CN112945700B - 各向异性岩石的断裂判定方法 - Google Patents

各向异性岩石的断裂判定方法 Download PDF

Info

Publication number
CN112945700B
CN112945700B CN202110295735.1A CN202110295735A CN112945700B CN 112945700 B CN112945700 B CN 112945700B CN 202110295735 A CN202110295735 A CN 202110295735A CN 112945700 B CN112945700 B CN 112945700B
Authority
CN
China
Prior art keywords
type
theta
crack
fracture
iic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110295735.1A
Other languages
English (en)
Other versions
CN112945700A (zh
Inventor
饶秋华
孙栋良
易威
沈晴晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202110295735.1A priority Critical patent/CN112945700B/zh
Publication of CN112945700A publication Critical patent/CN112945700A/zh
Application granted granted Critical
Publication of CN112945700B publication Critical patent/CN112945700B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • G01N2203/0064Initiation of crack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • G01N2203/0214Calculations a priori without experimental data

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Algebra (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种各向异性岩石的断裂判定方法,包括获取待分析的各向异性岩石的材料参数;计算裂纹原裂纹面的应力强度因子;计算裂纹任意面的应力强度因子;计算可能发生的Ⅰ型断裂的起裂角和Ⅱ型断裂的起裂角;判定待分析的各向异性岩石的断裂模式并得到对应的起裂角。本发明为各向异性岩石的裂纹起裂和起裂机理提供方法,为页岩气开采裂纹网络形成和止裂提供了理论方法;本发明方法可计算起裂角和起裂模式;此外,本发明提出的判据适用于判断任意外荷载条件下的断裂,适用范围更广,而且可靠性高,精确性好。

Description

各向异性岩石的断裂判定方法
技术领域
本发明属于土木工程领域,具体涉及一种各向异性岩石的断裂判定方法。
背景技术
随着经济技术的发展和人们生活水平的提高,能源和矿物的需求越来越多,给能源和矿物的开采提出了新的要求。
在能源开采中,地下存在大量的裂隙,对开采有重要影响。在页岩气开采过程中,地下岩石很多表现出很强的各向异性(例如层积页岩);页岩气开采主要使用水力压裂,通过将压裂液压入人工裂缝,促使人工裂缝和原始裂缝贯通,从而形成裂缝网络来提高页岩气开采效益。因此研究裂缝的断裂机理对页岩气开采具有很重要的理论指导意义,而断裂判据作为断裂机理的核心,意义重大。
目前,各向异性岩石材料的断裂判据很多,但是都只能判断I型断裂,对II型断裂的预测有难度;而且,现有技术只可以预测起裂角,而不能判断断裂模式(I型或者II型)。
发明内容
本发明的目的在于提供一种能够判断各种荷载情况下的起裂角和起裂模式,而且可靠性高,精确性好的各向异性岩石的断裂判定方法。
本发明提供的这种各向异性岩石的断裂判定方法,包括如下步骤:
S1.获取待分析的各向异性岩石的材料参数;
S2.根据步骤S1获取的材料参数,计算裂纹原裂纹面的应力强度因子;
S3.根据步骤S2得到的裂纹原裂纹面的应力强度因子,计算裂纹任意面的应力强度因子;
S4.根据步骤S3得到的裂纹任意面的应力强度因子,计算可能发生的Ⅰ型断裂的起裂角和Ⅱ型断裂的起裂角;
S5.判定待分析的各向异性岩石的断裂模式,并计算得到对应的起裂角。
步骤S3所述的计算裂纹任意面的应力强度因子,具体为采用如下算式计算得到裂纹任意面的应力强度因子:
Figure BDA0002984272430000021
Figure BDA0002984272430000022
式中K(θ)为裂纹任意面的Ⅰ型应力强度因子;K(θ)为裂纹任意面的Ⅱ型应力强度因子;σθ为裂纹尖端任意面正应力;r为极坐标系级径;θ为极坐标系角度;σx为直角坐标系x方向应力,且
Figure BDA0002984272430000023
σy为直角坐标系y方向应力,且
Figure BDA0002984272430000024
τxy为直角坐标系剪应力,且
Figure BDA0002984272430000025
Re为复变函数的实数部分;K(0)为裂纹原裂纹面的Ⅰ型应力强度因子;K(0)为裂纹原裂纹面的Ⅰ型应力强度因子;μ1和μ2为以下第一复变函数的根:
S11μ4-2S16μ3+(2S12+S662-2S26μ+S22=0
第一复变函数的四组解分别为μ1、μ2
Figure BDA0002984272430000031
Figure BDA0002984272430000032
S11为第一参数,且
Figure BDA0002984272430000033
α为层理面和裂纹夹角,E为层理面弹性模量,E'为垂直层理面弹性模量,G'为垂直层理面剪切模量,v'为垂直层理面泊松比;S16为第二参数,且
Figure BDA0002984272430000034
S12为第三参数,且
Figure BDA0002984272430000035
S66为第四参数,且
Figure BDA0002984272430000036
S26为第五参数,且
Figure BDA0002984272430000037
S22为第六参数,且
Figure BDA0002984272430000038
步骤S4所述的计算可能发生的Ⅰ型断裂的起裂角和Ⅱ型断裂的起裂角,具体为采用如下算式计算Ⅰ型断裂的起裂角θⅠC和Ⅱ型断裂的起裂角θⅡC
若发生Ⅰ型断裂,则采用如下算式计算起裂角θⅠC
Figure BDA0002984272430000039
Figure BDA00029842724300000310
Figure BDA00029842724300000311
在θⅠC
式中K(θ)为θ面的Ⅰ型应力强度因子;KⅠC(θ)为θ面的I型断裂韧度;KⅠC)为θⅠC面上I型应力强度因子;KⅠCⅠC)为θⅠC面上I型断裂韧度;
Figure BDA0002984272430000041
Figure BDA0002984272430000042
面上I型应力强度因子;
Figure BDA0002984272430000043
Figure BDA0002984272430000044
面上I型断裂韧度;
Figure BDA0002984272430000045
为函数
Figure BDA0002984272430000046
的极值所对应的起裂角,θⅠC为函数
Figure BDA0002984272430000047
的最大值所对应的角度值;
若发生Ⅱ型断裂,则采用如下算式计算起裂角θⅡC
Figure BDA0002984272430000048
Figure BDA0002984272430000049
Figure BDA00029842724300000410
在θⅡC
式中K(θ)为θ面的II型应力强度因子;KⅡC(θ)为θ面的II型断裂韧度;KⅡC)为θIIC面上II型应力强度因子;KⅡCⅡC)为θIIC面上II型断裂韧度;
Figure BDA00029842724300000411
Figure BDA00029842724300000412
面上II型应力强度因子;
Figure BDA00029842724300000413
Figure BDA00029842724300000414
面上II型断裂韧度;
Figure BDA00029842724300000415
为函数
Figure BDA00029842724300000416
的极值所对应的起裂角,θⅡC为函数
Figure BDA00029842724300000417
的最大值所对应的角度值。
步骤S5所述的判定待分析的各向异性岩石的断裂模式,并计算得到对应的起裂角,具体为采用如下判据进行判定和计算:
当满足如下情况时,判定产生Ⅰ型断裂:
Figure BDA00029842724300000418
此时起裂角为KⅠC)=KⅠCⅠC),在θⅠC;KⅠC)为θⅠC面上I型应力强度因子;KⅠCⅠC)为θⅠC面上I型断裂韧度;KⅡC)为θIIC面上II型应力强度因子;KⅡCⅡC)为θIIC面上II型断裂韧度;
当满足如下情况时,判定产生Ⅱ型断裂:
Figure BDA0002984272430000051
此时起裂角为KⅡC)=KⅡCⅡC),在θⅡC
本发明提供的这种各向异性岩石的断裂判定方法,为各向异性岩石的裂纹起裂和起裂机理提供方法,为形成和止裂提供了理论方法;本发明方法可计算起裂角和起裂模式;此外,本发明提出的判据适用于判断任意外荷载条件下(受拉,拉剪,受压,压剪)的断裂,适用范围更广,而且可靠性高,精确性好。
附图说明
图1为本发明方法的方法流程示意图。
图2为本发明方法在计算时的计算模型示意图。
图3为本发明方法的实施例的部件受荷载示意图。
图4为本发明方法的实施例的K(θ)和K(θ)的曲线示意图。
图5为本发明方法的实施例的实际实验得到的起裂角结果示意图。
具体实施方式
如图1所示为本发明方法的方法流程示意图,图2则为本发明方法在计算时的计算模型示意图:本发明提供的这种各向异性岩石的断裂判定方法,包括如下步骤:
S1.获取待分析的各向异性岩石的材料参数;
S2.根据步骤S1获取的材料参数,计算裂纹原裂纹面的应力强度因子;
S3.根据步骤S2得到的裂纹原裂纹面的应力强度因子,计算裂纹任意面的应力强度因子;具体为采用如下算式计算得到裂纹任意面的应力强度因子:
Figure BDA0002984272430000052
Figure BDA0002984272430000061
式中K(θ)为裂纹任意面的Ⅰ型应力强度因子;K(θ)为裂纹任意面的Ⅱ型应力强度因子;σθ为裂纹尖端任意面正应力;r为极坐标系级径;θ为极坐标系角度;σx为直角坐标系x方向应力,且
Figure BDA0002984272430000062
σy为直角坐标系y方向应力,且
Figure BDA0002984272430000063
τxy为直角坐标系剪应力,且
Figure BDA0002984272430000064
Re为复变函数的实数部分;K(0)为裂纹原裂纹面的Ⅰ型应力强度因子;K(0)为裂纹原裂纹面的Ⅰ型应力强度因子;μ1和μ2为以下第一复变函数的解:
S11μ4-2S16μ3+(2S12+S662-2S26μ+S22=0
第一复变函数的四组解分别为μ1、μ2
Figure BDA0002984272430000065
Figure BDA0002984272430000066
S11为第一参数,且
Figure BDA0002984272430000067
α为层理面和裂纹夹角,E为层理面弹性模量,E'为垂直层理面弹性模量,G'为垂直层理面剪切模量,v'为垂直层理面泊松比;S16为第二参数,且
Figure BDA0002984272430000071
S12为第三参数,且
Figure BDA0002984272430000072
S66为第四参数,且
Figure BDA0002984272430000073
S26为第五参数,且
Figure BDA0002984272430000074
S22为第六参数,且
Figure BDA0002984272430000075
S4.根据步骤S3得到的裂纹任意面的应力强度因子,计算可能发生的Ⅰ型断裂的起裂角和Ⅱ型断裂的起裂角;具体为采用如下算式计算Ⅰ型断裂的起裂角θⅠC和Ⅱ型断裂的起裂角θⅡC
若发生Ⅰ型断裂,则采用如下算式计算起裂角θⅠC
Figure BDA0002984272430000076
Figure BDA0002984272430000077
Figure BDA0002984272430000078
在θⅠC
式中K(θ)为θ面的Ⅰ型应力强度因子;KⅠC(θ)为θ面的I型断裂韧度;KⅠC)为θⅠC面上I型应力强度因子;KⅠCⅠC)为θⅠC面上I型断裂韧度;
Figure BDA0002984272430000079
Figure BDA00029842724300000710
面上I型应力强度因子;
Figure BDA00029842724300000711
Figure BDA00029842724300000712
面上I型断裂韧度;
Figure BDA00029842724300000713
为函数
Figure BDA00029842724300000714
的极值所对应的起裂角,θⅠC为函数
Figure BDA00029842724300000715
的最大值所对应的角度值;
若发生Ⅱ型断裂,则采用如下算式计算起裂角θⅡC
Figure BDA0002984272430000081
Figure BDA0002984272430000082
Figure BDA0002984272430000083
在θⅡC
式中K(θ)为θ面的II型应力强度因子;KⅡC(θ)为θ面的II型断裂韧度;KⅡC)为θIIC面上II型应力强度因子;KⅡCⅡC)为θIIC面上II型断裂韧度;
Figure BDA0002984272430000084
Figure BDA0002984272430000085
面上II型应力强度因子;
Figure BDA0002984272430000086
Figure BDA0002984272430000087
面上II型断裂韧度;
Figure BDA0002984272430000088
为函数
Figure BDA0002984272430000089
的极值所对应的起裂角,θⅡC为函数
Figure BDA00029842724300000810
的最大值所对应的角度值;
S5.判定待分析的各向异性岩石的断裂模式,并计算得到对应的起裂角;具体为采用如下判据进行判定和计算:
当满足如下情况时,判定产生Ⅰ型断裂:
Figure BDA00029842724300000811
此时起裂角为KⅠC)=KⅠCⅠC),在θⅠC;KⅠC)为θⅠC面上I型应力强度因子;KⅠCⅠC)为θⅠC面上I型断裂韧度;KⅡC)为θIIC面上II型应力强度因子;KⅡCⅡC)为θIIC面上II型断裂韧度;
当满足如下情况时,判定产生Ⅱ型断裂:
Figure BDA00029842724300000812
此时起裂角为KⅡC)=KⅡCⅡC),在θⅡC
以下结合一个实施例,对本发明方法进行进一步说明:
(1)计算条件:
一个巴西半圆盘试件,直径为76mm,裂纹长度38mm,裂纹倾角为30°,层理面倾角为0°,两个支撑点的间距为46mm,在顶部受集中荷载,材料力学性能如表1所示,结构如图3所示:
表1主要材料参数示意表
Figure BDA0002984272430000091
然后,原裂纹面的应力强度因子为K(0)=2.128和K(0)=-1.384,此时P=1N;
再然后,计算得到的K(θ)和K(θ)如图4所示;
通过图4的K(θ)和K(θ),以及给定的断裂韧度,计算可得θⅠC=30°,θⅡC=-24°;
最后,根据计算结果,得到断裂模式为Ⅰ型断裂,起裂角为θⅠC=30°;与实验结果(如图5所示)吻合较好。

Claims (1)

1.一种各向异性岩石的断裂判定方法,包括如下步骤:
S1.获取待分析的各向异性岩石的材料参数;
S2.根据步骤S1获取的材料参数,计算裂纹原裂纹面的应力强度因子;
S3.根据步骤S2得到的裂纹原裂纹面的应力强度因子,计算裂纹任意面的应力强度因子;具体为采用如下算式计算得到裂纹任意面的应力强度因子:
Figure FDA0003804596040000011
Figure FDA0003804596040000012
式中K(θ)为裂纹任意面的Ⅰ型应力强度因子;K(θ)为裂纹任意面的Ⅱ型应力强度因子;σθ为裂纹尖端任意面正应力;r为极坐标系级径;θ为极坐标系角度;σx为直角坐标系x方向应力,且
Figure FDA0003804596040000013
σy为直角坐标系y方向应力,且
Figure FDA0003804596040000014
τxy为直角坐标系剪应力,且
Figure FDA0003804596040000015
Re为复变函数的实数部分;K(0)为裂纹原裂纹面的Ⅰ型应力强度因子;K(0)为裂纹原裂纹面的Ⅰ型应力强度因子;μ1和μ2为以下第一复变函数的根:
S11μ4-2S16μ3+(2S12+S662-2S26μ+S22=0
第一复变函数的四组解分别为μ1、μ2
Figure FDA0003804596040000021
Figure FDA0003804596040000022
S11为第一参数,且
Figure FDA0003804596040000023
α为层理面和裂纹夹角,E为层理面弹性模量,E'为垂直层理面弹性模量,G'为垂直层理面剪切模量,v'为垂直层理面泊松比;S16为第二参数,且
Figure FDA0003804596040000024
S12为第三参数,且
Figure FDA0003804596040000025
S66为第四参数,且
Figure FDA0003804596040000026
S26为第五参数,且
Figure FDA0003804596040000027
S22为第六参数,且
Figure FDA0003804596040000028
S4.根据步骤S3得到的裂纹任意面的应力强度因子,计算可能发生的Ⅰ型断裂的起裂角和Ⅱ型断裂的起裂角;具体为采用如下算式计算Ⅰ型断裂的起裂角θⅠC和Ⅱ型断裂的起裂角θⅡC
若发生Ⅰ型断裂,则采用如下算式计算起裂角θⅠC
Figure FDA0003804596040000029
Figure FDA00038045960400000210
Figure FDA00038045960400000211
在θⅠC
式中K(θ)为θ面的Ⅰ型应力强度因子;KⅠC(θ)为θ面的I型断裂韧度;KⅠC)为θⅠC面上I型应力强度因子;KⅠCⅠC)为θⅠC面上I型断裂韧度;
Figure FDA0003804596040000031
Figure FDA0003804596040000032
面上I型应力强度因子;
Figure FDA0003804596040000033
Figure FDA0003804596040000034
面上I型断裂韧度;
Figure FDA0003804596040000035
为函数
Figure FDA0003804596040000036
的极值所对应的起裂角,θⅠC为函数
Figure FDA0003804596040000037
的最大值所对应的角度值;
若发生Ⅱ型断裂,则采用如下算式计算起裂角θⅡC
Figure FDA0003804596040000038
Figure FDA0003804596040000039
Figure FDA00038045960400000310
在θⅡC
式中K(θ)为θ面的II型应力强度因子;KⅡC(θ)为θ面的II型断裂韧度;KⅡC)为θIIC面上II型应力强度因子;KⅡCⅡC)为θIIC面上II型断裂韧度;
Figure FDA00038045960400000311
Figure FDA00038045960400000312
面上II型应力强度因子;
Figure FDA00038045960400000313
Figure FDA00038045960400000314
面上II型断裂韧度;
Figure FDA00038045960400000315
为函数
Figure FDA00038045960400000316
的极值所对应的起裂角,θⅡC为函数
Figure FDA00038045960400000317
的最大值所对应的角度值;
S5.判定待分析的各向异性岩石的断裂模式,并计算得到对应的起裂角;具体为采用如下判据进行判定和计算:
当满足如下情况时,判定产生Ⅰ型断裂:
Figure FDA00038045960400000318
此时起裂角为KⅠC)=KⅠCⅠC),在θⅠC;KⅠC)为θⅠC面上I型应力强度因子;KⅠCⅠC)为θⅠC面上I型断裂韧度;KⅡC)为θIIC面上II型应力强度因子;KⅡCⅡC)为θIIC面上II型断裂韧度;
当满足如下情况时,判定产生Ⅱ型断裂:
Figure FDA0003804596040000041
此时起裂角为KⅡC)=KⅡCⅡC),在θⅡC
CN202110295735.1A 2021-03-19 2021-03-19 各向异性岩石的断裂判定方法 Active CN112945700B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110295735.1A CN112945700B (zh) 2021-03-19 2021-03-19 各向异性岩石的断裂判定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110295735.1A CN112945700B (zh) 2021-03-19 2021-03-19 各向异性岩石的断裂判定方法

Publications (2)

Publication Number Publication Date
CN112945700A CN112945700A (zh) 2021-06-11
CN112945700B true CN112945700B (zh) 2022-10-04

Family

ID=76226817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110295735.1A Active CN112945700B (zh) 2021-03-19 2021-03-19 各向异性岩石的断裂判定方法

Country Status (1)

Country Link
CN (1) CN112945700B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820474B (zh) * 2021-11-24 2022-02-15 中南大学 一种模拟脆性岩石复合型裂纹扩展的相场方法
CN116773773B (zh) * 2023-06-16 2024-03-19 四川大学 基于断裂韧度的层状岩石裂缝偏转判断方法及产品

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250059A2 (en) * 1986-06-19 1987-12-23 Tohoku University Method for determining fracture toughness of rock by core boring
CN104359817A (zh) * 2014-10-16 2015-02-18 北京科技大学 一种页岩岩芯的裂缝扩展分析装置及分析方法
CN107832576A (zh) * 2017-10-18 2018-03-23 河海大学 应用于岩石材料i型裂纹起裂和扩展过程微观分析方法
CN108825198A (zh) * 2018-06-23 2018-11-16 东北石油大学 页岩地层压裂裂缝起裂压力计算方法
CN108844835A (zh) * 2018-03-20 2018-11-20 四川大学 一种i型裂纹在爆炸荷载下动态断裂全过程参数的测试方法
CN109359376A (zh) * 2018-10-10 2019-02-19 北京科技大学 水力压裂裂缝在页岩储层天然裂缝界面扩展判识方法
CN109613068A (zh) * 2018-12-27 2019-04-12 中国石油大学(华东) 一种含裂缝横向各向同性岩石电学性质各向异性计算方法
CN112485827A (zh) * 2019-09-12 2021-03-12 中国石油天然气股份有限公司 裂缝孔隙型储层的岩石物理建模方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9376902B2 (en) * 2011-08-16 2016-06-28 Schlumberger Technology Corporation Method to optimize perforations for hydraulic fracturing in anisotropic earth formations
US9465140B2 (en) * 2012-06-22 2016-10-11 Exxonmobil Upstream Research Company Petrophysical method for predicting shear strength anisotropy in fine-grained rock formations
CN109933844A (zh) * 2019-01-28 2019-06-25 西南石油大学 一种基于分形维数的岩石破裂复杂程度表征方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250059A2 (en) * 1986-06-19 1987-12-23 Tohoku University Method for determining fracture toughness of rock by core boring
CN104359817A (zh) * 2014-10-16 2015-02-18 北京科技大学 一种页岩岩芯的裂缝扩展分析装置及分析方法
CN107832576A (zh) * 2017-10-18 2018-03-23 河海大学 应用于岩石材料i型裂纹起裂和扩展过程微观分析方法
CN108844835A (zh) * 2018-03-20 2018-11-20 四川大学 一种i型裂纹在爆炸荷载下动态断裂全过程参数的测试方法
CN108825198A (zh) * 2018-06-23 2018-11-16 东北石油大学 页岩地层压裂裂缝起裂压力计算方法
CN109359376A (zh) * 2018-10-10 2019-02-19 北京科技大学 水力压裂裂缝在页岩储层天然裂缝界面扩展判识方法
CN109613068A (zh) * 2018-12-27 2019-04-12 中国石油大学(华东) 一种含裂缝横向各向同性岩石电学性质各向异性计算方法
CN112485827A (zh) * 2019-09-12 2021-03-12 中国石油天然气股份有限公司 裂缝孔隙型储层的岩石物理建模方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Modelling Fracture Propagation in Anisotropic Rock Mass;Baotang Shen等;《Rock Mech Rock Eng》;20141231;第1-15页 *
modification of the g-criterion for crack propagation subjected to compression;B.SHEN等;《engineering fracture mechanicals》;19941231;第177-189页 *
Shear fracture (Mode II) of brittle rock;Qiuhua Rao等;《International Journal of Rock Mechanics & Mining Sciences》;20031231;第355-375页 *

Also Published As

Publication number Publication date
CN112945700A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
CN112945700B (zh) 各向异性岩石的断裂判定方法
Tong et al. Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs
Yizhao et al. Features of fracture height propagation in cross-layer fracturing of shale oil reservoirs
CN113534291B (zh) 岩石力学层约束下的低渗透储层不同尺度裂缝定量预测方法
CN106869892B (zh) 一种重复压裂井缝内暂堵起裂的判断方法
CN108280275B (zh) 一种致密砂岩水力压裂缝高预测方法
CN113820750B (zh) 基于弹塑性力学定量预测泥岩构造裂缝的方法
CN109359376B (zh) 水力压裂裂缝在页岩储层天然裂缝界面扩展判识方法
CN108710762B (zh) 煤层液态co2相变定向射孔致裂优势方向判断方法
CN107679999B (zh) 一种计算煤层气井破裂压力的方法及其系统
Chen et al. An Experimental Study of the Uniaxial Failure Behaviour of Rock‐Coal Composite Samples with Pre‐existing Cracks in the Coal
CN110687253A (zh) 岩样内部裂纹制作及注浆效果定量评价方法
CN111963164A (zh) 一种针对多裂缝发育储层的井壁坍塌压力评价方法
CN113109162B (zh) 一种基于热流固耦合的岩石起裂压力计算方法
CN104632173B (zh) 非天然裂缝致密储层缝网压裂选层方法
CN111353218B (zh) 一种煤层气-致密气储层合压性的测井定量评价方法
CN110924931B (zh) 基于能量转换的水力裂缝与天然裂缝交互状态判别方法
CN107478507B (zh) 一种泥页岩脆-延过渡带确定方法
CN116187050A (zh) 一种高地应力围岩三轴条件下强度预测方法
CN110807259A (zh) 一种页岩气井试气时机的确定方法
CN112182841B (zh) 一种井下岩石顶板垮落步距的安全评估方法
Haiyang et al. Study on propagation of hydraulic fracture in combined hard roof
CN110147638B (zh) 煤层脉动压裂裂缝起裂和延伸压力预测方法
CN111859603B (zh) 砂岩裂缝改造方式的评定方法和评定装置
CN114970069A (zh) 一种井区碳酸盐岩储层裂缝连通性的确定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant