CN112933247A - 一种溶剂诱导自组装金纳米颗粒材料的制备方法 - Google Patents

一种溶剂诱导自组装金纳米颗粒材料的制备方法 Download PDF

Info

Publication number
CN112933247A
CN112933247A CN202110149550.XA CN202110149550A CN112933247A CN 112933247 A CN112933247 A CN 112933247A CN 202110149550 A CN202110149550 A CN 202110149550A CN 112933247 A CN112933247 A CN 112933247A
Authority
CN
China
Prior art keywords
self
assembled
gold
nanoparticle material
gold nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110149550.XA
Other languages
English (en)
Other versions
CN112933247B (zh
Inventor
蒋妍彦
杨晶晶
李辉
王凤龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202110149550.XA priority Critical patent/CN112933247B/zh
Publication of CN112933247A publication Critical patent/CN112933247A/zh
Application granted granted Critical
Publication of CN112933247B publication Critical patent/CN112933247B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0056Peptides, proteins, polyamino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0065Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the luminescent/fluorescent agent having itself a special physical form, e.g. gold nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种溶剂诱导自组装金纳米颗粒材料的制备方法,以牛血清蛋白作为稳定剂制备金纳米团簇,向金纳米团簇的水溶液中滴加乙醇,搅拌稳定后获得自组装金纳米颗粒材料。本发明的这种自组装材料,继承了金纳米团簇类似小分子的性质,表现出聚集诱导发光效应。另外,这种自组装金纳米颗粒可以利用增强渗透性和保留(EPR)效应被动靶向肿瘤组织,从而实现定点给药和精准释放药物,同时基于简单的自组装结构可被代谢器官完全代谢避免产生毒副作用。

Description

一种溶剂诱导自组装金纳米颗粒材料的制备方法
技术领域
本发明涉及自组装材料制备技术领域,具体涉及一种溶剂诱导自组装金纳米颗粒材料的制备方法。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
抗癌药物在特定病变部位的精确释放是纳米材料辅助药物释放系统的主要研究方向。合适大小的亲水金纳米粒子(Au NPs)可以利用增强渗透性和保留(EPR)效应被动靶向肿瘤组织,从而实现定点给药和精准释放药物。但是发明人研究发现,由于这种能够实现定点给药和精准释放药物的亲水金纳米粒子体积较大,很难被代谢器官完全代谢而滞留给人体带来毒副作用。
牛血清蛋白稳定的金纳米团簇(Au NCs)在2009年被首次报道,并受到越来越多的关注。由于金纳米团簇小尺寸性质,优异的荧光性能,良好的表面性质以及独特的结构特征,使得金纳米团簇可作为荧光纳米探针以及药物输送工具。虽然小尺寸金纳米团簇(<10nm)有很大潜力可以被代谢器官代谢完全,不产生附加的毒副作用,但发明人研究发现,小尺寸特点无法满足被动靶向精确释放药物得要求。随着纳米技术的发展,多功能纳米材料可以利用其独特的物理和化学特性,有针对性地设计,将生物传感、生物成像和药物传递结合起来,同时用于生物医学领域的疾病诊断、监测和治疗。
发明内容
为了解决现有技术的不足,本发明的目的是提供一种溶剂诱导自组装金纳米颗粒材料的制备方法,该纳米颗粒继承了金纳米团簇类似小分子的性质,表现出聚集诱导发光效应。
为了实现上述目的,本发明的技术方案为:
一方面,一种自组装金纳米颗粒材料,由牛血清蛋白稳定的金纳米团簇自组装形成自组装纳米颗粒,所述自组装纳米颗粒为球状颗粒,所述球状颗粒的平均粒径为40~50nm,所述自组装纳米颗粒的表面电荷为-24.2~-23.6mV。
另一方面,一种溶剂诱导自组装金纳米颗粒材料的制备方法,以牛血清蛋白作为稳定剂制备金纳米团簇,向金纳米团簇的水溶液中滴加乙醇,搅拌稳定后获得自组装金纳米颗粒材料。
牛血清蛋白稳定的金纳米团簇,在生物体内表现出强烈荧光发光,荧光稳定性和优异的荧光寿命等优异特性,在生物成像以及生物检测等应用中显示出了很大的前景。此外,金纳米团簇由于具备独特的尺寸优势和良好的表面化学性质,可作为药物载体高效靶向输送药物,改善药物的药理学效应,在肿瘤治疗方面表现出巨大的应用潜力。
经过实验发现,向牛血清蛋白稳定的金纳米团簇中滴加乙醇后能够使金纳米团簇进行自组装形成平均粒径为40~50nm、表面电荷为-24.2~-23.6mV的球状颗粒。
第三方面,一种上述自组装金纳米颗粒材料在生物传感制剂、生物成像制剂和/或药物载体中的应用。
本发明的有益效果为:
(1)本发明制备的溶剂诱导自组装金纳米颗粒,可作为药物运输载体,满足被动靶向要求,减少对正常细胞或组织的毒副作用。
(2)本发明制备的溶剂诱导自组装金纳米颗粒,以金纳米团簇为溶剂诱导自组装技术的前驱体,继承了金纳米团簇类似分子性质,简单的自组装结构为大颗粒在复杂的细胞环境自解体创造了有利的条件,有利于生物体代谢,对机体产生较小的副作用。
(3)本发明制备的溶剂诱导自组装金纳米颗粒,在有机溶剂疏水力作用下,形成致密的自组装聚集体,分子内部发生强相互作用,发射出更强的荧光,即存在聚集诱导发射现象。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1制备的自组装金纳米颗粒TEM图。
图2为本发明实施例1制备的金纳米团簇和自组装金纳米颗粒尺寸大小分布柱状图。
图3为本发明实施例1制备的金纳米团簇和自组装金纳米颗粒电荷柱状图。
图4为本发明实施例1制备的金纳米团簇和自组装金纳米颗粒的紫外-可见光谱图。
图5为本发明实施例1制备的金纳米团簇和自组装金纳米颗粒的傅里叶变换红外光谱图。
图6为本发明实施例1制备的金纳米团簇和自组装金纳米颗粒的荧光光谱图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
鉴于现有金纳米粒子体积较大难以完全代谢,而牛血清蛋白稳定的金纳米团簇尺寸过小,本发明提出了一种溶剂诱导自组装金纳米颗粒材料的制备方法。
本发明的一种典型实施方式,提供了一种自组装金纳米颗粒材料,由牛血清蛋白稳定的金纳米团簇自组装形成自组装纳米颗粒,所述自组装纳米颗粒为球状颗粒,所述球状颗粒的平均粒径为40~50nm,所述自组装纳米颗粒的表面电荷为-24.2~-23.6mV。
该实施方式的一些实施例中,平均粒径为45~47nm,表面电荷为-24.0~-23.8mV。
该实施方式的一些实施例中,金纳米团簇的尺寸为2~4nm,表面电荷为-22.9~-22.8mV。
本发明的另一种实施方法,提供了一种溶剂诱导自组装金纳米颗粒材料的制备方法,以牛血清蛋白作为稳定剂制备金纳米团簇,向金纳米团簇的水溶液中滴加乙醇,搅拌稳定后获得自组装金纳米颗粒材料。
本发明向牛血清蛋白稳定的金纳米团簇中滴加乙醇,可诱导牛血清蛋白稳定的金纳米团簇发生自组装效应,形成平均粒径为40~50nm、表面电荷为-24.2~-23.6mV的球状颗粒。形成的致密球形颗粒在内部发生强相互作用,能够发射出比金纳米团簇更强的荧光。
该实施方式的一些实施例中,金纳米团簇的水溶液与乙醇的体积比为1:0.8~0.9。
该实施方式的一些实施例中,乙醇的滴加速率为0.9~1.1mL/min。
该实施方式的一些实施例中,滴加乙醇过程中,搅拌速率为700~800rpm。
该实施方式的一些实施例中,滴加乙醇后继续搅拌2~2.5h。搅拌过程中搅拌速率为700~800rpm。稳定形成的自组装金纳米颗粒。
该实施方式的一些实施例中,搅拌稳定后进行透析。用于纯化自组装金纳米颗粒。
在一种或多种实施例中,透析时间为24~48h,每隔2~3h换一次超纯水。去除有机溶剂。
在一种或多种实施例中,透析过程中采用透析袋的尺寸为MWCO=8000-14000Da。
该实施方式的一些实施例中,以牛血清蛋白作为稳定剂制备金纳米团簇的过程为:将氯金酸水溶液加入至牛血清蛋白水溶液中,进行剧烈搅拌,搅拌稳定后,添加碱(例如氢氧化钠)调节pH至11.6~12.4,升温稳定后,透析,得到金纳米团簇水溶液。
所述剧烈搅拌是指搅拌转速不低于750rpm。金纳米团簇更好的分散,不易发生团聚现象。
在一种或多种实施例中,氯金酸与牛血清蛋白的加入比为0.1:450~550,mmol:mg。
在一种或多种实施例中,氯金酸水溶液加入至牛血清蛋白水溶液时,温度为36.5~37.5℃。可保证牛血清的最大还原能力以及螯合金原子的能力。
在一种或多种实施例中,剧烈搅拌1.5~2.5min后添加碱。
在一种或多种实施例中,加入碱后升温至66~74℃,搅拌稳定50~70min。
在一种或多种实施例中,金纳米团簇透析时间为48~72h,每隔2~4h换一次超纯水。去除有机溶剂。
在一种或多种实施例中,透析过程中采用透析袋的尺寸为MWCO=8000-14000Da。
本发明的第三种实施方式,提供了一种上述自组装金纳米颗粒材料在生物传感制剂、生物成像制剂和/或药物载体中的应用。
具体的,用于制备生物体代谢的自组装荧光发光材料。
具体的,作为被动靶向材料。用于抗癌药物运输。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例详细说明本发明的技术方案。
实施例1
一种溶剂诱导自组装金纳米颗粒材料的制备方法,包括如下步骤:
(1)在37℃温度和强力搅拌(1000rpm)条件下,将10mL 10mM四氯金酸水溶液快速加入到10mL 50mg/mL牛血清蛋白水溶液中,稳定2分钟后,加入1mL 1M氢氧化钠水溶液,调节溶液酸碱度至pH=12。将温度升高到70℃,在强烈搅拌(1000rpm)条件下保温60min。溶液颜色由亮黄色变为浅棕色,最后变为深棕色,表明金纳米团簇形成。使用透析袋(MWCO=14000Da)将金纳米团簇溶液在超纯水中完全透析48h,每4h更换一次超纯水,去除过量未反应的四氯金酸和氢氧化钠,获得金纳米团簇(记为Au-NCs)水溶液。
(2)在750rpm搅拌速率下,将3.5mL乙醇溶液以1mL/min的速度缓慢加入到4mL透析后的金纳米团簇溶液中,稳定2h后,用透析纯化的方式(透析袋尺寸为MWCO=14000Da,透析时间24h,每隔2h换一次超纯水)得到自组装金纳米颗粒(记为Au-NPs)。
参考图1、图2和图3,分别为本实施例制备的自组装金纳米颗粒的TEM图、金纳米团簇和金纳米颗粒尺寸大小分布图、金纳米团簇和金纳米颗粒电荷柱状图。图1中,自组装金纳米颗粒在电镜下呈圆球形,且平均粒径为46nm左右;图2中,自组装金纳米颗粒的水动力学直径为52nm左右,且分散指数较窄,表明制备的颗粒尺寸集中分布;图3中,金纳米团簇和自组装金纳米颗粒Zeta电位分别为-22.9mV和-23.9mV,表明自组装过程,保留了蛋白质的表面性质。
特性表征
以实施例1制备的金纳米团簇和自组装金纳米颗粒为测试对象,对其结构进行表征,并检测其荧光性能。首先配制5mg/mL样品溶液,并进行多次稀释测量,在250nm-650nm的范围内得到样品的紫外可见吸收光谱,结果如图4所示。将制备的金纳米团簇和自组装金纳米颗粒溶液冻干,将2mg冻干粉末与100mg干燥的溴化钾粉末在玛瑙研钵中进行充分的研磨,在压片机上压制成片进行测试,检测的波长范围为400-4000cm-1,得到傅里叶变换红外吸收光谱,结果如图5所示。图4、图5说明自组装金纳米颗粒表现出与金纳米团簇相似的特征,继承了金纳米团簇类似分子的性质,表明金纳米团簇是自组装金纳米颗粒的主要构建单元,自组装过程保留了金纳米团簇类似于分子的结构。
将20mg冻干材料溶于5mL超纯水中,超声20min,使粉末完全溶解,取3mL材料溶液于比色皿中,以505nm激发波长获得样品的荧光发射光谱,并以654nm的发射波长获得样品的荧光激发光谱,结果如图6所示。图6说明,溶剂诱导自组装金纳米颗粒表现出聚集诱导发射现象,即在同一波长激发下,发射出更强荧光。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种自组装金纳米颗粒材料,其特征是,由牛血清蛋白稳定的金纳米团簇自组装形成自组装纳米颗粒,所述自组装纳米颗粒为球状颗粒,所述球状颗粒的平均粒径为40~50nm,所述自组装纳米颗粒的表面电荷为-24.2~-23.6mV。
2.如权利要求1所述的自组装金纳米颗粒材料,其特征是,平均粒径为45~47nm,表面电荷为-24.0~-23.8mV。
3.如权利要求1所述的自组装金纳米颗粒材料,其特征是,金纳米团簇的尺寸为2~4nm,表面电荷为-22.9~-22.8mV。
4.一种溶剂诱导自组装金纳米颗粒材料的制备方法,其特征是,以牛血清蛋白作为稳定剂制备金纳米团簇,向金纳米团簇的水溶液中滴加乙醇,搅拌稳定后获得自组装金纳米颗粒材料。
5.如权利要求4所述的溶剂诱导自组装金纳米颗粒材料的制备方法,其特征是,金纳米团簇的水溶液与乙醇的体积比为1:0.8~0.9;
或,乙醇的滴加速率为0.9~1.1mL/min;
或,滴加乙醇过程中,搅拌速率为700~800rpm;
或,滴加乙醇后继续搅拌2~2.5h。
6.如权利要求4所述的溶剂诱导自组装金纳米颗粒材料的制备方法,其特征是,搅拌稳定后进行透析;
优选的,透析时间为24~48h,每隔2~3h换一次超纯水;
优选的,透析过程中采用透析袋的尺寸为MWCO=8000-14000Da。
7.如权利要求4所述的溶剂诱导自组装金纳米颗粒材料的制备方法,其特征是,以牛血清蛋白作为稳定剂制备金纳米团簇的过程为:将氯金酸水溶液加入至牛血清蛋白水溶液中,进行剧烈搅拌,搅拌稳定后,添加碱调节pH至11.6~12.4,升温稳定后,透析,得到金纳米团簇水溶液。
8.如权利要求7所述的溶剂诱导自组装金纳米颗粒材料的制备方法,其特征是,氯金酸与牛血清蛋白的加入比为0.1:450~550,mmol:mg;
或,氯金酸水溶液加入至牛血清蛋白水溶液时,温度为36.5~37.5℃;
或,剧烈搅拌1.5~2.5min后添加碱;
或,加入碱后升温至66~74℃,搅拌稳定50~70min。
9.如权利要求7所述的溶剂诱导自组装金纳米颗粒材料的制备方法,其特征是,金纳米团簇透析时间为48~72h,每隔2~4h换一次超纯水;
或,透析过程中采用透析袋的尺寸为MWCO=8000-14000Da。
10.一种权利要求1~3任一所述的自组装金纳米颗粒材料或权利要求4~9任一所述的制备方法获得的自组装金纳米颗粒材料在生物传感制剂、生物成像制剂和/或药物载体中的应用;
优选的,用于制备生物体代谢的自组装荧光发光材料;
优选的,作为被动靶向材料。
CN202110149550.XA 2021-02-03 2021-02-03 一种溶剂诱导自组装金纳米颗粒材料的制备方法 Active CN112933247B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110149550.XA CN112933247B (zh) 2021-02-03 2021-02-03 一种溶剂诱导自组装金纳米颗粒材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110149550.XA CN112933247B (zh) 2021-02-03 2021-02-03 一种溶剂诱导自组装金纳米颗粒材料的制备方法

Publications (2)

Publication Number Publication Date
CN112933247A true CN112933247A (zh) 2021-06-11
CN112933247B CN112933247B (zh) 2022-10-18

Family

ID=76242279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110149550.XA Active CN112933247B (zh) 2021-02-03 2021-02-03 一种溶剂诱导自组装金纳米颗粒材料的制备方法

Country Status (1)

Country Link
CN (1) CN112933247B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116217991A (zh) * 2023-03-09 2023-06-06 四川大学 一种圆偏振发光薄膜制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102150034A (zh) * 2008-08-05 2011-08-10 新加坡科技研究局 稳定金纳米簇的形成方法、含有稳定金纳米簇的组合物和制品
US20120267573A1 (en) * 2011-04-20 2012-10-25 Wu Jau-Yann Method for making fluorescent gold nano-material
CN105199716A (zh) * 2015-09-26 2015-12-30 福建医科大学 3-巯基丙酸-牛血清白蛋白-金纳米团簇及其制备方法
CN105382269A (zh) * 2015-11-09 2016-03-09 东南大学 基于置换法和聚集诱导的水溶性发光金纳米团簇的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102150034A (zh) * 2008-08-05 2011-08-10 新加坡科技研究局 稳定金纳米簇的形成方法、含有稳定金纳米簇的组合物和制品
US20120267573A1 (en) * 2011-04-20 2012-10-25 Wu Jau-Yann Method for making fluorescent gold nano-material
CN105199716A (zh) * 2015-09-26 2015-12-30 福建医科大学 3-巯基丙酸-牛血清白蛋白-金纳米团簇及其制备方法
CN105382269A (zh) * 2015-11-09 2016-03-09 东南大学 基于置换法和聚集诱导的水溶性发光金纳米团簇的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LU LIU ET ALL.: "Secreted Protein Acidic and Rich in Cysteine Mediated Biomimetic Delivery of Methotrexate by Albumin-Based Nanomedicines for Rheumatoid Arthritis therapy", 《ACS NANO》 *
ZHENTAO LUO ET AL.: ""From Aggregation-Induced Emission of Au(I)−Thiolate Complexes to Ultrabright Au(0)@Au(I)−Thiolate Core−Shell Nanoclusters"", 《J. AM. CHEM. SOC.,》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116217991A (zh) * 2023-03-09 2023-06-06 四川大学 一种圆偏振发光薄膜制备方法和应用
CN116217991B (zh) * 2023-03-09 2024-02-27 四川大学 一种圆偏振发光薄膜制备方法和应用

Also Published As

Publication number Publication date
CN112933247B (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
Song et al. Graphene‐oxide‐modified lanthanide nanoprobes for tumor‐targeted visible/NIR‐II luminescence imaging
Goodwin et al. Phospholipid− dextran with a single coupling point: A useful amphiphile for functionalization of nanomaterials
Zhou et al. NIR photothermal therapy using polyaniline nanoparticles
Souris et al. Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles
Ali et al. Red fluorescent carbon nanoparticle-based cell imaging probe
Li et al. Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes
Wang et al. Fluorescent porous carbon nanocapsules for two-photon imaging, NIR/pH dual-responsive drug carrier, and photothermal therapy
Kim et al. In vivo NIR imaging with CdTe/CdSe quantum dots entrapped in PLGA nanospheres
Chen et al. Amphiphilic polymeric nanocarriers with luminescent gold nanoclusters for concurrent bioimaging and controlled drug release
Piao et al. Designed fabrication of silica‐based nanostructured particle systems for nanomedicine applications
Santra et al. Luminescent nanoparticle probes for bioimaging
Xu et al. Polymeric micelle-coated mesoporous silica nanoparticle for enhanced fluorescent imaging and pH-responsive drug delivery
CN103509552B (zh) 一种功能性近红外荧光纳米微粒及其制备与应用
US7790473B2 (en) Biofunctionalized quantum dots for biological imaging
CN112933247B (zh) 一种溶剂诱导自组装金纳米颗粒材料的制备方法
CN106833644B (zh) 一种基于柱芳烃和上转换纳米晶自组装的纳米材料及其制备方法与应用
US20230272271A1 (en) Protected Quantum Dots for Therapeutic, Diagnostic, and Other Uses
CN110542671B (zh) 一种有机双光子荧光探针、其制备及应用
CN107970224B (zh) 一种脂质修饰磁性氧化石墨烯复合材料的制备方法及应用
Babu et al. An overview of polymer surface coated synthetic quantum dots as therapeutics and sensors applications
An et al. A reticuloendothelial system-stealthy dye–albumin nanocomplex as a highly biocompatible and highly luminescent nanoprobe for targeted in vivo tumor imaging
Tao et al. A fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle as a label for the ultrasensitive detection of cancer cells
Li et al. An evaporation induced self-assembly approach to prepare polymorphic carbon dot fluorescent nanoprobes for protein labelling
Zhang et al. Improving colloidal properties of quantum dots with combined silica and polymer coatings for in vitro immuofluorenscence assay
Xue et al. Four strategies for water transfer of oil-soluble near-infrared-emitting PbS quantum dots

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant