CN112919905A - 一种无铅压电陶瓷材料及其制备方法 - Google Patents

一种无铅压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN112919905A
CN112919905A CN202110337649.2A CN202110337649A CN112919905A CN 112919905 A CN112919905 A CN 112919905A CN 202110337649 A CN202110337649 A CN 202110337649A CN 112919905 A CN112919905 A CN 112919905A
Authority
CN
China
Prior art keywords
putting
powder
ball milling
tio
corundum crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110337649.2A
Other languages
English (en)
Inventor
郭菲菲
胡浩杰
董宏盛
王鑫钰
袁海晨
白伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Technological University
Original Assignee
Xian Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Technological University filed Critical Xian Technological University
Priority to CN202110337649.2A priority Critical patent/CN112919905A/zh
Publication of CN112919905A publication Critical patent/CN112919905A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开一种无铅压电陶瓷材料及其制备方法,所述陶瓷材料的分子式为:(0.93‑x)Bi0.5Na0.5TiO3‑0.07Ba(Zr0.055Ti0.945)O3‑x(K0.5Na0.5)NbO3,其中,0≤x≤0.07。该陶瓷材料的制备方法包括:配料、球磨、预烧、二次球磨、加粘合剂、过筛造粒、成型、排塑、烧结。本发明制得的无铅压电陶瓷具有优异的电学性能,同时,本发明中的陶瓷材料配方简单、合成工艺简单、在某些方面可以取代PZT陶瓷。

Description

一种无铅压电陶瓷材料及其制备方法
技术领域
本发明涉及压电陶瓷材料技术领域,具体涉及一种无铅压电陶瓷材料及其制备方法。
背景技术
压电陶瓷是一种能够实现电性能与机械性能相互转化的功能材料,是超声换能器、传感器、驱动器等诸多电子器件的核心材料。PZT基压电陶瓷自从发现以来由于其优异的电学性能是目前应用最广泛一类陶瓷材料。但是,铅基压电陶瓷中含有60%以上的铅,铅是一种有毒物质,在陶瓷的制备、使用、废弃的过程中都会给人类和环境造成危害。
随着人们环保意识的增强,各国开始颁布法律法规禁止在电子电器设备中使用含铅材料。在这种大环境下,开发性能优异的环境友好的无铅压电陶瓷来取代铅基压电材料成为了一项迫切而艰巨的任务。在众多无铅压电陶瓷中,A位复合钙钛矿处于铁电陶瓷Bi0.5Na0.5TiO3(BNT)由于其优异的电学性能被认为是能够取代PZT基压电陶瓷的候选材料之一。但是纯的BNT陶瓷压电性能很差,只有73pC/N,且退极化温度较低,所以无法满足实际应用的要求。另外纯的BNT陶瓷烧结温区窄、致密度欠佳、物理化学性质不稳定也限制了其在实际中的应用。通过在BNT中掺入杂质离子或能与之形成固溶体的组元,形成具有准同型相界(MPB)的固溶体可以提升陶瓷的压电性能和电致应变,在很大程度上提高其性能。目前已经开发了一系列二元、三元甚至四元体系的BNT基陶瓷,大大提高了陶瓷的压电性能。开发多元BNT基陶瓷的目的一方面是提高BNT陶瓷的压电性能,另一方面是提高BNT陶瓷的电致应变。但现有的多元BNT陶瓷无法在同一体系中同时实现压电和电致应变的调控,且大的电致应变往往伴随着达的应变滞后,限制了陶瓷在致动器中的应用。
发明内容
本发明开发了一种新型三元系BNT基压电陶瓷,解决BNT基在大的电致应变下应变滞后严重的的缺点。
为了达到上述目的,本发明的技术方案是:
一种无铅压电陶瓷材料,其特征在于,所述陶瓷材料的分子式为:(0.93-x)Bi0.5Na0.5TiO3-0.07Ba(Zr0.055Ti0.945)O3-x(K0.5Na0.5)NbO3,其中,0≤x≤0.07。
上述陶瓷材料的制备方法如下:
(1)以BaCO3、TiO2、ZrO2粉末为原料,按照BaZr0.055Ti0.945O3的化学计量比称料;
(2)将步骤(1)称好的粉末装入球磨罐中,以无水乙醇为介质,采用行星式球磨机球磨1-64h,使粉体混合均匀、颗粒大小一致,为产品质量提供保证;
(3)将步骤(2)球磨好的浆料烘干,压成Ф60的圆片,放入刚玉坩埚,然后放入马弗炉中预烧,预烧温度1100-1300℃,预烧时间2-5h,使原料充分反应合成BaZr0.055Ti0.945O3
(4)以Bi2O3、Na2CO3、TiO2、K2CO3、Nb2O5和BaZr0.055Ti0.945O3粉末为原料,按照(0.93-x)Bi0.5Na0.5TiO3-0.07Ba(Zr0.055Ti0.945)O3-x(K0.5Na0.5)NbO3的化学计量比称取原料,其中0≤x≤0.07;
(5)将步骤(4)称好的粉末装入球磨罐中,以无水乙醇为介质,采用行星式球磨机球磨1-64h;
(6)将步骤(5)球磨好的浆料烘干,压成圆片,放入刚玉坩埚,然后放入马弗炉中预烧,预烧温度700-850℃,预烧时间2-5h;
(7)将步骤(6)预烧好的片磨碎,装入球磨罐中,以无水乙醇为介质,采用行星式球磨机球磨1-64h;
(8)将步骤(7)球磨好的浆料烘干,加入浓度为5%的粘合剂,100g粉料加入7.5g粘合剂,放置24h,过50目到200目的筛;
(9)取50-200目之间流动性很好的粉料进行压片成型,成型压力为200-330MPa;
(10)将步骤(9)成型后的坯放入刚玉坩埚,然后放入马弗炉中排塑,排塑温度500-750℃,排塑时间1-5h;
(11)将排完塑的素坯放入刚玉坩埚,用相同配比的粉料掩埋,放入马弗炉中烧结,烧结温度为1100-1300℃,烧结时间2-5h,得到(0.93-x)Bi0.5Na0.5TiO3-0.07Ba(Zr0.055Ti0.945)O3-x(K0.5Na0.5)NbO3无铅压电陶瓷。
与现有技术相比,本发明的有益效果:
经电学测试后发现,本发明制得的Bi0.5Na0.5TiO3-Ba(Zr0.055Ti0.945)O3-(K0.5Na0.5)NbO3无铅压电陶瓷具有优异的电学性能:压电常数d33约150-190pC/N,平面机电耦合系数kp约0.12-0.25,机械品质因数Qm约100-270,电致应变S约为0.13%-0.31%,相比于Bi0.5Na0.5TiO3陶瓷(d33约70pC/N),电学性能有了极大地改善;同时,本发明中的陶瓷材料配方简单、合成工艺简单、在某些方面可以取代PZT陶瓷。
附图说明
图1为(0.93-x)Bi0.5Na0.5TiO3-0.07Ba(Zr0.055Ti0.945)O3-x(K0.5Na0.5)NbO3(x=0,0.01,0.02,0.03,0.04,0.05,0.06,0.07)无铅压电陶瓷的XRD图;
图2为(0.93-x)Bi0.5Na0.5TiO3-0.07Ba(Zr0.055Ti0.945)O3-x(K0.5Na0.5)NbO3(x=0,0.01,0.02,0.03,0.04,0.05,0.06,0.07)无铅压电陶瓷的压电常数d33图;
图3为(0.93-x)Bi0.5Na0.5TiO3-0.07Ba(Zr0.055Ti0.945)O3-x(K0.5Na0.5)NbO3(x=0,0.01,0.02,0.03,0.04,0.05,0.06,0.07)无铅压电陶瓷的单边电致应变图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合实施例对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
通过在BNT中掺入杂质离子或能与之形成固溶体的组元,形成具有准同型相界(MPB)的固溶体可以降低该陶瓷的矫顽场和漏电流,提高其压电性能和电致应变,在很大程度上提高其性能。目前已经开发了一系列二元、三元甚至四元体系的BNT基陶瓷,大大提高了陶瓷的压电性能。相比于二元系陶瓷,三元和四元系陶瓷的组分可调节性大,性能更加优异,本发明开发了一种新型三元系BNT基压电陶瓷,配方简单,性能优异,在某些方面可以取代PZT陶瓷。
本发明通过在准同型相界区域附近的Bi0.5Na0.5TiO3-Ba(Zr0.055Ti0.945)O3-(K0.5Na0.5)NbO3三元系陶瓷中改变(K0.5Na0.5)NbO3与Bi0.5Na0.5TiO3配料比,提高陶瓷的电学性能,提高BNT基无铅压电陶瓷取代铅基压电陶瓷的可能性。
实现上述目的的技术方案是:Bi0.5Na0.5TiO3-BaZr0.055Ti0.945O3(BNT-BZT)无铅压电陶瓷是以具有三方-四方准同型相界的0.93BNT-0.07BZT为基体,引入(K0.5Na0.5)NbO3
Bi0.5Na0.5TiO3-Ba(Zr0.055Ti0.945)O3-(K0.5Na0.5)NbO3无铅压电陶瓷的制备方法包括:配料、球磨、预烧、二次球磨、加粘合剂、过筛造粒、成型、排塑、烧结。
实施例1
(1)以BaCO3、ZrO2、TiO2粉末为原料,根据化学式BaZr0.055Ti0.945O3,按照化学计量比称料;
(2)将步骤(1)称好的粉末装入球磨罐中,以无水乙醇为介质,采用行星式球磨机球磨24h;
(3)将步骤(2)球磨好的浆料在干燥箱中105℃烘干,压成Ф60的圆片,放入刚玉坩埚,然后放入马弗炉中预烧,预烧温度1200℃,预烧时间2h,使原料充分反应合成BaZr0.055Ti0.945O3
(4)以Bi2O3、Na2CO3、TiO2和BaZr0.055Ti0.945O3粉末为原料,根据化学式0.93BNT-0.07BZT,按照化学计量比称取原料;
(5)将步骤(4)称好的粉末装入球磨罐中,以无水乙醇为介质,采用行星式球磨机球磨24h;
(6)将步骤(5)球磨好的浆料在干燥箱中105℃烘干,压成Ф60的圆片,放入刚玉坩埚,然后放入马弗炉中预烧,预烧温度800℃,预烧时间3h;
(7)将步骤(6)预烧好的片磨碎,装入球磨罐中,以无水乙醇为介质,采用行星式球磨机球磨12h;
(8)将步骤(7)球磨好的浆料在干燥箱中105℃烘干,加入浓度为5%的粘合剂(PVA),100g粉料加入7.5g粘合剂,放置24h,过50目到200目的筛;
(9)取50-200目之间流动性很好的粉料进行压片成型,成型压力为250MPa,坯的直径为13mm;
(10)将步骤(9)成型后的坯放入刚玉坩埚,然后放入马弗炉中排塑,排塑温度550℃,排塑时间2h;
(11)将排完塑的素坯放入刚玉坩埚,用相同配比的粉料掩埋,放入马弗炉中烧结。烧结温度为1120℃,烧结时间2h,得到0.93BNT-0.07BZT无铅压电陶瓷。
(12)将上述得到的陶瓷的上下表面进行打磨清洗后,在两个表面涂上银浆,在550℃煅烧30min,在两个表面形成30微米左右的银电极。
(13)被好银电极的陶瓷放在硅油中,用5.5kV/mm的电场极化15min,放置24h后可测试陶瓷的电学性能。
测试结果如下:压电常数d33=175pC/N,单边电致应变S=0.13%。
实施例2
(1)以BaCO3、ZrO2、TiO2粉末为原料,根据化学式BaZr0.055Ti0.945O3,按照化学计量比称料;
(2)将步骤(1)称好的粉末装入球磨罐中,以无水乙醇为介质,采用行星式球磨机球磨24h;
(3)将步骤(2)球磨好的浆料在干燥箱中105℃烘干,压成Ф60的圆片,放入刚玉坩埚,然后放入马弗炉中预烧,预烧温度1200℃,预烧时间2h,使原料充分反应合成BaZr0.055Ti0.945O3
(4)以Bi2O3、Na2CO3、TiO2、K2CO3、Nb2O5和BaZr0.055Ti0.945O3粉末为原料,根据化学式0.92BNT-0.07BZT-0.01KNN,按照化学计量比称取原料;
(5)将步骤(4)称好的粉末装入球磨罐中,以无水乙醇为介质,采用行星式球磨机球磨24h;
(6)将步骤(5)球磨好的浆料在干燥箱中105℃烘干,压成Ф60的圆片,放入刚玉坩埚,然后放入马弗炉中预烧,预烧温度800℃,预烧时间3h;
(7)将步骤(6)预烧好的片磨碎,装入球磨罐中,以无水乙醇为介质,采用行星式球磨机球磨24h;
(8)将步骤(7)球磨好的浆料在干燥箱中105℃烘干,加入7.5%的粘合剂(PVA),放置24h,过50目到200目的筛;
(9)取50-200目之间流动性很好的粉料进行压片成型,成型压力为300MPa,坯的直径为13mm;
(10)将步骤(9)成型后的坯放入刚玉坩埚,然后放入马弗炉中排塑,排塑温度550℃,排塑时间2h;
(11)将排完塑的素坯放入刚玉坩埚,用相同配比的粉料掩埋,放入马弗炉中烧结。烧结温度为1120℃,烧结时间2h,得到0.92BNT-0.07BZT-0.01KNN无铅压电陶瓷。
(12)将上述得到的陶瓷的上下表面进行打磨清洗后,在两个表面涂上银浆,在600℃煅烧10min,在两个表面形成30微米左右的银电极。
(13)被好银电极的陶瓷放在硅油中,用5.5kV/mm的电场极化15min,放置24h后进行测试。
测试结果如下:压电常数d33=180pC/N,单边电致应变S=0.16%。
实施例3
(1)以BaCO3、ZrO2、TiO2粉末为原料,根据化学式BaZr0.055Ti0.945O3,按照化学计量比称料;
(2)将步骤(1)称好的粉末装入球磨罐中,以无水乙醇为介质,采用行星式球磨机球磨24h;
(3)将步骤(2)球磨好的浆料在干燥箱中105℃烘干,压成Ф60的圆片,放入刚玉坩埚,然后放入马弗炉中预烧,预烧温度1200℃,预烧时间2h,使原料充分反应合成BaZr0.055Ti0.945O3
(4)以Bi2O3、Na2CO3、TiO2、K2CO3、Nb2O5和BaZr0.055Ti0.945O3粉末为原料,根据化学式0.91BNT-0.07BZT-0.02KNN,按照化学计量比称取原料;
(5)将步骤(4)称好的粉末装入球磨罐中,以无水乙醇为介质,采用行星式球磨机球磨24h;
(6)将步骤(5)球磨好的浆料在干燥箱中105℃烘干,压成Ф60的圆片,放入刚玉坩埚,然后放入马弗炉中预烧,预烧温度800℃,预烧时间3h;
(7)将步骤(6)预烧好的片磨碎,装入球磨罐中,以无水乙醇为介质,采用行星式球磨机球磨24h;
(8)将步骤(7)球磨好的浆料在干燥箱中105℃烘干,加入7.5%的粘合剂(PVA),放置24h,过50目到200目的筛;
(9)取50-200目之间流动性很好的粉料进行压片成型,成型压力为300MPa,坯的直径为13mm;
(10)将步骤(9)成型后的坯放入刚玉坩埚,然后放入马弗炉中排塑,排塑温度550℃,排塑时间2h;
(11)将排完塑的素坯放入刚玉坩埚,用相同配比的粉料掩埋,放入马弗炉中烧结。烧结温度为1120℃,烧结时间2h,得到0.91BNT-0.07BZT-0.02KNN无铅压电陶瓷。
(12)将上述得到的陶瓷的上下表面进行打磨清洗后,在两个表面涂上银浆,在600℃煅烧10min,在两个表面形成30微米左右的银电极。
(13)被好银电极的陶瓷放在硅油中,用5.5kV/mm的电场极化15min,放置24h后进行测试。
测试结果如下:压电常数d33=20pC/N,单边电致应变S=0.31%,应变滞后H=33.5%。
经电学测试后发现Bi0.5Na0.5TiO3-Ba(Zr0.055Ti0.945)O3-(K0.5Na0.5)NbO3无铅压电陶瓷具有优异的电学性能:压电常数d33约150-190pC/N,平面机电耦合系数kp约0.12-0.25,机械品质因数Qm约100-270,电致应变S约为0.13%-0.31%,相比于Bi0.5Na0.5TiO3陶瓷(d33约70pC/N),电学性能有了极大地改善,有望在实际中应用。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。任何熟悉该技术的人在本发明所揭露的技术范围内的局部修改或替换,都应涵盖在本发明的包含范围之内。

Claims (2)

1.一种无铅压电陶瓷材料,其特征在于,所述陶瓷材料的分子式为:(0.93-x)Bi0.5Na0.5TiO3-0.07Ba(Zr0.055Ti0.945)O3-x(K0.5Na0.5)NbO3,其中,0≤x≤0.07。
2.根据权利要求1所述无铅压电陶瓷材料,其特征在于,所述陶瓷材料的制备方法如下:
(1)以BaCO3、TiO2、ZrO2粉末为原料,按照BaZr0.055Ti0.945O3的化学计量比称料;
(2)将步骤(1)称好的粉末装入球磨罐中,以无水乙醇为介质,采用行星式球磨机球磨1-64h,使粉体混合均匀、颗粒大小一致,为产品质量提供保证;
(3)将步骤(2)球磨好的浆料烘干,压成Ф60的圆片,放入刚玉坩埚,然后放入马弗炉中预烧,预烧温度1100-1300℃,预烧时间2-5h,使原料充分反应合成BaZr0.055Ti0.945O3
(4)以Bi2O3、Na2CO3、TiO2、K2CO3、Nb2O5和BaZr0.055Ti0.945O3粉末为原料,按照(0.93-x)Bi0.5Na0.5TiO3-0.07Ba(Zr0.055Ti0.945)O3-x(K0.5Na0.5)NbO3的化学计量比称取原料,其中0≤x≤0.07;
(5)将步骤(4)称好的粉末装入球磨罐中,以无水乙醇为介质,采用行星式球磨机球磨1-64h;
(6)将步骤(5)球磨好的浆料烘干,压成圆片,放入刚玉坩埚,然后放入马弗炉中预烧,预烧温度700-850℃,预烧时间2-5h;
(7)将步骤(6)预烧好的片磨碎,装入球磨罐中,以无水乙醇为介质,采用行星式球磨机球磨1-64h;
(8)将步骤(7)球磨好的浆料烘干,加入浓度为5%的粘合剂,100g粉料加入7.5g粘合剂,放置24h,过50目到200目的筛;
(9)取50-200目之间流动性很好的粉料进行压片成型,成型压力为200-330MPa;
(10)将步骤(9)成型后的坯放入刚玉坩埚,然后放入马弗炉中排塑,排塑温度500-750℃,排塑时间1-5h;
(11)将排完塑的素坯放入刚玉坩埚,用相同配比的粉料掩埋,放入马弗炉中烧结,烧结温度为1100-1300℃,烧结时间2-5h,得到(0.93-x)Bi0.5Na0.5TiO3-0.07Ba(Zr0.055Ti0.945)O3-x(K0.5Na0.5)NbO3无铅压电陶瓷。
CN202110337649.2A 2021-03-30 2021-03-30 一种无铅压电陶瓷材料及其制备方法 Pending CN112919905A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110337649.2A CN112919905A (zh) 2021-03-30 2021-03-30 一种无铅压电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110337649.2A CN112919905A (zh) 2021-03-30 2021-03-30 一种无铅压电陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112919905A true CN112919905A (zh) 2021-06-08

Family

ID=76176486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110337649.2A Pending CN112919905A (zh) 2021-03-30 2021-03-30 一种无铅压电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112919905A (zh)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHASHA DON等: "Enhanced piezoelectric and electric field induced stain response in Bi0.5Na0.5TiO3-Ba(Zr0.055Ti0.945)O3ceramics modified by (K0.5Na0.5)NbO3", 《JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS》 *

Similar Documents

Publication Publication Date Title
US10003009B2 (en) Composite piezoelectric ceramic and piezoelectric device
CN111087238B (zh) 钛酸铋钠基无铅压电陶瓷及其制备方法
US11895923B2 (en) Lead-free piezoelectric ceramic sensor material and a preparation method thereof
CN108727024B (zh) 无铅压电陶瓷及其制备方法
CN104844202B (zh) 一种锰锑酸铅掺杂的铌镍‑锆钛酸铅压电陶瓷
KR101333793B1 (ko) 비스무스계 압전 세라믹스 및 그 제조방법
KR101079228B1 (ko) 압전 재료 및 그 제조 방법
CN103073289A (zh) 压电陶瓷材料、烧结体、压电陶瓷器件及其制备方法
KR101635939B1 (ko) 비스무스계 무연 압전 세라믹스 및 이를 포함하는 액추에이터
CN107903055B (zh) 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
KR101310450B1 (ko) 기계적 품질계수가 우수한 무연 압전 세라믹 조성물
CN112919905A (zh) 一种无铅压电陶瓷材料及其制备方法
JP2000272963A (ja) 圧電体磁器組成物
CN106064943B (zh) 铋基无铅压电陶瓷及使用该材料的压电执行器
JP2004168603A (ja) 圧電磁器組成物
KR101029027B1 (ko) Bnbt6 압전세라믹스 및 그의 제조방법
CN113233891A (zh) 一种无铅压电陶瓷材料及其制备方法
CN105218092B (zh) 一种同时具备大位移及低滞后的锆钛酸铅基压电陶瓷材料及其制备方法
JP2006265055A (ja) 圧電セラミックスの製造方法
KR20180003277A (ko) 전계유기 변형특성이 우수한 무연 압전 세라믹스의 제조방법
CN107573034B (zh) 一种无铅压电陶瓷的制备方法
KR20040054965A (ko) 무연(無鉛)계 압전세라믹스 및 그 제조방법
JP2001048641A (ja) 圧電磁器組成物
KR20090005765A (ko) 압전재료 및 그 제조 방법
KR20160084898A (ko) 비납계 압전체 제조방법 및 그 제조방법으로 제조된 압전체

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210608