CN1129497A - Pulse Width Modulation DC-DC Boost Converter - Google Patents
Pulse Width Modulation DC-DC Boost Converter Download PDFInfo
- Publication number
- CN1129497A CN1129497A CN95190525A CN95190525A CN1129497A CN 1129497 A CN1129497 A CN 1129497A CN 95190525 A CN95190525 A CN 95190525A CN 95190525 A CN95190525 A CN 95190525A CN 1129497 A CN1129497 A CN 1129497A
- Authority
- CN
- China
- Prior art keywords
- rectifier
- inductor
- links
- switch
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K17/081—Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
- H03K17/0814—Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
- H03K17/08142—Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in field-effect transistor switches
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Amplifiers (AREA)
Abstract
一种使开关损耗降为最低的脉宽调制直流-直流升压转换器电路(300)。该电路以恒定的频率并在连续模式(电流不变)下工作。通过在开关器件切换至导通状态之前使主开关器件(302)的固有寄生电容放电并且在输出整流器断开时降低电路中输出整流器(320)的反向恢复电流,来使接通损耗降至最低。通过断开时在开关器件的两端产生零电压条件,来使开关器件中的断开损耗降至最低。
A pulse width modulated DC-DC boost converter circuit (300) that minimizes switching losses. The circuit operates at a constant frequency and in continuous mode (constant current). Turn-on losses are minimized by discharging the inherent parasitic capacitance of the main switching device (302) before the switching device switches to the on-state and reducing the reverse recovery current of the output rectifier (320) in the circuit when the output rectifier is turned off. lowest. Turn-off losses in the switching device are minimized by creating a zero voltage condition across the switching device at turn-off.
Description
发明领域field of invention
本发明涉及直流-直流的电压转换器,尤其涉及那些用零压切换技术将转换器半导体器件中的开关损耗降为最低的直流-直流升压转换器(boost converter)。 The present invention relates to DC-DC voltage converters, in particular to those DC-DC boost converters which use zero-voltage switching technology to minimize switching losses in converter semiconductor devices.
背景技术Background technique
直流-直流升压转换器常选作交流/直流AC/DC转换器中的前端功率级。直流-直流转换器有两种类型:脉宽调制(PWM)转换器和谐振转换器。PWM转换器阻断功率通量并控制占空系数,以便处理电源。谐振转换器则以正弦形式处理电源。PWM转换器在恒定的频率和可变的脉冲宽度下工作,而谐振转换器则在恒定的脉冲宽度下以变化的频率工作。当今主要使用PWM转换器,因为其电路简单而且易于控制。A DC-DC boost converter is often chosen as the front-end power stage in an AC/DC AC/DC converter. There are two types of DC-DC converters: pulse width modulation (PWM) converters and resonant converters. A PWM converter blocks power flow and controls the duty cycle in order to handle the power. A resonant converter handles the power supply sinusoidally. PWM converters operate at a constant frequency and variable pulse width, while resonant converters operate at a constant pulse width with varying frequency. PWM converters are mainly used today because of their circuit simplicity and ease of control.
在PWM升压转换器电路中,快速接通开关,以在一电感器的两端产生高电压。当断开开关时,电感电流通过一二极管给一输出电容器充电,并在输出端产生比原先提供的电压为高的电压。图1示出了一基本的(PWM)升压转换器电路100,它由金属氧化物半导体场效应晶体管(MOSFET)功率晶体管(MOSFET)102、电感器104、二极管106和电容器108组成。MOSFET 102的栅极端“g”连至一外部脉冲切换的电压源(Vswitch)116。MOSFET 102的漏极端“d”与电感器104和二极管106相连。MOSFET 102的源极端“s”接地。图1示出了连接于电路100之输入端的电压源(Vin)112,和在电路100的输出端与电容器108并联的负载114。图1还示出了流过电感器104的电流IL104、流过二极管106的电流ID106和流过MOSFET102的电流IDS102等电流标记;以及电感器104两端的电压VL104、MOSFET102两端的电压VDS102、电容器108两端的电压VC108和负载114两端的电压VL等电压标记。In a PWM boost converter circuit, a switch is turned on quickly to generate a high voltage across an inductor. When the switch is turned off, the inductor current through a diode charges an output capacitor and produces a higher voltage at the output than was originally supplied. FIG. 1 shows a basic (PWM)
MOSFET 102起着一个电子开关的作用,用以控制流过电感器104的电流IL104。在转换器开关周期中,Vswitch 116将脉冲电压加至MOSFET 102的栅极。该脉冲电压使MOSFET 102在“接通”(导通)状态和“断开”(非导通)状态之间作循环。当MOSFET 102接通和导通时,跨于MOSFET 102的漏-源电压VDS102为零,并且驱使电流IL104从Vin出发通过电感器104和MOSFET 102至地。此时,电感器104中的电流IL104和MOSFET 102中的电流IDS102相同。在开关周期的这段时间,由电容器108在前一周期中所充的电压VC108作为VL加到负载上。二极管106阻止反向电流从电容器108流入MOSFET 102和地。MOSFET 102 acts as an electronic switch to control current IL 104 flowing through inductor 104 . Vswitch 116 applies a pulsed voltage to the gate of MOSFET 102 during a converter switching cycle. The pulsed voltage cycles MOSFET 102 between an "on" (conducting) state and an "off" (non-conducting) state. When MOSFET 102 is on and conducting, the drain-to-source voltage VDS102 across MOSFET 102 is zero and drives current IL104 from Vin through inductor 104 and MOSFET 102 to ground. At this time, the current IL104 in the inductor 104 is the same as the current IDS102 in the MOSFET 102. During this time of the switching cycle, the voltage VC108 charged by capacitor 108 in the previous cycle is applied to the load as VL. Diode 106 blocks reverse current flow from capacitor 108 into MOSFET 102 and ground.
当MOSFET 102断开时,被阻止流过MOSFET 102的电流IDS102在电感器104的两端产生一较高的电压。在断开时刻,电感器104两端的电压马上改变极性,并升高至Vin和VL之间的差。现在,二极管106正向偏置,从而存储在电感器104中的能量由电流ID106经过二极管106输给电容器108和负载。流过电感器104的电流下降,而电容器108两端的电压VC108升高。The current IDS102 prevented from flowing through MOSFET 102 generates a higher voltage across inductor 104 when MOSFET 102 is turned off. At the moment of turn-off, the voltage across the inductor 104 changes polarity momentarily and rises to the difference between Vin and VL. Diode 106 is now forward biased so that the energy stored in inductor 104 is transferred by current ID 106 through diode 106 to capacitor 108 and the load. The current flowing through the inductor 104 decreases, and the voltage VC108 across the capacitor 108 increases.
重复上述MOSFET 102导通和断开的切换循环。经过一段设定的时间后,MOSFET 102再次接通。转换器是自动控制的,所以电感器中的平均电流等于负载电流。再次驱使电流从Vin经过电感器104和MOSFET 102至地,同时电容器108用前一个周期中存储的充电电能供给负载114。电容器108两端的平均电压依赖Vswitch116输出的脉冲宽度。在导通和断开之间切换MOSFET 102的周期以很高的速率重复。由Vswitch 116施加的脉冲电压频率一般可以是30-50千赫兹。由于较高的频率允许使用数值和尺寸都较小的电感器,所以希望转换器使用高的开关频率。于是转换器的体积可以做得较小,而且重量较轻。The switching cycle of switching MOSFET 102 on and off as described above is repeated. After a set period of time, MOSFET 102 is turned on again. The converter is automatically controlled so that the average current in the inductor is equal to the load current. Current is again driven from Vin through inductor 104 and MOSFET 102 to ground, while capacitor 108 supplies load 114 with the charging energy stored in the previous cycle. The average voltage across capacitor 108 depends on the pulse width output by Vswitch 116 . The cycle of switching MOSFET 102 between on and off repeats at a very high rate. The frequency of the pulsed voltage applied by Vswitch 116 may typically be 30-50 kilohertz. High switching frequencies are desirable for converters since higher frequencies allow the use of smaller value and smaller inductors. Therefore, the volume of the converter can be made smaller and lighter in weight.
然而,在较高开关频率下运行转换器的一个缺点是,切换功率损耗会随开关频率的升高而增加。实际上,这些开关损耗是选择开关频率的限制因素。使转换器以高开关频率运行,并能将转换器切换元件中的开关损耗降至最低曾经是转换器设计的一个目标。However, one disadvantage of operating the converter at higher switching frequencies is that switching power losses increase as the switching frequency increases. In fact, these switching losses are the limiting factor in choosing the switching frequency. It has been a goal of converter design to operate the converter at high switching frequency and to minimize the switching losses in the converter's switching elements.
在图1的升压电路100中,MOSFET 102在接通和断开期间都会产生损耗。诸如MOSFET 102的MOSFET具有固有寄生电容,它实际上是跨于漏-源两极之间的电容。该漏-源电容会使MOSFET102被电感性地断开,电容性地接通。断开期间,漏电感引起的电压尖峰产生噪声和电压应力。接通期间,存储在MOSFET 102之漏-源电容中的能量被内部损耗掉。接通损耗依赖于开关频率和存储在漏-源电容中的能量。In the
升压电路100中另一种开关损耗的起因是开关晶体管MOS-FET 102中的接通损耗,它是由于二极管106断开之前二极管106中的反向恢复电流而产生的。当接通MOSFET 102时,需要一段有限时间来复合二极管106中的电荷。二极管106中将产生反向恢复电流的负向尖峰,直至二极管106中的这些电荷复合。来自该电流尖峰的能量在MOSFET 102中被损耗掉。Another source of switching losses in the
图2A-2D中示出了因MOSFET 102的漏-源电容和二极管106的反向恢复电流而引起的接通开关损耗,图中描绘了开关周期中MOSFET 102接通阶段的电流和电压波形。图2A示出了MOSFET1 02上漏-源电压VDS102的波形。图2B示出了流过二极管106的电流ID106的波形。图2C示出了流过MOSFET 102的漏-源电流IDS102的波形。图2D示出了加在MOSFET 102上的栅-源电压Vswitch的波形。如图2A-2D中所见,可将MOSFET 102开关周期的导通阶段分为五个时段I-V。Turn-on switching losses due to the drain-source capacitance of MOSFET 102 and the reverse recovery current of diode 106 are shown in FIGS. 2A-2D , which depict current and voltage waveforms during the turn-on phase of MOSFET 102 during a switching cycle. FIG. 2A shows the waveform of drain-source voltage VDS102 on MOSFET102. FIG. 2B shows the waveform of current ID106 flowing through diode 106 . FIG. 2C shows the waveform of drain-source current IDS102 flowing through MOSFET 102. FIG. 2D shows the waveform of the gate-source voltage Vswitch applied to MOSFET 102. As seen in FIGS. 2A-2D , the conduction phase of the MOSFET 102 switching cycle can be divided into five periods I-V.
在时段I期间,Vswitch为零并且MOSFET 102断开。VDS102是输出电压电平与二极管106两端压降之和。当时段I开始时,随着Vswitch被脉冲升高,它开始上升,以接通MOSFET 102。在时段II期间,Vswitch低于接通MOSFET 102所需的阈值电压。在时段III期间,当Vswitch升高到接通阈值之上时,MOSFET 102接通。当MOSFET 102的漏-源电容放电时,VDS102下降,并且二极管106变成反向偏置并开始断开。电流ID106因二极管106中的大的脉冲反向恢复电流而变负。由于没有限流电阻与MOSFET 102和二极管106串联,所以电流ID106相当大。因为电压VDS102仍然很高,所以MOSFET 102中产生较大的功率损耗。在时段IV中,二极管106已经断开。随着VDS102下降至零,MOSFET 102中产生更多的损耗。在时段V中,Vswitch上升并使MOSFET 102饱和,完全接通。During period I, Vswitch is zero and MOSFET 102 is off. VDS 102 is the sum of the output voltage level and the voltage drop across diode 106 . When period I begins, as Vswitch is pulsed high, it begins to rise to turn on MOSFET 102. During period II, Vswitch is below the threshold voltage required to turn on MOSFET 102 . During period III, when Vswitch rises above the turn-on threshold, MOSFET 102 is turned on. As the drain-source capacitance of MOSFET 102 discharges, VDS 102 drops and diode 106 becomes reverse biased and begins to turn off. Current ID106 becomes negative due to the large pulsed reverse recovery current in diode 106 . Since there is no current limiting resistor in series with MOSFET 102 and diode 106, current ID 106 is quite large. Because voltage VDS 102 is still high, a large power loss occurs in MOSFET 102. In period IV, diode 106 has been switched off. As VDS 102 falls to zero, more losses occur in MOSFET 102. During period V, Vswitch rises and saturates MOSFET 102, fully on.
MOSFET 102在接通周期的时段III和IV内的损耗可以通过这样的方法来限制,即尽可能降低跨于MOSFET 102的电压VDS102和在开关周期的接通阶段期间由二极管106流入MOSFET 102的反向恢复电流ID106。理想的接通条件是将跨于MOSFET 102的VDS102设置为零电压。利用接通期间VDS102为零电压,以使MOSFET 102中电压与电流的乘积因此功率损耗为零。把已知的零电压切换技术应用到图1基本的升压转换器电路上,便能实现本目标。The losses in MOSFET 102 during periods III and IV of the on-cycle can be limited by minimizing the voltage VDS102 across MOSFET 102 and the inverse To the recovery current ID106. The ideal turn-on condition is to set VDS 102 across MOSFET 102 to zero voltage. The zero voltage on VDS 102 during turn-on is utilized so that the product of voltage times current in MOSFET 102 and therefore zero power loss. This goal can be achieved by applying known zero-voltage switching techniques to the basic boost converter circuit of Figure 1.
零电压切换技术是使MOSFET 102的漏-源电容以准正弦波的形式放电,以便在器件两端电压为零时切换它。传统上,曾用零电压切换技术将PWM转换器转换成PWM转换器和谐振转换器的混合型。这些混合型称为准谐振转换器。尽管这些准谐振转换器使切换功率损耗减小,但它们不象真正的PWM转换器那样运行。在准谐振转换器中,开关器件两端的电压可以高至输出电压的两倍。因此,准谐振转换器要求开关器件能够承受超过输出电压两倍的电压,而与之相对照,PWM转换器只要求开关器件能够承受输出电压。准谐振转换器还以可变的频率工作。但人们希望获得一种PWM升压转换器,它能在连续的模式(电流恒定)下,以恒定的频率工作并且开关损耗最小。ZVS is the technique of discharging the drain-source capacitance of MOSFET 102 in a quasi-sine wave to switch it when the voltage across the device is zero. Traditionally, a PWM converter has been converted into a hybrid of a PWM converter and a resonant converter using zero-voltage switching techniques. These hybrids are called quasi-resonant converters. Although these quasi-resonant converters reduce switching power losses, they do not operate like true PWM converters. In a quasi-resonant converter, the voltage across the switching device can be as high as twice the output voltage. Therefore, a quasi-resonant converter requires the switching device to withstand more than twice the output voltage, whereas a PWM converter requires only the switching device to withstand the output voltage. Quasi-resonant converters also operate at variable frequencies. But it is desirable to obtain a PWM boost converter that can operate at a constant frequency in continuous mode (constant current) with minimal switching losses.
本发明提供一种能在接通时进行零电压切换并且开关损耗最低的PWM转换器装置。该PWM升压转换器装置象真正的PWM转换器那样运行。另外,它能在较高的频率下工作,并且尺寸较小,重量较轻。还有,由于它在恒定的频率下运行,因此本发明的转换器电路使用较简单的输入和输出滤波器。发明内容The present invention provides a PWM converter device capable of zero-voltage switching at turn-on with the lowest switching losses. The PWM boost converter device operates like a real PWM converter. Plus, it works at higher frequencies and is smaller and lighter. Also, since it operates at a constant frequency, the converter circuit of the present invention uses simpler input and output filters. Contents of the invention
一方面,本发明提供了一种升压转换器电路,它包括用来接收提供给电路输入端的正向电流的第一电感装置,和与第一电感装置耦合的第一电子开关。具有固有寄生电容的第一电子开关在导通状态和非导通状态间作周期切换,在导通状态下,正向电流从第一电感装置流过第一电子开关,而在非导通状态下,正向电流从第一电感装置流至电路的输出端。电路还包括与输出端耦合的第一电容装置,以及连在第一电感装置和第一电容装置之间的第一整流装置。第一电容装置提供一输出电压,并且当第一电子开关处于非导通状态时被充电。当第一电子开关处于非导通状态时,第一整流装置使正向电流流至第一电容装置,而当开关处于导通状态时,第一整流装置阻止反向电流从第一电容装置流出。In one aspect, the present invention provides a boost converter circuit comprising first inductive means for receiving forward current supplied to an input terminal of the circuit, and a first electronic switch coupled to the first inductive means. The first electronic switch having inherent parasitic capacitance is periodically switched between a conduction state and a non-conduction state, in the conduction state, a forward current flows from the first inductive means through the first electronic switch, and in the non-conduction state , forward current flows from the first inductive means to the output of the circuit. The circuit also includes first capacitive means coupled to the output, and first rectifying means connected between the first inductive means and the first capacitive means. The first capacitive means provides an output voltage and is charged when the first electronic switch is in a non-conductive state. When the first electronic switch is in a non-conducting state, the first rectifying means allows forward current to flow to the first capacitive means, and when the switch is in a conducting state, the first rectifying means prevents reverse current from flowing from the first capacitive means .
本发明的电路还包括使第一电子开关的寄生电容放电的装置,所述装置包括连在第一电感装置和第一整流装置之间的第二电感装置和与第二电感装置耦合的第二电子开关。当第一电子开关处于非导通状态时,第二电子开关被周期地切换至导通状态,以便使正向电流从第一整流装置送至第二电感装置。然后,通过电流从第一电子开关向第二电感装置的流动使寄生电容放电。当第二电子开关导通时,第二电感装置限制来自第一电感装置的正向电流和来自第一整流装置的反向恢复电流。The circuit of the present invention also includes means for discharging the parasitic capacitance of the first electronic switch, said means comprising second inductive means connected between the first inductive means and the first rectifying means and a second inductive means coupled to the second inductive means. electronic switch. When the first electronic switch is in a non-conductive state, the second electronic switch is periodically switched to a conductive state so as to send forward current from the first rectifying means to the second inductive means. The parasitic capacitance is then discharged by the flow of current from the first electronic switch to the second inductive means. When the second electronic switch is turned on, the second inductive means limits the forward current from the first inductive means and the reverse recovery current from the first rectifying means.
另一方面,本发明提供了一种在升压转换器电路中使用的方法,所述电路包括第一电感元件和用于控制正向电流从第一电感元件向第一整流元件流动的第一电子开关。具有寄生电容的第一开关被周期地接通和断开以便控制正向电流向第一整流元件的流动。本发明的方法可使第一开关的寄生电容放电,同时使第一开关中的接通损耗和来自第一整流元件的反向恢复电流所引起的损耗最低。本方法包括当第一开关断开时,把来自第一电感元件的正向电流和来自整流元件的反向恢复电流引至第二电感元件,以便允许寄生电容放电的步骤。本方法还包括当第一开关接通时,把来自第二电感装置的电流引至第二整流装置的步骤。接通第二电子开关,把来自第一电感元件的正向电流和来自整流元件的反向恢复电流引至第二电感装置,而断开第二电子开关,则把来自第二电感元件的电流引至第二整流元件。 In another aspect, the present invention provides a method for use in a boost converter circuit comprising a first inductive element and a first electronic switch. A first switch having a parasitic capacitance is periodically turned on and off to control the flow of forward current to the first rectifying element. The method of the present invention discharges the parasitic capacitance of the first switch while minimizing turn-on losses in the first switch and losses due to reverse recovery current from the first rectifying element. The method includes the step of directing forward current from the first inductive element and reverse recovery current from the rectifying element to the second inductive element when the first switch is turned off to allow the parasitic capacitance to discharge. The method also includes the step of directing current from the second inductive means to the second rectifying means when the first switch is turned on. Turning on the second electronic switch leads the forward current from the first inductive element and the reverse recovery current from the rectifying element to the second inductive device, and turning off the second electronic switch directs the current from the second inductive element lead to the second rectifying element.
附图概述Figure overview
为了更深入地理解本发明以及为了本发明的其他目的和优点,现可结合附图参考以下描述,其中:For a deeper understanding of the present invention and for other objects and advantages of the present invention, reference is now made to the following description in conjunction with the accompanying drawings, wherein:
图1是现有技术的升压转换器电路的电路简图;Fig. 1 is a schematic circuit diagram of a boost converter circuit of the prior art;
图2A-2D是描绘图1电路中接通功率损耗的电压和电流波形;2A-2D are voltage and current waveforms depicting turn-on power losses in the circuit of FIG. 1;
图3是包含本发明原理的第一升压转换器电路的电路简图;Fig. 3 is a schematic circuit diagram of a first boost converter circuit incorporating the principles of the present invention;
图4A-4F描绘图3电路中开关周期的电压和电流波形;4A-4F depict voltage and current waveforms for switching cycles in the circuit of FIG. 3;
图5是包含本发明原理的第二升压转换器电路的电路简图;5 is a schematic circuit diagram of a second boost converter circuit incorporating the principles of the present invention;
图6A-6F是描绘图5电路中开关周期的电压和电流波形。 6A-6F are voltage and current waveforms depicting switching cycles in the circuit of FIG. 5 .
本发明的最佳实施方式BEST MODE FOR CARRYING OUT THE INVENTION
首先参照图3,图中示出了依照本发明原理构造的第一个实施例,升压转换器电路300。电路300包括MOSFET功率晶体管(MOSFET)302、电感器304、二极管306、电容器308、MOSFET功率晶体管(MOSFET)310、电感器312、饱和电感器314、二极管316、二极管318、二极管320和电阻器322。电压源(Vin)324接在电路300的输入端,而负载326接在电路300的输出端。MOSFET 302的栅极接至脉冲开关电压源(Vswitch)328,而MOSFET 310的栅极接至辅助开关电压源(Vswitch)330。Vswitch 328将脉冲电压加至MOSFET 302的栅极,使MOSFET 302接通和断开。Vswitch 330将脉冲电压加至MOSFET 310的栅极,使MOSFET 310接通和断开。图3还示出了流过电感器304的电流IL304、流过二极管306的电流ID306、流过电感器312的电流IL312、流过二极管320的电流ID320、流过电阻器322的电流IR322等电流标记;以及跨于MOS-FET 302漏-源极的电压VDS302、跨于MOSFET 310漏-源极的电压VDS310、跨于电容器308的电压VC308、跨于二极管316的电压VD316和跨于负载326的电压VL等电压标记。Referring first to FIG. 3, there is shown a boost converter circuit 300, a first embodiment constructed in accordance with the principles of the present invention. Circuit 300 includes MOSFET power transistor (MOSFET) 302, inductor 304, diode 306, capacitor 308, MOSFET power transistor (MOSFET) 310, inductor 312, saturable inductor 314, diode 316, diode 318, diode 320, and resistor 322 . A voltage source (Vin) 324 is connected to the input of the circuit 300 and a load 326 is connected to the output of the circuit 300 . The gate of MOSFET 302 is connected to a pulsed switch voltage source (Vswitch) 328 and the gate of MOSFET 310 is connected to an auxiliary switch voltage source (Vswitch) 330 .
运行中,电路300起着与常规升压转换器一样的作用,同时把由二极管306中的反向恢复电流引起的损耗和MOSFET 302中的接通损耗降为最低。还如此设计电路300,使得由二极管320中反向恢复电流引起的损耗和MOSFET 310中的接通损耗为最低。In operation, circuit 300 acts like a conventional boost converter while minimizing losses due to reverse recovery current in diode 306 and turn-on losses in MOSFET 302. Circuit 300 is also designed such that losses due to reverse recovery current in diode 320 and turn-on losses in MOSFET 310 are minimized.
电路300使用谐振切换技术,通过该技术,MOSFET 302的漏-源电容在MOSFET 302接通之前以谐振模式通过MOSFET 310放电。然后,当VDS302等于零时把MOSFET 302接通。谐振切换仅在MOSFET 302开关周期的接通阶段使用。MOSFET 310中的接通损耗是利用电感器314限制电流在接通时在MOSFET 310中的上升而降为最低的。Circuit 300 uses a resonant switching technique whereby the drain-to-source capacitance of MOSFET 302 is discharged in resonant mode through MOSFET 310 before MOSFET 302 is turned on. Then, MOSFET 302 is turned on when VDS 302 is equal to zero. Resonant switching is only used during the turn-on phase of the MOSFET 302 switching cycle. Turn-on losses in MOSFET 310 are minimized by utilizing inductor 314 to limit the rise of current in MOSFET 310 at turn-on.
参照图4A-4F中所示的开关周期波形,能更好地理解电路300的工作情况。图4A示出了MOSFET 302上漏-源电压VDS302的波形。图4B示出了MOSFET 310上的漏-源电压与辅助二极管316两端电压之和VDS310+VD316的波形。图4C示出了流过二极管306的电流ID306的波形。图4D示出了流过辅助电感器312的电流IL312的波形。图4E示出了加至MOSFET 302栅极的电压Vswitch 328的波形。图4F示出了加至MOSFET 310栅极的电压Vswitch 330的波形。在图4A-4F中,可见电路300的开关周期被分为6段时段I-VI。The operation of circuit 300 can be better understood with reference to the switching cycle waveforms shown in FIGS. 4A-4F. FIG. 4A shows the waveform of drain-source voltage VDS302 on MOSFET 302. FIG. 4B shows the waveform of the sum of the drain-source voltage on the MOSFET 310 and the voltage across the auxiliary diode 316 VDS310+VD316. FIG. 4C shows the waveform of current ID 306 flowing through diode 306 . FIG. 4D shows the waveform of the current IL312 flowing through the auxiliary inductor 312 . FIG. 4E shows the waveform of the
参照图3-4,在时段I期间,Vswitch 328和Vswitch 330都为零,而且MOSFET 302和MOSFET 310为断开状态。电压VDS302和VDS310+VD316为负载电压与跨于二极管306两端压降之和。此时,电感器304中的电流IL304与二极管306中的电流ID306相等,并且流至电容器308和负载326。当时段II开始时,对Vswitch330加上脉冲,以接通MOSFET 310。VDS310+VD316降为零,电感器312中的电流IL312上升,而二极管306中的电流ID306下降。由于电感器304的电感相当大,例如,为1毫亨数量级,因此在MOSFET 310接通期间将保持电流IL304不变。所以,随着电感器312中电流IL312的上升,二极管306中的电流ID306会以相同的速率下降。饱和电感器314起先限制电感器312中电流IL312的上升,该电流经MOSFET 310流入地。这限制了MOSFET 310的接通损耗。最后,饱和电感器314饱和,并且电感器312中电流IL312的上升速率将依赖于电感器312的电感值。当电感器312中的电流IL312等于流过电感器304的电流IL304时,由于二极管306断开时二极管306中存在反向恢复电流,所以电流ID306开始变负。反向恢复电流受电流ID306下降速率的限制。ID306的下降速率由电感器312的电感值决定。ID306的这一负尖峰将使电感器312中的电流IL312升高至一个高于电感器304中电流的数值,直至二极管完全断开。3-4, during period I, both
当二极管306截止时,时段III开始。现在电感器312中的电流IL312大于流过电感器304的电流。电感器312中的IL312电流值超过流经电感器304电流IL304的部分从MOSFET 302流出经过电感器312,以使流过电感器312的电流IL312保持不变。该超出的电流使MOSFET 302的漏-源电容放电。当漏-源电容放电时,MOS-FET 302的二极管将传导该超出的电流。当VDS302变为零时,Vswitch 328加上脉冲,以接通MOSFET 302。由于漏-源电容已经放电,所以接通将不会产生漏-源电容损耗。Period III begins when diode 306 is turned off. The current IL 312 in the inductor 312 is now greater than the current flowing through the inductor 304 . The portion of the current IL312 in the inductor 312 that exceeds the current IL304 flowing through the inductor 304 flows out of the MOSFET 302 through the inductor 312 so that the current IL312 flowing through the inductor 312 remains constant. This excess current discharges the drain-source capacitance of MOSFET 302. When the drain-source capacitance is discharged, the diode of the MOS-FET 302 will conduct the excess current. When VDS 302 goes to zero,
在时段IV开始时,MOSFET 310被断开。电感器312中的电流IL312换向流至二极管320和电容器308。电感器312中的电流IL312将根据输出电压和电感器312的电感值以某一速率下降。同时,MOSFET 302中的电流将升高,从而总电流保持不变,等于电感器304中的电流IL304。当电感器312中的电流IL312接近于零时,电感器314不饱和并且IL312的下降速率进一步变慢。由于二极管320中有反向恢复电流,所以当二极管320反向偏置并开始断开时,IL312呈现负电流尖峰。此反向恢复电流将受到电感器314的限制。At the beginning of period IV, MOSFET 310 is turned off. Current IL 312 in inductor 312 is commutated to diode 320 and capacitor 308 . The current IL 312 in the inductor 312 will drop at a certain rate depending on the output voltage and the inductance value of the inductor 312 . At the same time, the current in MOSFET 302 will increase so that the total current remains constant, equal to the current IL304 in inductor 304. When current IL312 in inductor 312 approaches zero, inductor 314 does not saturate and the rate of fall of IL312 slows further. Due to the reverse recovery current in diode 320, IL 312 exhibits a negative current spike when diode 320 is reverse biased and begins to turn off. This reverse recovery current will be limited by inductor 314 .
当二极管320断开时,时段V开始。此时,负电流ID320换向并作为电流IR322从地流出,经过电阻器322、二极管318和电感器312和314。二极管316防止电流从地经过MOSFET 310的体二极管流入电感器312。现在电感器312中的电流IL312以依赖于电阻器322之电阻值的速率下降。电阻器322的电阻性阻尼效应防止电感器312、电感器314、二极管318和二极管306中发生过量的阻尼振荡。这在二极管320断开时可防止跨于二极管316和二极管320的电压过大。Period V begins when diode 320 is turned off. At this point, negative current ID 320 commutates and flows from ground as current IR 322 through resistor 322 , diode 318 and inductors 312 and 314 . Diode 316 prevents current from flowing into inductor 312 from ground through the body diode of MOSFET 310. The current IL 312 in the inductor 312 now falls at a rate dependent on the resistance value of the resistor 322 . The resistive damping effect of resistor 322 prevents excessive ringing in inductor 312 , inductor 314 , diode 318 , and diode 306 . This prevents excessive voltage across diode 316 and diode 320 when diode 320 is turned off.
当把Vswitch 328设为零以使MOSFET 302断开时,周期在时段VI中结束。MOSFET 302中的电流被换向流向二极管306,然后二极管306导通,并且二极管306中的电流ID306升高。接着在时段I开始下一个开关周期,并如上所述继续进行。The cycle ends in period VI when
图5示出了依照本发明构造的第二个实施例,升压转换器电路500。电路500包括MOSFET功率晶体管(MOSFET)502、电感器504、二极管506、电容器508、开关MOSFET功率晶体管(MOSFET)510、电感器512、饱和电感器514、二极管516、二极管518、二极管520、电阻器522、二极管534和电容器536。电压源(Vin)524接在电路500的输入端,而负载526接在电路500的输出端。Vswitch 528将一脉冲电压加至MOSFET 502的栅极,以接通和断开MOSFET 502,而Vswitch 530将一脉冲电压加至MOS-FET 510的栅极,以接通和断开MOSFET 510。Figure 5 shows a second embodiment, a
图5还示出了流过电感器504的电流IL504、流过二极管506的电流ID506、流过电感器512的电流IL512、流过二极管520的电流ID520、流过电阻器522的电流IR522和流过二极管534的电流ID534等电流标记;以及跨于MOSFET 502漏-源极的电压VDS502、跨于电容器508的电压VC508、跨于MOSFET 510漏-源极的电压VDS510、跨于电容器536的电压VC536、跨于二极管51 6的电压VD516和跨于负载526的电压VL等电压标记。5 also shows current IL504 flowing through
运行中,电路500起着与常规升压转换器一样的作用,同时根据本发明把二极管506中反向恢复电流引起的损耗和MOSFET 502中的接通和断开损耗降为最低。还如此设计电路500,使二极管520中的反向恢复电流引起的损耗和MOSFET 510中的接通和断开损耗最小。In operation,
电路500使用谐振切换技术,通过该技术,MOSFET 502的漏-源电容在MOSFET 502接通之前以谐振模式通过MOSFET 510放电。谐振切换仅在开关周期的MOSFET 502接通阶段使用。在MOSFET 502断开期间,跨于MOSFET 502的电压是利用跨于电容器536的电压VC536而降为最低的。MOSFET 510中的接通损耗是利用电感器514限制接通时流过MOSFET 510中的电流而降为最低的。MOSFET 510的断开损耗是利用跨于电容器536的电压VC536而降为最低的。
图6A示出了MOSFET 502上漏-源电压VDS502的波形。图6B示出了MOSFET 510上的漏-源电压与跨于辅助二极管516的电压之和VDS510+VD516的波形。图6C示出了流过二极管506的电流ID506的波形。图6D示出了流过辅助电感器512的电流IL512的波形。图6E示出了加至MOSFET 502栅极的电压Vswitch 528的波形。图6F示出了加至MOSFET 510栅极的电压Vswitch 530的波形。图5电路的开关周期可分为6段时段I-VI。FIG. 6A shows the waveform of drain-source voltage VDS502 on MOSFET 502. FIG. 6B shows the waveform of the sum of the drain-source voltage on
在时段I-III中,图5电路500中的元件502-522基本上分别与图3中的元件302-322功能相同。在时段IV-VI期间,电路500的工作情况基本上与上述电路300的相应工作情况相同,只是由于MOSFET 502或MOSFET 510断开时VC536上存在的电压条件而使MOSFET 502和510中的断开损耗最小。以下描述电路500在时段IV-VI期间内的工作情况。During periods I-III, elements 502-522 in
参照图5-6,在时段IV开始时,Vswitch 530切换至零并且MOSFET 510断开。现在电感器512中的电流IL512通过二极管520对电容器536充电。电容器536开始放电并且VC536为零。当电容器536正在充电时,跨于MOSFET 510的电压VDS510等于电容器536上的电压VC536。由于阻断时VDS510和VD516为零,所以使MOSFET 510中的断开损耗减至最小。这使图6中时段IV内VDS510和VD516的上升速率比图4中时段IV内的VDS310和VD316的上升速率要慢。当电容器536充电至输出电压时,电感器512中的电流IL512作为电流ID534流入二极管534,并且二极管534变为正向偏置并接通。现在电感器512中的电流IL512根据输出的电压VL和电感器512的电感以某一速率下降。当电感器512中的电流IL512接近零时,电感器514不再饱和并进一步减慢IL512的下降速率。由于二极管520和二极管534中有反向恢复电流,所以当二极管520和二极管534变成反向偏置并开始断开时,电流IL512呈现负电流尖峰。然后该反向恢复电流将受到电感器514的限制。Referring to Figures 5-6, at the beginning of period IV,
在时段V开始时,二极管520和二极管534断开,并且电感器512中小的反向电流IL512换向并作为电流IR522从地流出,经过电阻器522、二极管518及电感器514和512,最后流入MOSFET502。二极管516防止电流从地通过MOSFET 510的体二极管流入电感器512。电流IL512以依赖于电阻器522之电阻值的下降速率下降。当二极管520断开时,电阻器522的阻尼效应防止二极管516和二极管520上的电压过大。现在电流流过电感器504和MOSFET502,并且跨于电容器536的电压VC536等于输出电压。At the beginning of period V,
在时段VI开始时刻,Vswitch 528趋于零并且MOSFET 502断开。现在VDS502等于VL减去跨于电容器536的电压VC536,并接近于零。由此MOSFET 502中的断开损耗最小。电感器504中的电流IL504通过二极管534使电容器536放电至零。这使图6中时段VI内VDS502的上升速率略慢于图4中时段VI内VDS302的上升速率。当电容器536完全放电后,二极管506将接通,而二极管534将断开。现在开关周期结束。At the beginning of period VI,
以下是一列表,例示了可用来建立和运行图3和图5之升压转换器电路的、典型工业标准的元件和电路参数。The following is a table illustrating typical industry standard components and circuit parameters that can be used to build and operate the boost converter circuits of Figures 3 and 5.
本领域的熟练技术人员应该理解,这些元件值是作为典型值举例的,并且可用许多不同的元件值和电路参数来实现图3和图5的电路。同样显而易见的是,可以不脱离本发明的精神和范围对附图中所示的和结合附图讨论的结构内容作各种改变。因此,应该认为本发明不局限于所示和所描述的具体内容。Those skilled in the art will appreciate that these component values are exemplary and that the circuits of FIGS. 3 and 5 can be implemented with many different component values and circuit parameters. It will also be apparent that various changes may be made in the structural matter shown in and discussed in connection with the drawings without departing from the spirit and scope of the invention. Accordingly, the invention should not be considered limited to what is shown and described.
Claims (18)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/255,380 US5543704A (en) | 1994-06-08 | 1994-06-08 | Pulse width modulated DC-to-DC boost converter |
US08/255,380 | 1994-06-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1129497A true CN1129497A (en) | 1996-08-21 |
CN1041984C CN1041984C (en) | 1999-02-03 |
Family
ID=22968066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN95190525A Expired - Fee Related CN1041984C (en) | 1994-06-08 | 1995-06-07 | Pulse width modulated dc-to-dc boost converter |
Country Status (12)
Country | Link |
---|---|
US (1) | US5543704A (en) |
EP (1) | EP0712546B1 (en) |
JP (1) | JPH09504160A (en) |
CN (1) | CN1041984C (en) |
AU (1) | AU704193B2 (en) |
BR (1) | BR9506002A (en) |
CA (1) | CA2169160A1 (en) |
DE (1) | DE69522169T2 (en) |
ES (1) | ES2161899T3 (en) |
FI (1) | FI960569L (en) |
NO (1) | NO960493L (en) |
WO (1) | WO1995034120A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1055804C (en) * | 1998-04-27 | 2000-08-23 | 深圳市华为电气股份有限公司 | Topological circuit for soft switch |
CN1320751C (en) * | 2002-11-14 | 2007-06-06 | 国际整流器公司 | Circuit for providing resistance to single event upset to pulse width modulator integrated circuit |
CN1578081B (en) * | 2003-07-29 | 2010-06-02 | 因芬尼昂技术股份公司 | Apparatus and method for converting DC input voltage into multiple DC output voltages |
CN101345489B (en) * | 2008-03-06 | 2010-12-08 | 上海海事大学 | Converter with limited reverse recovery current |
CN112671239A (en) * | 2019-10-15 | 2021-04-16 | 立锜科技股份有限公司 | Flyback power supply circuit and secondary side control circuit and control method thereof |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE511059C2 (en) * | 1997-01-24 | 1999-07-26 | Ericsson Telefon Ab L M | Method and device for power conversion. |
JP3285590B2 (en) * | 1997-02-10 | 2002-05-27 | ティーディーケイ株式会社 | Step-up switching power supply |
US5914587A (en) * | 1997-08-05 | 1999-06-22 | Lucent Technologies Inc. | Circuit for reducing switching losses of a power converter and method of operation thereof |
US5841268A (en) * | 1997-09-29 | 1998-11-24 | Power Architects Corporation | Multi-resonant soft switching snubber network for DC-to-DC converter |
DE19808637A1 (en) * | 1998-02-28 | 1999-09-09 | Bosch Gmbh Robert | DC / DC converter with a transformer and a choke |
US6118673A (en) * | 1998-06-01 | 2000-09-12 | Virginia Power Technologies, Inc. | Single-stage AC/DC converters with saturable conductor PFC |
US5991174A (en) * | 1998-08-28 | 1999-11-23 | Lucent Technologies Inc. | Snubber circuit for a rectifier, method of operation thereof and power converter employing the same |
US6028418A (en) * | 1999-02-11 | 2000-02-22 | Delta Electronics, Inc. | Boost converter with minimum-component-count active snubber |
US6002603A (en) * | 1999-02-25 | 1999-12-14 | Elliott Energy Systems, Inc. | Balanced boost/buck DC to DC converter |
US6128206A (en) * | 1999-03-12 | 2000-10-03 | Ericsson, Inc. | Clamping circuit and method for synchronous rectification |
WO2001003276A2 (en) | 1999-06-30 | 2001-01-11 | Peco Ii, Inc. | Diode recovery current suppression circuits |
JP3495660B2 (en) * | 1999-09-30 | 2004-02-09 | 三洋電機株式会社 | DC-DC converter circuit |
AU2001250144A1 (en) * | 2000-04-12 | 2001-10-30 | Wolfgang Croce | Circuit for reducing switching losses in electronic valves |
US6236191B1 (en) * | 2000-06-02 | 2001-05-22 | Astec International Limited | Zero voltage switching boost topology |
KR100377133B1 (en) | 2000-08-29 | 2003-03-19 | 페어차일드코리아반도체 주식회사 | A motor driving circuit using a pwm input signal |
JP3425418B2 (en) * | 2000-09-20 | 2003-07-14 | ティーディーケイ株式会社 | Step-up switching power supply |
US6434029B1 (en) | 2001-10-17 | 2002-08-13 | Astec International Limited | Boost topology having an auxiliary winding on the snubber inductor |
CN100349371C (en) * | 2001-11-22 | 2007-11-14 | 中兴通讯股份有限公司 | Control device for zero-voltage conversion step-up power factor correcting circuit |
US6987675B2 (en) * | 2003-05-23 | 2006-01-17 | Delta Electronics, Inc. | Soft-switched power converters |
US8269141B2 (en) | 2004-07-13 | 2012-09-18 | Lincoln Global, Inc. | Power source for electric arc welding |
US8581147B2 (en) | 2005-03-24 | 2013-11-12 | Lincoln Global, Inc. | Three stage power source for electric ARC welding |
US8785816B2 (en) | 2004-07-13 | 2014-07-22 | Lincoln Global, Inc. | Three stage power source for electric arc welding |
US9956639B2 (en) * | 2005-02-07 | 2018-05-01 | Lincoln Global, Inc | Modular power source for electric ARC welding and output chopper |
US9855620B2 (en) | 2005-02-07 | 2018-01-02 | Lincoln Global, Inc. | Welding system and method of welding |
US9647555B2 (en) * | 2005-04-08 | 2017-05-09 | Lincoln Global, Inc. | Chopper output stage for arc welder power source |
JP2006324534A (en) * | 2005-05-20 | 2006-11-30 | Seiko Instruments Inc | Light emitting diode driving circuit |
US7915872B2 (en) * | 2008-05-14 | 2011-03-29 | Astec International Limited | Switching power converters with diode reverse current suppression |
EP2230754B1 (en) * | 2009-03-18 | 2015-04-29 | STMicroelectronics (Tours) SAS | Switching mode power supply |
TWI418130B (en) * | 2011-05-19 | 2013-12-01 | Univ Nat Taipei Technology | Step-up conversion circuit |
CN105529925B (en) * | 2016-02-01 | 2019-04-09 | 浙江艾罗网络能源技术有限公司 | Boost based on switched inductors |
KR102526961B1 (en) | 2018-07-16 | 2023-04-28 | 현대자동차주식회사 | Electric vehicle and charging apparatus thereof |
US12040742B2 (en) | 2019-05-15 | 2024-07-16 | Xplor Llc | Scalable solar modular array |
TWI692185B (en) * | 2019-10-31 | 2020-04-21 | 宏碁股份有限公司 | Boost converter |
TWI715328B (en) * | 2019-12-04 | 2021-01-01 | 宏碁股份有限公司 | Boost converter |
TWI704757B (en) * | 2020-02-11 | 2020-09-11 | 宏碁股份有限公司 | Boost converter |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4184197A (en) * | 1977-09-28 | 1980-01-15 | California Institute Of Technology | DC-to-DC switching converter |
US4654769A (en) * | 1984-11-02 | 1987-03-31 | California Institute Of Technology | Transformerless dc-to-dc converters with large conversion ratios |
DE3606896A1 (en) * | 1985-12-03 | 1987-06-04 | Zdzislaw Gulczynski | SWITCHING POWER SUPPLY |
US4720668A (en) * | 1986-06-20 | 1988-01-19 | Lee Fred C | Zero-voltage switching quasi-resonant converters |
US4841220A (en) * | 1987-09-23 | 1989-06-20 | Tabisz Wojciech A | Dc-to-Dc converters using multi-resonant switches |
GB8816774D0 (en) * | 1988-07-14 | 1988-08-17 | Bsr Int Plc | Power supplies |
US4903182A (en) * | 1989-03-20 | 1990-02-20 | American Telephone And Telegraph Company, At&T Bell Laboratories | Self-oscillating converter with light load stabilizer |
US4940929A (en) * | 1989-06-23 | 1990-07-10 | Apollo Computer, Inc. | AC to DC converter with unity power factor |
US4959764A (en) * | 1989-11-14 | 1990-09-25 | Computer Products, Inc. | DC/DC converter switching at zero voltage |
US5180964A (en) * | 1990-03-28 | 1993-01-19 | Ewing Gerald D | Zero-voltage switched FM-PWM converter |
FR2671922B1 (en) * | 1991-01-22 | 1994-02-11 | Agence Spatiale Europeenne | METHOD FOR REDUCING THE SWITCHING LOSSES CREATED BY A POWER SWITCH. |
US5418704A (en) * | 1992-06-12 | 1995-05-23 | Center For Innovative Technology | Zero-voltage-transition pulse-width-modulated converters |
SE500589C2 (en) * | 1992-10-22 | 1994-07-18 | Ericsson Telefon Ab L M | Low-loss boost converter through limited back current in the main diode |
US5307005A (en) * | 1992-12-23 | 1994-04-26 | International Business Machines Corporation | Zero current switching reverse recovery circuit |
US5313382A (en) * | 1993-05-18 | 1994-05-17 | At&T Bell Laboratories | Reduced voltage/zero current transition boost power converter |
US5457379A (en) * | 1993-10-15 | 1995-10-10 | At&T Ipm Corp. | High efficiency switch mode regulator |
US5434767A (en) * | 1994-01-10 | 1995-07-18 | University Of Central Florida | Power converter possessing zero-voltage switching and output isolation |
-
1994
- 1994-06-08 US US08/255,380 patent/US5543704A/en not_active Expired - Fee Related
-
1995
- 1995-06-07 AU AU26882/95A patent/AU704193B2/en not_active Ceased
- 1995-06-07 BR BR9506002A patent/BR9506002A/en not_active Application Discontinuation
- 1995-06-07 JP JP8500772A patent/JPH09504160A/en active Pending
- 1995-06-07 FI FI960569A patent/FI960569L/en unknown
- 1995-06-07 EP EP95922063A patent/EP0712546B1/en not_active Expired - Lifetime
- 1995-06-07 CA CA002169160A patent/CA2169160A1/en not_active Abandoned
- 1995-06-07 CN CN95190525A patent/CN1041984C/en not_active Expired - Fee Related
- 1995-06-07 DE DE69522169T patent/DE69522169T2/en not_active Expired - Fee Related
- 1995-06-07 WO PCT/SE1995/000665 patent/WO1995034120A1/en active IP Right Grant
- 1995-06-07 ES ES95922063T patent/ES2161899T3/en not_active Expired - Lifetime
-
1996
- 1996-02-07 NO NO960493A patent/NO960493L/en not_active Application Discontinuation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1055804C (en) * | 1998-04-27 | 2000-08-23 | 深圳市华为电气股份有限公司 | Topological circuit for soft switch |
CN1320751C (en) * | 2002-11-14 | 2007-06-06 | 国际整流器公司 | Circuit for providing resistance to single event upset to pulse width modulator integrated circuit |
CN1578081B (en) * | 2003-07-29 | 2010-06-02 | 因芬尼昂技术股份公司 | Apparatus and method for converting DC input voltage into multiple DC output voltages |
CN101345489B (en) * | 2008-03-06 | 2010-12-08 | 上海海事大学 | Converter with limited reverse recovery current |
CN112671239A (en) * | 2019-10-15 | 2021-04-16 | 立锜科技股份有限公司 | Flyback power supply circuit and secondary side control circuit and control method thereof |
CN112671239B (en) * | 2019-10-15 | 2024-02-27 | 立锜科技股份有限公司 | Flyback power supply circuit, secondary side control circuit and control method thereof |
Also Published As
Publication number | Publication date |
---|---|
AU704193B2 (en) | 1999-04-15 |
FI960569A7 (en) | 1996-02-07 |
JPH09504160A (en) | 1997-04-22 |
DE69522169D1 (en) | 2001-09-20 |
AU2688295A (en) | 1996-01-04 |
NO960493L (en) | 1996-02-28 |
WO1995034120A1 (en) | 1995-12-14 |
EP0712546B1 (en) | 2001-08-16 |
FI960569A0 (en) | 1996-02-07 |
CN1041984C (en) | 1999-02-03 |
FI960569L (en) | 1996-02-07 |
CA2169160A1 (en) | 1995-12-14 |
BR9506002A (en) | 1997-08-19 |
ES2161899T3 (en) | 2001-12-16 |
US5543704A (en) | 1996-08-06 |
EP0712546A1 (en) | 1996-05-22 |
NO960493D0 (en) | 1996-02-07 |
DE69522169T2 (en) | 2001-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1041984C (en) | Pulse width modulated dc-to-dc boost converter | |
US7385833B2 (en) | Snubber circuit for a power converter | |
CN1132301C (en) | Self-device synchronous rectification scheme | |
EP0851566B1 (en) | Half-bridge zero-voltage-switched PWM flyback DC/DC converter | |
EP1159781B1 (en) | General self-driven synchronous rectification scheme for synchronous rectifiers having a floating gate | |
Schlecht et al. | Comparison of the square-wave and quasi-resonant topologies | |
CN1244967A (en) | Method and device for power conversion | |
WO2000048300A1 (en) | Offset resonance zero volt switching flyback converter | |
CN1149812A (en) | Integrated Boost High Power Factor Circuit for Lowering Bus Voltage | |
EP2102975A1 (en) | Power converter with snubber | |
CN1849748A (en) | High frequency control of a semiconductor switch | |
JP7279715B2 (en) | Totem-pole single-phase PFC converter | |
EP0698961A2 (en) | Low-loss clamp circuit | |
CN100438296C (en) | DC-DC converter | |
JPH08510106A (en) | Low Noise Multi Output Multi Resonant Howard Converter for Television Power Supply | |
JPH06101930B2 (en) | Switching power supply | |
KR101256032B1 (en) | Solid state switching circuit | |
JP2022553339A (en) | Inverter circuit and method, e.g. for use in power factor correction | |
Chen et al. | Analysis and design of a bidirectional high step-up active clamp flyback converter for dielectric elastomer actuator | |
CN116961397A (en) | ZVS auxiliary buffer for a switching converter | |
KR100808015B1 (en) | Power Factor Correction Circuit Using Snubber Circuit | |
JP4328417B2 (en) | Power circuit | |
CN2652035Y (en) | Step-up inverter of flexible switch | |
KR100204495B1 (en) | A zero voltage switching dc-dc step down converter | |
US20240235385A1 (en) | Half-bridge converter comprising a bootstrap circuit to provide a negative turn-off voltage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |