CN112953454B - High-frequency low-loss surface acoustic wave resonator and preparation method thereof - Google Patents
High-frequency low-loss surface acoustic wave resonator and preparation method thereof Download PDFInfo
- Publication number
- CN112953454B CN112953454B CN202110280164.4A CN202110280164A CN112953454B CN 112953454 B CN112953454 B CN 112953454B CN 202110280164 A CN202110280164 A CN 202110280164A CN 112953454 B CN112953454 B CN 112953454B
- Authority
- CN
- China
- Prior art keywords
- low
- acoustic wave
- surface acoustic
- bonding
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010897 surface acoustic wave method Methods 0.000 title claims abstract description 37
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 58
- 239000010408 film Substances 0.000 claims abstract description 21
- 239000010409 thin film Substances 0.000 claims abstract description 16
- 239000013078 crystal Substances 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims description 28
- 150000002500 ions Chemical class 0.000 claims description 11
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims description 10
- 235000019687 Lamb Nutrition 0.000 claims description 9
- 238000005468 ion implantation Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 claims description 4
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 claims description 4
- 239000011810 insulating material Substances 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910004140 HfO Inorganic materials 0.000 claims description 2
- 239000004642 Polyimide Substances 0.000 claims description 2
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 239000012212 insulator Substances 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims 2
- 229910052759 nickel Inorganic materials 0.000 claims 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims 1
- 230000008878 coupling Effects 0.000 abstract description 8
- 238000010168 coupling process Methods 0.000 abstract description 8
- 238000005859 coupling reaction Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 8
- 230000002411 adverse Effects 0.000 abstract description 3
- 238000013461 design Methods 0.000 abstract description 3
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000002513 implantation Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/25—Constructional features of resonators using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于单晶薄膜器件的设计与制备领域,具体涉及一种高频、低损耗的声表面波谐振器及其制备方法。The invention belongs to the field of design and preparation of single crystal thin film devices, in particular to a high-frequency, low-loss surface acoustic wave resonator and a preparation method thereof.
背景技术Background technique
声表面波谐振器以性能可靠、一致性好且设计灵活性大、输入输出阻抗误差小、等优点,广泛应用于无线通信领域。传统声表面波谐振器通过在压电材料上制备叉指电极,利用压电材料的压电效应激发声表面波,是一个简单的块材结构。其谐振频率与被激发的声表面波波速成正比,与叉指电极宽度成反比。受限于结构,传统的声表面波器件声波能量极易向体方向泄露,因此器件品质因子(Q值)较低,同时由于块材上的声表面波波速较低,因此谐振器的谐振频率较低。要获得高频率高Q值的谐振器,必须在提高声表面波波速的同时限制谐振能量泄露。SAW resonators are widely used in the field of wireless communication with the advantages of reliable performance, good consistency, large design flexibility, and small input and output impedance errors. The traditional surface acoustic wave resonator uses the piezoelectric effect of piezoelectric material to excite the surface acoustic wave by preparing interdigitated electrodes on the piezoelectric material, which is a simple bulk structure. Its resonant frequency is proportional to the velocity of the excited surface acoustic wave and inversely proportional to the width of the interdigital electrode. Due to the limitation of the structure, the acoustic energy of the traditional SAW device is very easy to leak to the bulk direction, so the device quality factor (Q value) is low. lower. To obtain high-frequency and high-Q resonators, it is necessary to limit the leakage of resonant energy while increasing the surface acoustic wave velocity.
现有的一些高频SAW谐振器主要有以下几种:1.在高声速衬底例如金刚石上制备压电薄膜的SAW器件,其可以实现高声速高频率,但机电耦合系数通常只有3%左右,且压电薄膜制备较为复杂;2.利用A1模态的Lamb波,制备的空腔型SAW器件,其同样通过高声速实现了高频率,但薄膜制备采用溅射法制备,成本较高且该结构稳定性较低,且A1模态声速不稳定,随压电层厚度存在大幅波动;3.利用布拉格反射层,仿照体声波谐振器反射层的制备方法制备SAW器件,但多层结构使SAW器件制备成本上升且薄膜平坦度对器件性能影响巨大,对大规模生产提出更高要求。Some existing high-frequency SAW resonators mainly include the following: 1. SAW devices prepared with piezoelectric thin films on high-sonic-speed substrates such as diamond, which can achieve high-speed and high-frequency, but the electromechanical coupling coefficient is usually only about 3% , and the preparation of piezoelectric thin films is more complicated; 2. The cavity-type SAW device prepared by using the Lamb wave of the A1 mode also achieves high frequency through high sound velocity, but the thin film is prepared by sputtering, which is expensive and expensive. The stability of the structure is low, and the A1 modal sound velocity is unstable, which fluctuates greatly with the thickness of the piezoelectric layer; 3. The Bragg reflector is used to prepare the SAW device by imitating the preparation method of the reflector layer of the bulk acoustic wave resonator, but the multilayer structure makes The cost of fabrication of SAW devices increases and the film flatness has a huge impact on device performance, which puts forward higher requirements for mass production.
发明内容SUMMARY OF THE INVENTION
针对上述存在问题或不足,为解决现有技术中制备高频声表面波谐振器时制备成本高,机电耦合系数较低等技术问题,本发明提供了一种高频、低损耗的声表面波谐振器及其制备方法,具有高频、高Q、大机电耦合系数、制备成本较低且结构稳定。In view of the above problems or deficiencies, in order to solve the technical problems such as high preparation cost and low electromechanical coupling coefficient when preparing high-frequency surface acoustic wave resonators in the prior art, the present invention provides a high-frequency, low-loss surface acoustic wave resonator The preparation method thereof has the advantages of high frequency, high Q, large electromechanical coupling coefficient, low preparation cost and stable structure.
一种高频、低损耗的声表面波谐振器,自上而下依次包括叉指电极,压电薄膜、反射层、键合层和衬底;或者,自上而下依次为叉指电极、压电薄膜、键合层、反射层和衬底。A high-frequency, low-loss surface acoustic wave resonator, comprising interdigital electrodes, a piezoelectric film, a reflective layer, a bonding layer and a substrate in order from top to bottom; or, from top to bottom, interdigitated electrodes, Piezoelectric films, bonding layers, reflective layers and substrates.
所述压电薄膜为单晶铌酸锂X切0°到40°、150°到180°Y传,以激发S0模态Lamb波;单晶铌酸锂Y切0°到30°、40°到50°、130°到140°、150°到180°X传,以激发S0模态Lamb波、SH0波或LLSAW;单晶铌酸锂Z切0°到10°、50°到70°、110°到130°、170°到180°X传以激发S0模、A1模态Lamb波;或单晶钽酸锂X切20°到40°Y传,以激发S0模态Lamb波。The piezoelectric thin film is a single crystal lithium niobate X cut from 0° to 40°, 150° to 180°, Y to excite the S 0 mode Lamb wave; single crystal lithium niobate Y is cut from 0° to 30°, 40° ° to 50°, 130° to 140°, 150° to 180° X to excite S 0 mode Lamb wave, SH 0 wave or LLSAW; single crystal lithium niobate Z cut 0° to 10°, 50° to 70°, 110° to 130°, 170° to 180° X to excite S 0 mode, A 1 mode Lamb wave; or single crystal lithium tantalate X cut 20° to 40° Y to excite S 0 mode State Lamb waves.
进一步的,所述压电薄膜的厚度为50-5000nm。Further, the thickness of the piezoelectric film is 50-5000 nm.
进一步的,所述叉指电极的材料为AI、Au、Mo、Pt或W,叉指电极厚度为5%-10%λ,λ为叉指周期。Further, the material of the interdigital electrode is AI, Au, Mo, Pt or W, the thickness of the interdigital electrode is 5%-10%λ, and λ is the interdigital period.
进一步的,所述低声阻抗反射层和高声阻抗反射层的厚度与设计的叉指周期相关,厚度区间为0.1-0.5λ,λ为叉指周期。Further, the thicknesses of the low acoustic impedance reflective layer and the high acoustic impedance reflective layer are related to the designed interdigital period, and the thickness ranges from 0.1 to 0.5λ, where λ is the interdigital period.
进一步的,所述衬底为Si、绝缘层上硅S0I、玻璃、铌酸锂LN或钽酸锂LT。Further, the substrate is Si, silicon-on-insulator SOI, glass, lithium niobate LN or lithium tantalate LT.
进一步的,所述低声阻抗反射层的材质为Al、Ti、Si02或BCB(苯丙环丁烯)中的一种;所述高声阻抗反射层的材质为Mo、Au、Nb、Ni、Pt、Ta、W、Ir、ZnO、HfO2、Ti02、Ta205或WO3。Further, the material of the low acoustic impedance reflective layer is one of Al, Ti, SiO 2 or BCB (Benzobutene); the material of the high acoustic impedance reflective layer is Mo, Au, Nb, Ni , Pt, Ta, W, Ir, ZnO, HfO 2 , TiO 2 ,
上述高频、低损耗的声表面波谐振器的制备方法,包括如下步骤:The preparation method of the above-mentioned high-frequency, low-loss surface acoustic wave resonator, comprising the following steps:
步骤1、取经过离子注入的压电材料,并在压电材料的注入面下方依次生长高、低声阻抗反射层,然后将衬底与压电材料具有反射层的一侧键合;Step 1. Take the piezoelectric material that has undergone ion implantation, grow high and low acoustic impedance reflective layers in sequence under the implanted surface of the piezoelectric material, and then bond the substrate to the side of the piezoelectric material with the reflective layer;
或者,取经过离子注入的压电材料和依次生长有高、低声阻抗反射层的衬底,将衬底生长反射层一侧与压电材料的离子注入面一侧键合;Or, take the piezoelectric material that has undergone ion implantation and the substrate with high and low acoustic impedance reflective layers grown in turn, and bond one side of the substrate growth reflective layer to the side of the ion implanted surface of the piezoelectric material;
或者,取经过离子注入的压电材料在其注入面下方生长低声阻抗反射层,取衬底在其上方生长高声阻抗反射层,然后将压电材料具有反射层的一侧与衬底具有反射层的一侧键合;Alternatively, take the ion-implanted piezoelectric material and grow a low-acoustic-impedance reflective layer under the implanted surface, take the substrate to grow a high-acoustic-impedance reflective layer above it, and then connect the side of the piezoelectric material with the reflective layer to the substrate with a reflective layer. One side of the reflective layer is bonded;
步骤2、将步骤1得到的键合后产物进行热处理,使压电材料的薄膜剥离,再在压电材料的剥离侧生长叉指电极,即得。Step 2: Heat treatment of the bonded product obtained in Step 1 to peel off the thin film of the piezoelectric material, and then grow an interdigital electrode on the peeled side of the piezoelectric material.
进一步的,所述步骤1中的键合选用聚合物键合或亲水性键合。Further, the bonding in the step 1 is selected from polymer bonding or hydrophilic bonding.
进一步的,所述聚合物键合是将有机绝缘材料涂覆在衬底和/或压电材料的键合侧进行;所述有机绝缘材料为苯并环丁烯和/或聚酰亚胺;键合层的总厚度为50nm-4000nm。Further, the polymer bonding is performed by coating an organic insulating material on the bonding side of the substrate and/or the piezoelectric material; the organic insulating material is benzocyclobutene and/or polyimide; The total thickness of the bonding layer is 50nm-4000nm.
进一步的,所述亲水键合是在衬底和/或压电材料的键合一侧生长键合物键合;其中,所述键合物为氧化硅、氮化硅、氧化铝和/或氮化铝;键合层的总厚度为50nm-4000nm。Further, the hydrophilic bonding is a bond growing on the bonding side of the substrate and/or the piezoelectric material; wherein, the bonding is silicon oxide, silicon nitride, aluminum oxide and/or Or aluminum nitride; the total thickness of the bonding layer is 50nm-4000nm.
进一步的,所述步骤2具体是将步骤1得到的键合后产物,升温至150~350℃,退火20~120min,得到剥离薄膜。Further, the
与现有技术相比,本发明的优点和有益效果在于:Compared with the prior art, the advantages and beneficial effects of the present invention are:
1、本发明的高频、低损耗的声表面波谐振器,通过采用特殊切向的薄膜压电材料,激发出特定模态的高声速声表面波,实现了高机电耦合系数的同时,也提升了谐振频率。通过采用声反射结构,抑制高声速声表面波向体方向的泄露,将声表面波的能量限制在压电薄膜,从而提升了器件Q值。1. The high-frequency, low-loss SAW resonator of the present invention uses a special tangential thin-film piezoelectric material to excite a high-speed SAW in a specific mode. Raised resonance frequency. By adopting the acoustic reflection structure, the leakage of the high-speed surface acoustic wave to the bulk direction is suppressed, and the energy of the surface acoustic wave is confined to the piezoelectric film, thereby improving the Q value of the device.
2、本发明高频、低损耗的声表面波谐振器的制备方法,使用晶圆键合转移技术制备高质量压电薄膜,结合固态反射层结构能够制备结构强度高且性能优异的谐振器。键合层可以设置在压电层与反射层之间,也可以设置在反射层与衬底之间,使得键合方式具有很大的灵活性,以满足不同制备情况的需要,提高键合成功率。并且,制备得到的高频、低损耗的声表面波谐振器在满足高频、高机电耦合系数的前提下,还满足宽带滤波的需求,且不易产生谐波,解决了电子束沉积的方式制备的压电薄膜,难以保证薄膜的品格取向,薄膜质量不高,致使器件产生多次谐波、对谐振频率影响大,难以实现宽带滤波的技术问题。2. The high-frequency, low-loss surface acoustic wave resonator preparation method of the present invention uses wafer bonding and transfer technology to prepare high-quality piezoelectric thin films, and combined with the solid reflective layer structure, a resonator with high structural strength and excellent performance can be prepared. The bonding layer can be arranged between the piezoelectric layer and the reflective layer, or between the reflective layer and the substrate, so that the bonding method has great flexibility to meet the needs of different preparation situations and improve the bonding power. . In addition, the prepared high-frequency and low-loss surface acoustic wave resonator meets the requirements of broadband filtering on the premise of meeting high frequency and high electromechanical coupling coefficient, and is not easy to generate harmonics, which solves the problem of electron beam deposition. It is difficult to ensure the quality orientation of the film, and the quality of the film is not high, which causes the device to generate multiple harmonics and has a large impact on the resonant frequency, and it is difficult to realize the technical problem of broadband filtering.
3、本发明高频、低损耗的声表面波谐振器,只需生长低声阻抗反射层和高声阻抗反射层共两层。相较多层布拉格反射层的SAW谐振器,当生长多层材料时,随着层数的增多,最上层薄膜的粗糙度会逐渐加大,薄膜质量会越来越差,而最靠近压电材料的一层反射层质量对固态反射层声波反射效果影响最大。本发明在有效限制体方向谐振能量泄露的前提下,降低了反射层层数,既保证了反射层具有较好的质量,也避免了逐层生长薄膜质量差对谐振器产生的不良影响,同时降低了制备材料和/或工艺成本。3. The high-frequency, low-loss surface acoustic wave resonator of the present invention only needs to grow two layers of a low-acoustic impedance reflective layer and a high-acoustic impedance reflective layer. Compared with the SAW resonator with multilayer Bragg reflection layers, when the multilayer material is grown, the roughness of the uppermost film will gradually increase with the increase of the number of layers, and the quality of the film will become worse and worse, and the film closest to the piezoelectric The quality of one reflective layer of the material has the greatest influence on the sound wave reflection effect of the solid reflective layer. On the premise of effectively restricting the leakage of resonance energy in the bulk direction, the invention reduces the number of reflective layers, which not only ensures good quality of the reflective layers, but also avoids the adverse effects on the resonator caused by the poor quality of the layer-by-layer growth film. Reduced manufacturing material and/or process costs.
附图说明Description of drawings
图1为本发明的结构示意图。FIG. 1 is a schematic structural diagram of the present invention.
图2为实施例1的制备流程示意图。FIG. 2 is a schematic diagram of the preparation process of Example 1. FIG.
图3为对比例1的结构示意图。FIG. 3 is a schematic structural diagram of Comparative Example 1. FIG.
图4为实施例1在中心频率点时的形变位移图。FIG. 4 is a deformation and displacement diagram of Example 1 at the center frequency point.
图5为对比例1在中心频率点时的形变位移图。FIG. 5 is a deformation and displacement diagram of Comparative Example 1 at the center frequency point.
附图标记:1-叉指电极,2-压电薄膜,3-低声阻抗反射层,4-高声阻抗反射层,5-键合层,6-衬底。Reference numerals: 1-interdigital electrode, 2-piezoelectric film, 3-low acoustic impedance reflection layer, 4-high acoustic impedance reflection layer, 5-bonding layer, 6-substrate.
具体实施方式Detailed ways
下面结合实施例和附图,对本发明技术方案进行清楚,完整地描述;显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below with reference to the embodiments and the accompanying drawings; obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
需要说明的是,本发明各实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。不同厂家、型号的原料并不影响本发明技术方案的实施及技术效果的实现。It should be noted that, if specific conditions are not indicated in the embodiments of the present invention, conventional conditions or conditions suggested by manufacturers are used. The reagents or instruments used without the manufacturer's indication are conventional products that can be obtained from the market. The raw materials of different manufacturers and models do not affect the implementation of the technical solution of the present invention and the realization of the technical effect.
优选地,经过离子注入的压电材料通过如下方法得到;取压电材料,在压电材料上进行离子注入,注入的离子为H离子、He离子、B离子、As离子中的一种或多种;注入离子的能量为100KeV-1000KeV;注入剂量为2-8×1016/cm2;离子束流为0.1-10um/cm-2;注入深度为0.3-8um。Preferably, the piezoelectric material after ion implantation is obtained by the following method: taking the piezoelectric material, and performing ion implantation on the piezoelectric material, and the implanted ions are one or more of H ions, He ions, B ions, and As ions The energy of implanted ions is 100KeV-1000KeV; the implantation dose is 2-8×10 16 /cm 2 ; the ion beam current is 0.1-10um/cm -2 ; the implantation depth is 0.3-8um.
实施例1Example 1
本实施例高频、低损耗的声表面波谐振器的制备方法,如图2所示,包括如下步骤:The preparation method of the high-frequency, low-loss surface acoustic wave resonator of the present embodiment, as shown in Figure 2, comprises the following steps:
步骤1、取经过离子注入的压电材料,并在压电材料的注入面下方生长反射层,然后取衬底,将衬底与压电材料具有反射层的一侧键合。Step 1. Take the piezoelectric material that has undergone ion implantation, and grow a reflective layer under the implanted surface of the piezoelectric material, then take the substrate, and bond the substrate to the side of the piezoelectric material with the reflective layer.
压电材料为Y切Z传的单晶铌酸锂,将压电材料注入H离子,注入离子的能量为100KeV,注入剂量为2×1016/cm2,离子束流为8um/cm-2,注入深度为4um,得到经过离子注入的压电材料。The piezoelectric material is the single crystal lithium niobate of Y-cut and Z-transmission. The piezoelectric material is implanted with H ions. The energy of the implanted ions is 100KeV, the implantation dose is 2×10 16 /cm 2 , and the ion beam current is 8um/cm -2 , the implantation depth is 4um, and the piezoelectric material after ion implantation is obtained.
在离子注入的压电材料其注入面下方生长低声阻抗反射层,然后再在低声阻抗反射层上生长高声阻抗反射层,生长的反射层总厚度为800nm,低声阻抗反射层的材质为Al,高声阻抗反射层的材质为Mo。A low-acoustic impedance reflective layer is grown under the implanted surface of the ion-implanted piezoelectric material, and then a high-acoustic impedance reflective layer is grown on the low-acoustic impedance reflective layer. The total thickness of the grown reflective layer is 800 nm, and the material of the low-acoustic impedance reflective layer is is Al, and the material of the high-acoustic impedance reflective layer is Mo.
然后,取衬底Si,将衬底与压电材料具有反射层的一侧键合,本实施例中的键合为聚合物键合,在衬底和压电材料的键合侧涂覆键合物键合,键合物为苯并环丁烯BCB。Then, take the substrate Si, bond the substrate to the side with the reflective layer of the piezoelectric material, the bonding in this embodiment is polymer bonding, and coat the bond on the bonding side of the substrate and the piezoelectric material The compound is bonded, and the bond is benzocyclobutene BCB.
键合的预键合压力4×105pa,保压时间为30min;然后,将温度缓慢升至200℃,并保持温度为200℃,保持2h,使所述苯并环丁烯完全固化,完成键合,得到的键合后的产物。The pre-bonding pressure for bonding is 4×10 5 Pa, and the pressure holding time is 30min; then, the temperature is slowly raised to 200°C, and the temperature is kept at 200°C for 2h, so that the benzocyclobutene is completely cured, The bonding is completed and the bonded product is obtained.
步骤2、将步骤1得到的键合后产物进行热处理,使压电材料的薄膜剥离,再在压电材料的剥离侧生长叉指电极,即得。Step 2: Heat treatment of the bonded product obtained in Step 1 to peel off the thin film of the piezoelectric material, and then grow an interdigital electrode on the peeled side of the piezoelectric material.
热处理:在温度350℃下,退火2h,使压电材料沿注入离子产生的损伤层产生劈裂,得到单晶压电薄膜材料,即压电薄膜层,如图1中的(4)所示。Heat treatment: at a temperature of 350 °C, annealing for 2 hours, so that the piezoelectric material is split along the damaged layer generated by the implanted ions to obtain a single crystal piezoelectric thin film material, that is, a piezoelectric thin film layer, as shown in (4) in Figure 1 .
最后,在压电材料的剥离侧生长叉指电极,本实施例中生长的叉指电极的电极材料为A1,厚度为160nm,即得,如图1中的(5)所示。Finally, an interdigital electrode is grown on the peeling side of the piezoelectric material. In this embodiment, the electrode material of the grown interdigital electrode is A1 and the thickness is 160 nm, that is, as shown in (5) in FIG. 1 .
对比例1Comparative Example 1
本对比例的声表面波谐振器的制备方法,如图3所示,包括如下步骤:The preparation method of the surface acoustic wave resonator of this comparative example, as shown in Figure 3, includes the following steps:
步骤1、取表面抛光后的Y切Z传的单晶铌酸锂作为压电材料,在抛光表面生长叉指电极。Step 1. Take the Y-cut and Z-transmitted single crystal lithium niobate after surface polishing as a piezoelectric material, and grow interdigital electrodes on the polished surface.
效果试验例Effect test example
为验证本发明所述的高频、低损耗的声表面波谐振器的技术效果,采用实施例1、对比例1中的方法制备的所述高频、低损耗的声表面波谐振器,按照如下步骤进行对比检测试验:In order to verify the technical effect of the high-frequency, low-loss surface acoustic wave resonator of the present invention, the high-frequency, low-loss surface acoustic wave resonator prepared by the method in Example 1 and Comparative Example 1, according to The following steps are carried out to carry out the comparative detection test:
1.取实施例1、对比例1中的方法所制备的谐振器,使用探针台和矢量网络分析仪测试谐振器的S参数,得到S11。1. Take the resonator prepared by the method in Example 1 and Comparative Example 1, use a probe station and a vector network analyzer to test the S parameter of the resonator, and obtain S11.
2.将各谱振器的S11导入ADS仿真软件,利用ADS软件仿真得到三种器件输入阻抗Zin,从阻抗曲线读取各谐振器的串联谐振频率fs和并联谐振频率fp。2. Import the S11 of each spectral resonator into the ADS simulation software, use the ADS software to simulate the input impedance Zin of the three devices, and read the series resonant frequency fs and parallel resonant frequency fp of each resonator from the impedance curve.
3.按照如下公式计算谐振器的Q值:3. Calculate the Q value of the resonator according to the following formula:
4.按照如下公式计算机电耦合系数kt 2:4. Calculate the electrical coupling coefficient k t 2 according to the following formula:
经过上述实验,得到实验数据如下After the above experiments, the experimental data obtained are as follows
图4和图5是实施例1与对比例的位移图。横坐标代表的器件厚度,图4可见到,在压电层厚度以外的点,位移较低,振动较小,说明能量被限制在压电层。图5可见,压电层厚度之外的点仍旧存在较大的位移,有较大的振动,能量存在较大的泄露。4 and 5 are displacement diagrams of Example 1 and Comparative Example. The thickness of the device represented by the abscissa is shown in Figure 4. At points other than the thickness of the piezoelectric layer, the displacement is lower and the vibration is smaller, indicating that the energy is confined to the piezoelectric layer. Figure 5 shows that the points outside the thickness of the piezoelectric layer still have a large displacement, there is a large vibration, and there is a large leakage of energy.
综上可见,本发明通过采用特殊切向的薄膜压电材料,激发出特定模态的高声速声表面波,实现了高机电耦合系数的同时,也提升了谐振频率;并配合双层的声反射结构,就有效的抑制高声速声表面波向体方向的泄露,将声表面波的能量限制在压电薄膜,提升了器件Q值。相较多层布拉格反射层的抑制能量泄露方式,本发明降低了反射层层数,既保证了反射层具有较好的质量,也避免了逐层生长薄膜质量差对谐振器产生的不良影响,同时降低了制备材料和/或工艺成本。To sum up, it can be seen that the present invention uses a special tangential thin-film piezoelectric material to excite a high-sonic surface acoustic wave of a specific mode, which not only achieves a high electromechanical coupling coefficient, but also increases the resonant frequency; The reflection structure can effectively suppress the leakage of the high-speed surface acoustic wave to the bulk direction, confine the energy of the surface acoustic wave to the piezoelectric film, and improve the Q value of the device. Compared with the method of suppressing energy leakage of the multilayer Bragg reflection layer, the present invention reduces the number of reflection layers, which not only ensures the better quality of the reflection layer, but also avoids the adverse effects on the resonator caused by the poor quality of the layer-by-layer growth film. At the same time, the cost of preparation materials and/or process is reduced.
由上述结果可知,本发明设计制备出的声表面波谐振器具有较高的频率、Q值以及机电耦合系数,性能优秀。由技术常识可知,本发明可以通过其他的不脱离其精神实质或必要特征的实施方案来实现。因此,上述的公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同本发明的范围内的改变均被本发明包含。It can be seen from the above results that the surface acoustic wave resonator designed and prepared by the present invention has higher frequency, Q value and electromechanical coupling coefficient, and has excellent performance. It is known from the technical common sense that the present invention can be realized by other embodiments without departing from its spirit or essential characteristics. Accordingly, the above-disclosed embodiments are, in all respects, illustrative and not exclusive. All changes within the scope of the present invention or within the scope equivalent to the present invention are encompassed by the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110280164.4A CN112953454B (en) | 2021-03-16 | 2021-03-16 | High-frequency low-loss surface acoustic wave resonator and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110280164.4A CN112953454B (en) | 2021-03-16 | 2021-03-16 | High-frequency low-loss surface acoustic wave resonator and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112953454A CN112953454A (en) | 2021-06-11 |
CN112953454B true CN112953454B (en) | 2022-10-11 |
Family
ID=76230058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110280164.4A Active CN112953454B (en) | 2021-03-16 | 2021-03-16 | High-frequency low-loss surface acoustic wave resonator and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112953454B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113411066A (en) * | 2021-06-30 | 2021-09-17 | 中国电子科技集团公司第二十六研究所 | double-SAW resonator structure with high-frequency double-acoustic-wave mode and double-SAW filter |
CN113437947B (en) * | 2021-07-06 | 2023-03-28 | 电子科技大学 | Film bulk acoustic resonator based on photonic crystal inhibits side energy radiation |
CN113839641A (en) * | 2021-09-08 | 2021-12-24 | 常州承芯半导体有限公司 | Surface acoustic wave resonance device, forming method, filtering device and radio frequency front end device |
CN116073789B (en) * | 2021-11-01 | 2024-08-23 | 南京大学 | Bulk acoustic wave resonator based on double-layer lithium niobate single crystal thin film |
CN114244311A (en) * | 2021-12-22 | 2022-03-25 | 江苏卓胜微电子股份有限公司 | Surface acoustic wave resonator and filter |
CN115021705B (en) * | 2022-06-27 | 2024-04-09 | 中国科学院上海微系统与信息技术研究所 | High-frequency acoustic wave resonator and filter using same |
CN117639707A (en) * | 2022-08-27 | 2024-03-01 | 华为技术有限公司 | Lamb wave resonator, preparation method thereof, filter, radio frequency module and electronic equipment |
CN115697016B (en) * | 2022-12-28 | 2023-07-21 | 中北大学 | Based on d 15 And d 22 Interdigital piezoelectric vibration sensor and preparation method thereof |
CN117040470A (en) * | 2023-07-24 | 2023-11-10 | 苏州声芯电子科技有限公司 | Surface acoustic wave resonator |
CN119298870A (en) * | 2024-12-09 | 2025-01-10 | 中国科学技术大学 | Acoustic wave resonator and filter |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107342748A (en) * | 2017-07-04 | 2017-11-10 | 浙江大学 | A kind of bulk acoustic wave resonator of based single crystal piezoelectric membrane and preparation method thereof |
CN110224680A (en) * | 2019-05-13 | 2019-09-10 | 电子科技大学 | A kind of solid-state reflection-type bulk acoustic wave resonator and preparation method thereof |
CN111371426A (en) * | 2020-04-30 | 2020-07-03 | 华南理工大学 | A kind of air-gap shear wave resonator based on lithium niobate and preparation method thereof |
CN111555733A (en) * | 2020-05-26 | 2020-08-18 | 北京航天微电科技有限公司 | Lamb wave resonator structure and preparation method thereof |
CN212012591U (en) * | 2020-04-30 | 2020-11-24 | 华南理工大学 | An air-gap shear wave resonator based on lithium niobate |
CN112332794A (en) * | 2020-11-24 | 2021-02-05 | 浙江信唐智芯科技有限公司 | High-power capacity bulk acoustic wave resonator with self-contained reflective layer, preparation method and system |
CN112398456A (en) * | 2020-11-20 | 2021-02-23 | 天通瑞宏科技有限公司 | High-performance surface acoustic wave device and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9525398B1 (en) * | 2014-05-27 | 2016-12-20 | Sandia Corporation | Single crystal micromechanical resonator and fabrication methods thereof |
DE102019204755A1 (en) * | 2018-04-18 | 2019-10-24 | Skyworks Solutions, Inc. | ACOUSTIC WAVING DEVICE WITH MULTILAYER PIEZOELECTRIC SUBSTRATE |
JP2020096226A (en) * | 2018-12-10 | 2020-06-18 | 太陽誘電株式会社 | Acoustic wave device, filter, and multiplexer |
CN110572135B (en) * | 2019-09-17 | 2021-12-14 | 中国科学院上海微系统与信息技术研究所 | High-frequency acoustic resonator and method of making the same |
-
2021
- 2021-03-16 CN CN202110280164.4A patent/CN112953454B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107342748A (en) * | 2017-07-04 | 2017-11-10 | 浙江大学 | A kind of bulk acoustic wave resonator of based single crystal piezoelectric membrane and preparation method thereof |
CN110224680A (en) * | 2019-05-13 | 2019-09-10 | 电子科技大学 | A kind of solid-state reflection-type bulk acoustic wave resonator and preparation method thereof |
CN111371426A (en) * | 2020-04-30 | 2020-07-03 | 华南理工大学 | A kind of air-gap shear wave resonator based on lithium niobate and preparation method thereof |
CN212012591U (en) * | 2020-04-30 | 2020-11-24 | 华南理工大学 | An air-gap shear wave resonator based on lithium niobate |
CN111555733A (en) * | 2020-05-26 | 2020-08-18 | 北京航天微电科技有限公司 | Lamb wave resonator structure and preparation method thereof |
CN112398456A (en) * | 2020-11-20 | 2021-02-23 | 天通瑞宏科技有限公司 | High-performance surface acoustic wave device and preparation method thereof |
CN112332794A (en) * | 2020-11-24 | 2021-02-05 | 浙江信唐智芯科技有限公司 | High-power capacity bulk acoustic wave resonator with self-contained reflective layer, preparation method and system |
Non-Patent Citations (5)
Title |
---|
A Pyroelectric Infrared Detector By Integrating LiTaO3 Single Crystal with Grooved Quartz Using UV Adhesive;J.X. Sun 等;《2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)》;20181206;123-126 * |
Investigation of a Solid-State Tuning Behavior in Lithium Niobate;Darren W. Branch 等;《IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control》;20200228;第67卷(第2期);365-373 * |
单晶铌酸锂薄膜光波导的制备研究;高琴 等;《真空科学与技术学报》;20210131;第41卷(第1期);44-49 * |
基于铌酸锂的无线无源温度/压力集成声表面波传感器研究;张利威;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20190815(第9(2019年)期);C031-84 * |
铌酸锂薄膜多层结构中声波性能研究;阚明荃;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20190615(第6(2019年)期);B020-173 * |
Also Published As
Publication number | Publication date |
---|---|
CN112953454A (en) | 2021-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112953454B (en) | High-frequency low-loss surface acoustic wave resonator and preparation method thereof | |
WO2020228284A1 (en) | Solid reflection type bulk acoustic wave resonator and preparation method therefor | |
CN109981070B (en) | A kind of cavity type bulk acoustic wave resonator without preparing sacrificial layer and preparation method thereof | |
CN102904546B (en) | The adjustable piezoelectric acoustic wave resonator of a kind of temperature compensation capability | |
EP3451363B1 (en) | Method for manufacturing composite wafer | |
CN203851109U (en) | Composite substrate | |
TW201803268A (en) | Hybrid structure for surface acoustic wave device | |
TWI815970B (en) | Joint body of piezoelectric material substrate and support substrate, and manufacturing method thereof | |
WO2023125757A1 (en) | High-bandwidth cavity type film bulk acoustic resonator and preparation method therefor | |
CN111371426A (en) | A kind of air-gap shear wave resonator based on lithium niobate and preparation method thereof | |
CN103929149A (en) | A kind of flexible piezoelectric film bulk acoustic wave resonator and preparation method thereof | |
CN104868873A (en) | Multilayer composite structure surface acoustics wave device base | |
CN111697943A (en) | High-frequency high-coupling-coefficient piezoelectric film bulk acoustic resonator | |
CN114513186B (en) | High-frequency surface acoustic wave resonator and preparation method thereof | |
CN111404508A (en) | A thin-film bulk acoustic wave resonator with double-layer pentagonal electrodes | |
JP4956569B2 (en) | Surface acoustic wave device | |
CN110994097B (en) | High-frequency large-bandwidth thin-film bulk wave filter structure and preparation method thereof | |
CN212012591U (en) | An air-gap shear wave resonator based on lithium niobate | |
CN112511128A (en) | Lamb wave resonator with POI structure and manufacturing method thereof | |
CN112383288A (en) | Temperature-compensated packaging-free surface acoustic wave device and preparation method thereof | |
CN114726334B (en) | A kind of acoustic wave resonator and its manufacturing method | |
CN110768644A (en) | Film bulk acoustic resonator and separation preparation process thereof | |
CN113472306A (en) | Solid assembly type piezoelectric film bulk acoustic resonator and manufacturing method thereof | |
CN110868181A (en) | A thin film material surface acoustic wave device with GS layered electrode and its preparation method and application | |
WO2023143005A1 (en) | High-bandwidth silicon back face etching type film bulk acoustic resonator, and preparation method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |