种高矫顽力B掺杂FePt薄膜的制备方法
技术领域
本发明涉及永磁材料领域,特别是一种耐腐蚀性强、高矫顽力、微型化零件在微电机中的应用。
背景技术
永磁材料广泛应用在各个领域,如生物医药、催化、高密度磁存储介质材料、微电机系统(MEMS)等。在MEMS方向,永磁体膜被应用在微型电动机、致动器、微型泵和其他设备。它已经成为了一个具有较好前景的研究领域。而已经报道的致动原理也有几个不同方向,包括压电的、静电的、磁致伸缩的、电磁的。在恶劣的环境下,电磁传感器相比于其它几种更稳定。
虽然永磁材料在宏观制造和应用方面逐渐成熟,有的甚至形成了行业标准和产业化机构,但在微细加工方向研究甚少。迄今为止,主要有四种方法制备永磁薄膜,分别是丝网印刷法、微装配、溅射、电沉积。丝网印刷技术主要生产薄膜厚度大于100μm的薄膜,但当薄膜较薄时,此方法就不合适了。而溅射法可以实现纳米级别厚度的永磁薄膜,较高的磁性能,但很难使薄膜厚度达到微米级别,且成本较高,设备和工艺复杂,这就限制了该方法的发展。与其它技术相比,电沉积法脱颖而出,设备简单,操作方便,还能实现纳米到微米级别的厚度薄膜的制备,较好的弥补了其它方法的不足之处。
永磁薄膜在MEMS近几年的发展。申请号为202010136812.4中国专利文献公开了一种高矫顽力SmCo5/FeCo纳米复合永磁材料的矫顽力从1.5kOe提高到8.37kOe,但是SmCo的耐腐蚀性能差,且不能通过电镀沉积出薄膜。申请号为201910736073.X中国专利文献公开了一种改善Nd-Fe-B的性能,通过涂覆法将Tb或Dy替代Nd元素,最后使矫顽力达到了20.4kOe,但是薄膜很难微型化,且耐腐蚀性能也差。除此之外铁氧体也备受关注,因为它具有优秀的耐腐蚀性能,申请号201910164121.2中国专利文献公开了一种较高矫顽力铁氧体烧结磁铁,但是其矫顽力仅达到了7165Oe,限制了它的发展。近几年,化学有序面心四方(fct or L10)相的FePt合金因其具有较高的Ku(6.6-10×107erg/cm3)、高饱和磁化强度(1140emu/cm3)和出色的化学稳定性备受研究者的关注。申请号201380034295.8中国专利文献公开了一种玻璃基板上生长一种(001)纹理的的FePt颗粒,证实了缓冲层最有益于提高薄膜的磁性能,退火后的矫顽力可以达到15kOe。T Bublat and D Goll在Nanotechnology中发表了Large-area hard magnetic L10-FePt nanopatterns bynanoimprint lithography,阐述了磁共溅射制备的FePt的矫顽力达到4.31T。然而以往研究者通过电化学方法制得的FePt薄膜矫顽力相对较差,一般都在2T以下。相转变温度相对较高。为提高薄膜的磁性能,很多研究者通过磁控溅射法和熔融纺丝法把非金素元素掺进FePt薄膜内,但是很少有通过电化学沉积法直接制备非金属元素掺杂的FePt薄膜。这就限制了永磁薄膜的尺寸和性能在微电机领域的应用。
发明内容
为了使薄膜微型化,同时提高磁性能,拓展实际应用的价值,我们发明了一种电沉积和化学还原法相结合的新方法,制备出了高矫顽力B掺杂的FePt薄膜。
本发明解决问题的技术方案为:一种高矫顽力B掺杂FePt薄膜的制备方法,该方法包括以下步骤:
(1)以Ag基底作为阴极,在含Pt元素的酸或盐的酸性镀液中,通过电沉积得到一层的Pt镀层,记为样品Pt/Ag。
(2)以样品Pt/Ag作为阴极,在含亚铁盐和BH-4的碱性镀液中,电沉积得到一层FeB镀层,得到双层膜,记为样品[Pt/FeB]/Ag。
(3)样品[Pt/FeB]/Ag在混合气氛中高温退火得到高矫顽力的B掺杂FePt薄膜。
进一步地,交替重复(1)和(2)的步骤,得到Pt镀层和FeB镀层交替沉积的多层膜。
进一步地,所述含Pt元素的酸或盐的酸性镀液中,包含Pt元素的酸或盐和电解质盐,pH为2.5~3;其中,含Pt元素的酸或盐用于提供Pt源,含Pt元素的酸为H2PtCl6·6H2O,含Pt元素的盐为(NH4)2PtCl6、K2PtCl6、Na2PtCl6中一种或多种。电解质盐的浓度为0.4~1mol/L,电解质盐为钠盐或钾盐(包括Na2SO4、NaCl、K2SO4的其中一种或多种)。
Pt浓度对溶液电沉积过程影响不大,镀铂厚度主要受电沉积时间和电流密度控制。但是过小的浓度提供不了足够的Pt,过大的浓度会形成浪费。所以浓度一般控制在那个区间,因此,本申请通过简单的实验确定Pt元素的浓度为0.5~2mmol/L。
进一步地,所述含亚铁盐和BH- 4的碱性镀液包括:0.1~0.2mol/L亚铁盐,1~2mol/L柠檬酸盐,0.5~1mol/L硼酸,0.1~0.2mol/L抗坏血酸,0g/L~1.0g/L NaBH4或KBH4,pH为9~9.5。所述亚铁盐选自硫酸亚铁铵、氯化亚铁、硫酸亚铁等的其中一种或多种;所述柠檬酸盐选自二水合柠檬酸钠、柠檬酸钠等的其中一种或多种。
进一步地,混合气氛下,以400~800℃退火处理1~5h。混合气氛为H2和N2,氢气含量为3%~30%。
进一步地,步骤1的电流密度为2.8~3.2A/dm2,溶液温度为25℃,电沉积Pt时间为5~36分钟。
进一步地,步骤2的沉积时间为1~15分钟。
进一步地,电沉积的过程在超声条件下进行的,超声条件为室温,振动频率为60Hz。
与现有技术相比,本发明的有益效果体现在:(1)在同样电化学沉积方法制备的薄膜,本发明的薄膜矫顽力要大得多;(2)本发明通过电沉积和带电化学镀协同制备多层膜扩散获得高矫顽力B掺杂FePt薄膜,为电化学沉积非金属元素掺杂的合金薄膜提供新的思路;(3)本发明容易通过电流密度和通电时间调控薄膜的厚度,通过镀液浓度调控各电沉积元素的含量;(4)氢气氛围退火,既能去除薄膜中的氧含量,又能促进永磁相产生;(5)本发明能够把电化学沉积的优点引入进来,比如薄膜微型化,弥补了丝网印刷技术和溅射尺寸的不足,使纳米到微米级别的厚度薄膜的制备成为可能,拓宽了应用领域;(6)在与溅射和其它技术相比的条件下,电沉积方法设备简单,操作方便,更易于未来的实际应用。
附图说明
图1不同氯铂酸浓度下电沉积FePtB薄膜经退火后的常温磁滞回线图:虚线代表0.5mmol/L、实线代表2mmol/L。
图2未添加NaBH4条件下电沉积FePt薄膜经退火后的常温磁滞回线图。
图3不同NaBH4浓度下电沉积FePtB薄膜经退火后的常温磁滞回线图(a)0.1g/L,(b)0.3g/L,(c)0.6g/L,(d)1.0g/L。
图4(a)、(b)、(c)分别表示FePt薄膜在500℃、650℃、800℃退火处理4小时的XRD(其衍射强度以logarithm显示)。
图5FePtB薄膜在500℃、650℃、800℃退火处理4小时的磁滞回线。
图6FePtB薄膜在400℃退火处理4小时的磁滞回线。
图7[Pt/FeB]4薄膜断面Mapping图。
图8[Pt/FeB]4薄膜未退火的Mapping图。
图9(a)、(b)、(c)分别为2层、4层、6层薄膜的EDS区域和对应的能谱图。
图10[Pt/FeB]n多层膜在退火后的XRD表征图(其衍射强度以logarithm显示)。
图11[Pt/FeB]n多层膜在退火后的常温磁滞回线图(a)2层,(b)4层,(c)6层。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
本发明涉及一种通过电沉积和带电化学镀协同制备多层膜扩散获得高矫顽力B掺杂FePt薄膜的方法,一般的具体实施步骤如下:
(1)电极Ag基底的镀前准备:采用尺寸为1cm×1cm×0.3mm的Ag片,经过3000目、5000目、7000目的砂纸打磨抛光后,在酒精和稀硫酸的混合溶液中腐蚀,同时在超声机中超声清洗,之后再用去离子水清洗。
(2)以Ag基底为阴极,放入配制好的Pt元素的酸或盐的酸性镀液中,在朝向阳极的一面电沉积得到一层的Pt镀层。记为样品Pt/Ag。
所述含Pt元素的酸或盐的酸性镀液中,包含Pt元素的酸或盐和电解质盐,pH为2.5~3;其中,Pt元素的浓度为0.5~2mmol/L,含Pt元素的酸为H2PtCl6·6H2O,含Pt元素的盐为(NH4)2PtCl6、K2PtCl6、Na2PtCl6中一种或多种;电解质盐的浓度为0.4~1mol/L,电解质盐为钠盐或钾盐(包括Na2SO4、NaCl、K2SO4的其中一种或多种)。
(3)将样品Pt/Ag用去离子水冲洗干净。把样品Pt/Ag放入含亚铁盐和BH-4的碱性镀液中电沉积得到一层FeB镀层。得到双层膜,记为样品[Pt/FeB]/Ag。
B元素掺杂机理分为两步:第一步
Figure BDA0002927223430000051
Figure BDA0002927223430000052
第二步,反应产生的电子用于Fe和B原子的还原:
Fe2++2e→Fe (3)
Figure BDA0002927223430000053
本工艺与传统化学镀不同,通电沉积产生的电子促进反应(3)和反应(4)过程,加快Fe和B元素的沉积。
所述含亚铁盐和
Figure BDA0002927223430000054
的碱性镀液包括:0.1~0.2mol/L亚铁盐,1~2mol/L柠檬酸盐,0.5~1mol/L硼酸,0.1~0.2mol/L抗坏血酸,0.1g/L~1.0g/L NaBH4或KBH4,pH调为9~9.5。所述亚铁盐选自硫酸亚铁铵、氯化亚铁、硫酸亚铁等的其中一种或多种;所述柠檬酸盐选自二水合柠檬酸钠、柠檬酸钠等的其中一种或多种。
(4)将样品[Pt/FeB]/Ag在混合气氛(15%H2和85%N2)下,400~800℃退火处理得到样品[PtFeB]/Ag。
在某些实施例中,退火温度为500℃、650℃或800℃。
在某些实施例中,在单面沉积的Ag基底上沉积Pt之后,经过去离子水冲洗干净,再沉积FeB,得到Pt镀层和FeB镀层交替沉积的多层膜,分别得到4层膜[Pt/FeB]2/Ag、6层膜[Pt/FeB]3/Ag。
薄膜退火前的多层结构可以为薄膜退火时增加外延生长机制,促进薄膜外延生长,理论上多层结构越多对薄膜的磁性能越有利。但是由于元素掺杂的原因,应综合考量多层结构对薄膜磁性能的影响。
在某些实施例中,步骤(2)中的电镀工艺均在超声条件进行电沉积,有利于及时清除薄膜表面产生的气泡,预防气泡对电沉积薄膜形貌和分布均匀造成的影响;超声能够及时把镀液浓度均匀化,防止因电镀时造成镀液浓度差对电沉积的影响。
在某些实施例中,步骤(2)中,电镀工艺电沉积Pt的电流密度为2.8~3.2A/dm2,通电18min,电镀FeB的电流密度为2.8~3.2A/dm2,通电8min。
在某些实施例中,步骤(3)中在Fe镀液先调节pH为9,之后加入浓度为0.1g/L、0.3g/L、0.6g/L和1.0g/L的NaBH4。结果中0.3g/L的NaBH4得到的薄膜性能最好。
在某些实施例中,步骤(3)中的把同一个样品分为相同的三份,分别再不同温度下退火,保证退火气氛、退火时间不变,温度为单一变量。结果中800℃下,保温4小时,得到的薄膜矫顽力最大。
在某些实施例中,步骤(4)中的4层和6层膜在相同退火条件下,得到不同的B掺杂的FePt薄膜,经过性能测试后,结果中4层膜的矫顽力最大。
在某些实施例中,步骤(2)和(4)电沉积薄膜[Pt/FeB]n/Ag的Fe、Pt原子比例大约为1:1。
下面结合实施例对本发明作进一步说明。
实施例1
配制2份100mL浓度为0.5mol/L Na2SO4,之后分别加入0.5mmol/L H2PtCl6·6H2O和2mmol/L H2PtCl6·6H2O,然后用1mol/L的稀硫酸把这2份溶液pH调为2.8,以Ag基底作为阴极,分别放入上述酸性镀液中,电沉积的电流密度均设为3A/dm2,通电时间为18min,得到一层的Pt镀层,记为样品Pt/Ag1和Pt/Ag2。配制2份100mL浓度为0.18mol/L硫酸亚铁铵、1.5mol/L柠檬酸钠、0.8mol/L硼酸、0.1mol/L抗坏血酸,然后用1mol/L的氢氧化钠溶液把溶液pH调为9,之后再分别加入0.6g/L的NaBH4,再以样品Pt/Ag1和样品Pt/Ag2作为阴极,分别放入上述2份碱性镀液中,电沉积的电流密度设为3A/dm2,通电时间为8min,电沉积得到一层Fe镀层或FeB镀层,即双层膜,记为样品[Pt/Fe]/Ag1和[Pt/FeB]/Ag2两个薄膜。再将样品[Pt/Fe]/Ag1和[Pt/FeB]/Ag2在混合气氛(15%H2和85%N2)中800℃退火4h得到高矫顽力的B掺杂FePt薄膜。将以上两个薄膜进行VSM测试,结果如图1,两个薄膜的矫顽力均在10kOe左右,在镀液Pt元素的浓度为0.5~2mmol/L范围内,均能电沉积得到的相应的磁性薄膜。
实施例2
配制4份100mL浓度为1mmol/L H2PtCl6·6H2O和0.5mol/L Na2SO4,然后用1mol/L的稀硫酸把溶液pH调为2.8,以Ag基底作为阴极,放入上述酸性镀液中,电沉积的电流密度设为3A/dm2,通电时间为18min,得到一层的Pt镀层,记为样品Pt/Ag。配制4份100mL浓度为0.18mol/L硫酸亚铁铵、1.5mol/L柠檬酸钠、0.8mol/L硼酸、0.1mol/L抗坏血酸,然后用1mol/L的氢氧化钠溶液把溶液pH调为9,之后再分别加入0.1g/L、0.3g/L、0.6g/L和1.0g/L的NaBH4,再以样品Pt/Ag作为阴极,在上述碱性镀液中,电沉积的电流密度设为3A/dm2,通电时间为8min,电沉积得到一层FeB镀层,即双层膜,记为样品[Pt/FeB]/Ag等四个薄膜。再将样品[Pt/FeB]/Ag在混合气氛(15%H2和85%N2)中800℃退火4h得到高矫顽力的B掺杂FePt薄膜。将以上四个薄膜进行VSM测试,结果如图3,经过B元素的掺杂双层膜,可以使薄膜的矫顽力从7.7kOe提高到17kOe。
对比案例:配制1份100mL浓度为1mmol/L H2PtCl6·6H2O和0.5mol/L Na2SO4,然后用1mol/L的稀硫酸把溶液pH调为2.8,以Ag基底作为阴极,放入上述酸性镀液中,电沉积的电流密度设为3A/dm2,通电时间为18min,得到一层的Pt镀层,记为样品Pt/Ag。配制1份100mL浓度为0.18mol/L硫酸亚铁铵、1.5mol/L柠檬酸钠、0.8mol/L硼酸、0.1mol/L抗坏血酸,然后用1mol/L的氢氧化钠溶液把溶液pH调为9,再以样品Pt/Ag作为阴极,在上述碱性镀液中,电沉积的电流密度设为3A/dm2,通电时间为8min,电沉积得到一层Fe镀层,即双层膜,记为样品[Pt/Fe]/Ag。再将样品[Pt/Fe]/Ag在混合气氛(15%H2和85%N2)中800℃退火4h得到FePt薄膜。将薄膜进行VSM测试,结果如图2,薄膜的矫顽力大约6.8kOe。
实施例3
配制1份100mL浓度为1mmol/L H2PtCl6·6H2O和0.5mol/L Na2SO4,然后用1mol/L的稀硫酸把溶液pH调为2.8,以Ag基底作为阴极,放入上述酸性镀液中,电沉积的电流密度设为3A/dm2,通电时间为18min,得到一层的Pt镀层。记为样品Pt/Ag。配制1份100mL浓度为0.18mol/L硫酸亚铁铵、1.5mol/L柠檬酸钠、0.8mol/L硼酸、0.1mol/L抗坏血酸,然后用1mol/L的氢氧化钠溶液把溶液pH调为9,之后再加入0.3g/L的NaBH4,再以样品Pt/Ag作为阴极,在上述碱性镀液中,电沉积得到一层FeB镀层,得到双层膜[Pt/FeB]/Ag。再将[Pt/FeB]/Ag作为阴极,放入酸性镀Pt溶液中,保持电流密度和沉积时间不变,电沉积得到三层膜[Pt2/FeB]/Ag。再将[Pt2/FeB]/Ag作为阴极,放入碱性镀液中,电沉积得到四层膜[Pt/FeB]2/Ag。反复进行交替电沉积,得到的6层薄膜[Pt/FeB]3/Ag。把薄膜分为同样的三份,分别在500℃、650℃、800℃下,气体氛围为H215%和N285%条件下,保温4小时退火处理,得到的三个样品分别经过XRD测试,如图4,从图中可以得到,随着退火温度的升高衍射峰强度变得越来越来明显,与fct-FePt标准卡片对比,发现温度升高可以促进薄膜的晶体结构面心立方相转变为体心四方相。之后把这三份样品进行磁性能检测,如图5,从图中看到温度越高,其薄膜的矫顽力越大,当温度达到800℃时,其矫顽力达16kOe。
取沉积得到的6层薄膜[Pt/FeB]3/Ag在400℃下,气体氛围为H215%和N285%条件下,保温4小时退火处理,进行VSM测试发现也能形成一定的永磁相,如图6,其矫顽力达2.9kOe。
实施例4
分别配制3份实例2中的镀Pt和镀FeB溶液,保持和实例2中的相同的电沉积步骤,分别得到3个样品,即2层膜[Pt/FeB]/Ag、4层膜[Pt/FeB]2/Ag、6层膜[Pt/FeB]3/Ag。并将这三个薄膜进行退火处理(退火条件与实例2中退火条件相同)。取4层膜进行断面处理,处理后的样品进行SEM和Mapping测试,测试结果薄膜厚度大约有4.5μm,如图7。为确定B元素的存在和分布进行了Mapping测试,如图8。为了准确测量3个薄膜中Fe、Pt元素含量,通过EDS的测试,如图9,Fe、Pt原子百分比都接近1:1,2层膜、4层膜和6层膜的测试结果分别为Fe54Pt46、Fe52Pt48、Fe54Pt46。由于B元素为超轻元素,EDS无法精确地测试其含量。为了精确测量B元素的含量,我们对三个样品分别取部分进行硝化处理并经过电感耦合等离子体发射光谱仪(ICP)测试。其结果如下表所示。
[Pt/FeB]n多层膜在退火后的ICP测试数据表
Figure BDA0002927223430000091
Figure BDA0002927223430000101
根据表中数据可以换算出原子百分比Fe原子大约是B原子的3倍,说明在电沉积过程中还原出来的物质可能是Fe3B,结合EDS的测试结果可以得到三个样品中Fe、Pt和B元素的具体比例分别为(Fe0.54Pt0.46)85B15、(Fe0.52Pt0.48)85B15和(Fe0.54Pt0.46)85B15。探究薄膜物相变化,图10所示。随着薄膜层数的增加L10相FePtB的特征峰衍射强度明显增强,在n=1和2的时候,(002)晶面衍射强度比(200)晶面强度高,而在n=3的时候晶面衍射强度发生了反转。这与图11的磁滞回线一致。当电沉积薄膜为4层时,矫顽力达到最大,既23kOe。

Claims (8)

1.一种高矫顽力B掺杂FePt薄膜的制备方法,其特征在于,该方法包括以下步骤:
(1)以Ag基底作为阴极,在含Pt元素的酸或盐的酸性镀液中,通过电沉积得到一层的Pt镀层,记为样品Pt/Ag;
(2)以样品Pt/Ag作为阴极,在含亚铁盐和BH4 -的碱性镀液中,电沉积得到一层FeB镀层,得到双层膜,记为样品[Pt/FeB]/Ag;
(3)样品[Pt/FeB]/Ag在混合气氛中以400-800℃退火处理1-5h,得到高矫顽力的B掺杂FePt薄膜。
2.根据权利要求1的制备方法,其特征在于,交替重复(1)和(2)的步骤,得到Pt镀层和FeB镀层交替沉积的多层膜。
3.如权利要求1所述的制备方法,其特征在于,所述含Pt元素的酸或盐的酸性镀液中,包含Pt元素的酸或盐和电解质盐,pH为2.5~3;其中Pt元素的浓度为0.5~2mmol/L,含Pt元素的酸为H2PtCl6·6H2O,含Pt元素的盐为(NH4)2PtCl6、K2PtCl6、Na2PtCl6中一种或多种;电解质盐的浓度为0.4~1mol/L,电解质盐为钠盐或钾盐。
4.如权利要求1所述的制备方法,其特征在于,所述含亚铁盐和BH4 -的碱性镀液包括:0.1~0.2mol/L亚铁盐,1~2mol/L柠檬酸盐,0.5~1mol/L硼酸,0.1~0.2mol/L抗坏血酸,0.1g/L~1.0g/L NaBH4或KBH4,pH为9~9.5;所述亚铁盐选自硫酸亚铁铵、氯化亚铁、硫酸亚铁中一种或多种;所述柠檬酸盐选自二水合柠檬酸钠、柠檬酸钠中一种或多种。
5.如权利要求1所述的制备方法,其特征在于,混合气氛为H2和N2,氢气含量为3%~30%。
6.如权利要求1所述的制备方法,其特征在于,步骤(1)的电流密度为2.8~3.2A/dm2,溶液温度为25℃,电沉积Pt时间为5~36分钟。
7.如权利要求1所述的制备方法,其特征在于,步骤(2)的沉积时间为1~15分钟。
8.如权利要求1所述的制备方法,其特征在于,电沉积的过程在超声条件下进行的,超声条件为室温,振动频率为60Hz。
CN202110137365.9A 2021-02-01 2021-02-01 一种高矫顽力B掺杂FePt薄膜的制备方法 Active CN112962122B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110137365.9A CN112962122B (zh) 2021-02-01 2021-02-01 一种高矫顽力B掺杂FePt薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110137365.9A CN112962122B (zh) 2021-02-01 2021-02-01 一种高矫顽力B掺杂FePt薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN112962122A CN112962122A (zh) 2021-06-15
CN112962122B true CN112962122B (zh) 2022-03-15

Family

ID=76272814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110137365.9A Active CN112962122B (zh) 2021-02-01 2021-02-01 一种高矫顽力B掺杂FePt薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN112962122B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010036562A1 (en) * 2000-03-18 2001-11-01 Sellmyer David J. Extremely high density magnetic recording media, with production methodology controlled longitudinal/perpendicular orientation, grain size and coercivity
JP2007180532A (ja) * 2005-12-02 2007-07-12 Sony Corp 磁気構造体、磁気構造体の製造方法、および、そのような磁気構造体を一体化しているマイクロデバイス
CN101403098A (zh) * 2008-11-05 2009-04-08 湖北大学 FePt纳米颗粒单层膜与B4C复合结构的磁存储材料及其制备方法
CN101538691A (zh) * 2009-04-17 2009-09-23 同济大学 一种掺杂稀土元素的FePt:RE非晶态合金纳米材料的制备方法
CN101572096A (zh) * 2009-04-29 2009-11-04 燕山大学 一种优化L10-FePt薄膜微结构的方法
US20110045320A1 (en) * 2009-08-21 2011-02-24 Korea Institute Of Science And Technology Magnetic tunnel junction device and method for manufacturing the same
US9542968B1 (en) * 2010-08-20 2017-01-10 WD Media, LLC Single layer small grain size FePT:C film for heat assisted magnetic recording media
CN108642532A (zh) * 2018-05-31 2018-10-12 中国科学院宁波材料技术与工程研究所 钪添加剂用途及纳米晶Ni-B-Sc镀层的制法与应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010036562A1 (en) * 2000-03-18 2001-11-01 Sellmyer David J. Extremely high density magnetic recording media, with production methodology controlled longitudinal/perpendicular orientation, grain size and coercivity
JP2007180532A (ja) * 2005-12-02 2007-07-12 Sony Corp 磁気構造体、磁気構造体の製造方法、および、そのような磁気構造体を一体化しているマイクロデバイス
CN101403098A (zh) * 2008-11-05 2009-04-08 湖北大学 FePt纳米颗粒单层膜与B4C复合结构的磁存储材料及其制备方法
CN101538691A (zh) * 2009-04-17 2009-09-23 同济大学 一种掺杂稀土元素的FePt:RE非晶态合金纳米材料的制备方法
CN101572096A (zh) * 2009-04-29 2009-11-04 燕山大学 一种优化L10-FePt薄膜微结构的方法
US20110045320A1 (en) * 2009-08-21 2011-02-24 Korea Institute Of Science And Technology Magnetic tunnel junction device and method for manufacturing the same
US9542968B1 (en) * 2010-08-20 2017-01-10 WD Media, LLC Single layer small grain size FePT:C film for heat assisted magnetic recording media
CN108642532A (zh) * 2018-05-31 2018-10-12 中国科学院宁波材料技术与工程研究所 钪添加剂用途及纳米晶Ni-B-Sc镀层的制法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Magnetic Recording on FePt and FePtB Intermetallic Compound Media;Ning Li等;《IEEE TRANSACTIONS ON MAGNETICS》;19990331;第35卷(第2期);1077-1082 *

Also Published As

Publication number Publication date
CN112962122A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
US9175412B2 (en) Iron-gold barcode nanowire and manufacturing method thereof
US10683580B2 (en) Metallic nanospring and method for manufacturing of the same
Thongmee et al. Fabrication and magnetic properties of metal nanowires via AAO templates
CN1838244A (zh) 软磁性薄膜和磁记录头
Mansouri et al. Electrodeposition of equiatomic FeNi and FeCo nanowires: Structural and magnetic properties
Kakuno et al. Structure, Composition, and Morphology of Electrodeposited Co x Fe1− x Alloys
Yuan et al. Self-assembly synthesis and magnetic studies of Co–P alloy nanowire arrays
Dobosz et al. The influence of homogenous external magnetic field on morphology and magnetic properties of CoRu nanowire arrays
Neetzel et al. Uniaxial magnetization reversal process in electrodeposited high-density iron nanowire arrays with ultra-large aspect ratio
Song et al. Growth of single-crystalline Co7Fe3 nanowires via electrochemical deposition and their magnetic properties
CN112962122B (zh) 一种高矫顽力B掺杂FePt薄膜的制备方法
CN108660487B (zh) Nd-Fe-B磁性纳米线阵列的制备方法
CN108914174B (zh) Tb-Dy-Fe-Co合金磁性纳米管阵列的制备方法
US20070160867A1 (en) Magnetic structures, methods of fabricating magnetic structures and micro device incorporating such magnetic structures
CN107705980A (zh) Nd‑Fe‑Co三元合金磁性纳米线的制备方法
Schlörb et al. Electrodeposition of Fe-based magnetic alloy nanowires
CN1794374A (zh) 纳米晶软磁合金薄膜材料及其制备方法
CN112647098A (zh) 一种网状钐钴多层磁性纳米线的制备方法
US20070158198A1 (en) Metals with inhomogeneous magnetic field strength
Sako et al. Uniaxial Magnetization and Electrocatalytic Performance for Hydrogen Evolution on Electrodeposited Ni Nanowire Array Electrodes with Ultra-High Aspect Ratio
Min et al. Magnetic nanodiscs fabricated from multilayered nanowires
THONGMEE Synthesis, structure and magnetic properties of nanowires and films by electrodeposition
Rozman et al. Hard magnetic Co-Pt-based nanotubes produced via direct electroplating
CN114836800A (zh) 一种Co-Ni-Zn三元纳米晶磁性合金的制备方法及其所得产品
CN116971000A (zh) 一种分步电沉积制备永磁FePt厚膜的电镀工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant