CN112909117B - 一种硅掺杂铈元素红外探测器、制备方法及系统 - Google Patents

一种硅掺杂铈元素红外探测器、制备方法及系统 Download PDF

Info

Publication number
CN112909117B
CN112909117B CN202110086317.1A CN202110086317A CN112909117B CN 112909117 B CN112909117 B CN 112909117B CN 202110086317 A CN202110086317 A CN 202110086317A CN 112909117 B CN112909117 B CN 112909117B
Authority
CN
China
Prior art keywords
silicon wafer
type semiconductor
silicon
cerium
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110086317.1A
Other languages
English (en)
Other versions
CN112909117A (zh
Inventor
凯文·彼得·霍梅伍德
周诗豪
玛侬·达松桑·洛伦索
高云
李�荣
夏晓红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN202110086317.1A priority Critical patent/CN112909117B/zh
Publication of CN112909117A publication Critical patent/CN112909117A/zh
Application granted granted Critical
Publication of CN112909117B publication Critical patent/CN112909117B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明涉及一种硅掺杂铈元素红外探测器、制备方法及系统。该方法包括:通过离子注入的方法在硅片背面中注入砷元素作为二极管的N型半导体,并通过1000℃退火20s;通过离子注入的方法在硅片正面注入硼元素作为二极管的P型半导体,再分向所述P型半导体的耗尽层注入五次铈元素,通过1050℃退火10s;通过氢氟酸腐蚀掉所述硅片表面的二氧化硅,并将所述硅片放入真空镀膜仪中镀上正反面电极,取出后通过快速热退火炉360℃退火2mins;将所述硅片切割成一个个独立器件;采用80℃氢氧化钾溶液浸泡2mins完成刻蚀表面抛光工作,去掉黑蜡得到探测器。本发明在低温下中红外领域具有较高探测率,将硅基光电探测器的探测领域推向近、中红外波段。

Description

一种硅掺杂铈元素红外探测器、制备方法及系统
技术领域
本发明涉及红外探测器的制备领域,特别是涉及一种硅掺杂铈元素红外探测器、制备方法及系统。
背景技术
硅基光电探测器是近紫外光、可见光和超近红外光谱领域的主要选择,但受限于带隙宽度,其截止波长为1.1μm,使得硅基光电探测器无法应用于更长波长的近、中红外领域,也包括常用的通信波段:1.3μm~1.55μm。这一领域被窄带隙半导体材料探测器所占领,如锗或铟镓砷。然而,也正是因为较小的带隙使得这些材料制备的光电探测器随温度的升高有较大的漏电流,导致其在室温下有较低的探测率。同时,锗探测器的性能被其较高的暗电流所限制,铟镓砷探测器很难整合到硅基芯片或器件上,并且这两种材料成本都高。
另一方面,MCT(碲镉汞)探测器凭借其高性能主宰了中红外领域市场,但同样面临原料有毒、需要在超低温下工作才能达到较高的探测率、需要关联硅基读取芯片的问题,这些都导致了其高昂的成本。
所以,可在室温下工作的硅基近、中红外光电探测器,凭借其环境友好、低成本、低暗电流、低功耗且兼容硅基CMOS生产技术等特点,已成为光电探测器领域极具发展前景的研究课题。
发明内容
本发明的目的是提供一种硅掺杂铈元素红外探测器、制备方法及系统,能够使得在室温下工作的硅基近红外光电探测器,同时在低温下中红外领域具有较高探测率,将硅基光电探测器的探测领域推向近、中红外波段。
为实现上述目的,本发明提供了如下方案:
一种硅掺杂铈元素红外探测器包括:N型半导体和P型半导体,所述N型半导体为正方体结构,所述P型半导体为圆柱体结构,所述P型半导体设置在所述N型半导体上,所述P型半导体包含由上至下依次设置的镀铝电极、P型硅片和耗尽层,所述耗尽层与所述N型半导体接触,所述耗尽层内设置有1微米厚的铈离子注入层。
一种硅掺杂铈元素红外探测器的制备方法包括:
通过离子注入的方法在硅片背面中注入砷元素作为二极管的N型半导体,并通过1000℃退火20s;
通过离子注入的方法在硅片正面注入硼元素作为二极管的P型半导体,再分向所述P型半导体的耗尽层注入五次铈元素,形成1微米厚的铈离子注入层,通过1050℃退火10s;
通过氢氟酸腐蚀掉所述硅片表面的二氧化硅,并将所述硅片放入真空镀膜仪中镀上正反面电极,取出后通过快速热退火炉360℃退火2mins;
采用黑蜡保护所述硅片的正面电极及整个所述硅片的背面,将所述硅片切割成一个个独立器件,磁力搅拌机上湿法刻蚀15mins形成圆柱形台面;
采用80℃氢氧化钾溶液浸泡2mins完成刻蚀表面抛光工作,去掉黑蜡得到探测器。
可选地,所述砷元素采用30keV的能量注入元素,注入剂量为2.0x1015离子/平方厘米。
可选地,所述硼元素采用30keV的能量注入元素,注入剂量为1.0x1015离子/平方厘米。
可选地,所述铈元素依次采用2MV的能量注入元素,注入剂量为2.5×1013离子/平方厘米、采用1.4MV的能量注入元素,注入剂量为1.6×1013离子/平方厘米、采用0.95MV的能量注入元素,注入剂量为1.2×1013离子/平方厘米、采用0.6MV的能量注入元素,注入剂量为9×1012离子/平方厘米、采用0.35MV的能量注入元素,注入剂量为6×1012离子/平方厘米的顺序注入耗尽层。
可选地,所述铈离子注入层体积密度为1.6×1016cm-3
一种硅掺杂铈元素红外探测器的制备系统包括:
N型半导体制备模块,用于通过离子注入的方法在硅片背面中注入砷元素作为二极管的N型半导体,并通过1000℃退火20s;
P型半导体制备模块,用于通过离子注入的方法在硅片正面注入硼元素作为二极管的P型半导体,再分向所述P型半导体的耗尽层注入五次铈元素,形成1微米厚的铈离子注入层,通过1050℃退火10s;
电极镀入模块,用于通过氢氟酸腐蚀掉所述硅片表面的二氧化硅,并将所述硅片放入真空镀膜仪中镀上正反面电极,取出后通过快速热退火炉360℃退火2mins;
圆柱形台面制备模块,用于采用黑蜡保护所述硅片的正面电极及整个所述硅片的背面,将所述硅片切割成一个个独立器件,磁力搅拌机上湿法刻蚀15mins形成圆柱形台面;
探测器制备完成模块,用于采用80℃氢氧化钾溶液浸泡2mins完成刻蚀表面抛光工作,去掉黑蜡得到探测器。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明提供一种硅掺杂铈元素红外探测器、制备方法及系统,通过在PN结耗尽层中掺入铈元素,在硅带隙间引入铈元素的多重光谱能级,使吸收探测光时的能级跃迁发生在价带与铈元素能级之间。电子吸收相应波长的激发光跃迁到铈元素相对应的能级,留下空穴复合产生光电流,由于铈元素的4f壳层未充满,产生大量可跃迁能级,使得铈掺杂硅基红外探测器的探测范围达到800nm~5400nm。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明硅掺杂铈元素红外探测器组成结构示意图;
图2为本发明硅掺杂铈元素红外探测器的制备方法流程图;
图3为本发明硅掺杂铈元素红外探测器的制备系统结构图;
图4为硅掺杂铈元素红外探测器不同温度下近红外波段的响应率示意图;
图5为硅掺杂铈元素红外探测器不同温度下中红外波段的响应率示意图;
图6为硅掺杂铈元素红外探测器300K时近红外波段的探测率示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种硅掺杂铈元素红外探测器、制备方法及系统,能够使得在室温下工作的硅基近红外光电探测器,同时在低温下中红外领域具有较高探测率,将硅基光电探测器的探测领域推向近、中红外波段。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明硅掺杂铈元素红外探测器组成结构示意图。如图1所示,一种硅掺杂铈元素红外探测器包括:N型半导体1和P型半导体2,所述N型半导体1为正方体结构,所述P型半导体2为圆柱体结构,所述P型半导体2设置在所述N型半导体1上,所述P型半导体2包含由上至下依次设置的镀铝电极21、P型硅片22和耗尽层23,所述耗尽层23与所述N型半导体1接触,所述耗尽层23内设置有1微米厚的铈离子注入层24。
图2为本发明硅掺杂铈元素红外探测器的制备方法流程图。如图2所示,一种硅掺杂铈元素红外探测器的制备方法包括:
步骤101:通过离子注入的方法在硅片背面中注入砷元素作为二极管的N型半导体,并通过1000℃退火20s。所述砷元素采用2.0×1015cm-2@30keV。
步骤102:通过离子注入的方法在硅片正面注入硼元素作为二极管的P型半导体,再分向所述P型半导体的耗尽层注入五次铈元素,形成1微米厚的铈离子注入层,通过1050℃退火10s。所述硼元素采用1015cm-2@30keV。所述铈元素依次按照2.5×1013cm-2@2MV;1.6×1013cm-2@1.4MV;1.2×1013cm-2@0.95MV;9×1012cm-2@0.6MV;6×1012cm-2@0.35MV的顺序注入耗尽层。所述铈离子注入层体积密度为1.6×1016cm-3
步骤103:通过氢氟酸腐蚀掉所述硅片表面的二氧化硅,并将所述硅片放入真空镀膜仪中镀上正反面电极,取出后通过快速热退火炉360℃退火2mins;
步骤104:采用黑蜡保护所述硅片的正面电极及整个所述硅片的背面,将所述硅片切割成一个个独立器件,磁力搅拌机上湿法刻蚀15mins形成圆柱形台面;
步骤105:采用80℃氢氧化钾溶液浸泡2mins完成刻蚀表面抛光工作,去掉黑蜡得到探测器。
图3为本发明硅掺杂铈元素红外探测器的制备系统结构图。如图3所示,一种硅掺杂铈元素红外探测器的制备系统包括:
N型半导体制备模块201,用于通过离子注入的方法在硅片背面中注入砷元素作为二极管的N型半导体,并通过1000℃退火20s;
P型半导体制备模块202,用于通过离子注入的方法在硅片正面注入硼元素作为二极管的P型半导体,再分向所述P型半导体的耗尽层注入五次铈元素,形成1微米厚的铈离子注入层,通过1050℃退火10s;
电极镀入模块203,用于通过氢氟酸腐蚀掉所述硅片表面的二氧化硅,并将所述硅片放入真空镀膜仪中镀上正反面电极,取出后通过快速热退火炉360℃退火2mins;
圆柱形台面制备模块204,用于采用黑蜡保护所述硅片的正面电极及整个所述硅片的背面,将所述硅片切割成一个个独立器件,磁力搅拌机上湿法刻蚀15mins形成圆柱形台面;
探测器制备完成模块205,用于采用80℃氢氧化钾溶液浸泡2mins完成刻蚀表面抛光工作,去掉黑蜡得到探测器。
图4为硅掺杂铈元素红外探测器不同温度下近红外波段的响应率示意图。可以发现该器件的热猝灭趋势非常低,在通信波段1.3μm处甚至出现响应率随温度升高而增大的现象,在1.55μm处响应率随温度升高先增大后减小,但减小幅度不大,在室温仍有较高的响应率,可实现室温工作。
图5为硅掺杂铈元素红外探测器不同温度下中红外波段的响应率示意图。2800nm和4400nm处的吸收峰分别对应水和二氧化碳的红外吸收,可以发现器件在80K的截止波长在5200nm左右,且具有较高的响应率。
图6为硅掺杂铈元素红外探测器300K时近红外波段的探测率示意图。通信波段1.3μm和1.55μm处的探测率分别为8×107Jones和1.59×107Jones。
实施案例1:
原料:硅片、铈元素、硼元素、砷元素、高纯铝颗粒、甲醇、丙酮、异丙醇、去离子水、氢氟酸、甲苯、黑蜡、硝酸、氢氧化钾和碳酸钠。
通过离子注入的方法在硅片背面中注入砷元素(2.0×1015cm-2@30keV)作为二极管的N型半导体,并通过快速热退火炉1000℃退火20s。通过离子注入的方法在硅片正面注入硼元素(1015cm-2@30keV)作为二极管的P型半导体,再分五次注入铈元素(2.5×1013cm-2@2MV;1.6×1013cm-2@1.4MV;1.2×1013cm-2@0.95MV;9×1012cm-2@0.6MV;6×1012cm-2@0.35MV)至耗尽层,形成1微米厚均匀的铈离子注入层,体积密度为1.6×1016cm-3,最后通过快速热退火炉1050℃退火10s。将硅片切割至合适大小,接下来依次用甲醇、丙酮、异丙醇和去离子水清洗硅片并用氮气枪吹干。用10ml氢氟酸和100ml去离子水配置氢氟酸水溶液浸泡硅片1min腐蚀掉表层二氧化硅,捞出硅片依次用碳酸钠溶液和去离子水清洗,吹干后快速盖上掩膜版放入真空镀膜仪中镀上正反面铝电极。蒸镀时间2mins,膜厚600nm,取出硅片用快速热退火炉360℃退火2mins,升温时间2mins。然后用甲苯溶解黑蜡,用针管涂覆正面电极及整个背面起保护作用,将硅片切割成一个个独立器件,配置湿法刻蚀水溶液,100ml硝酸,50ml去离子水,10ml氢氟酸,在磁力搅拌机上300转速常温将样品放入15mins,形成圆柱形台面。取出后依次用碳酸钠溶液和去离子水清洗,再用30g氢氧化钾和100ml去离子水配置氢氧化钾水溶液,放在加热台上加热至80℃溶液浸泡2mins完成刻蚀表面抛光工作。最后捞出样品用去离子水清洗,再放入甲苯溶液中洗去黑蜡,依次用甲醇、丙酮、异丙醇和去离子水清洗样品吹干后得到探测器。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (7)

1.一种硅掺杂铈元素红外探测器,其特征在于,包括:N型半导体和P型半导体,所述N型半导体为正方体结构,所述P型半导体为圆柱体结构,所述P型半导体设置在所述N型半导体上,所述P型半导体包含由上至下依次设置的镀铝电极、P型硅片和耗尽层,所述耗尽层与所述N型半导体接触,所述耗尽层内设置有1微米厚的铈离子注入层。
2.一种硅掺杂铈元素红外探测器的制备方法,其特征在于,包括:
通过离子注入的方法在硅片背面中注入砷元素作为二极管的N型半导体,并通过1000℃退火20s;
通过离子注入的方法在硅片正面注入硼元素作为二极管的P型半导体,再分向所述P型半导体的耗尽层注入五次铈元素,形成1微米厚的铈离子注入层,通过1050℃退火10s;
通过氢氟酸腐蚀掉所述硅片表面的二氧化硅,并将所述硅片放入真空镀膜仪中镀上正反面电极,取出后通过快速热退火炉360℃退火2mins;
采用黑蜡保护所述硅片的正面电极及整个所述硅片的背面,将所述硅片切割成一个个独立器件,磁力搅拌机上湿法刻蚀15mins形成圆柱形台面;
采用80℃氢氧化钾溶液浸泡2mins完成刻蚀表面抛光工作,去掉黑蜡得到探测器。
3.根据权利要求2所述的硅掺杂铈元素红外探测器的制备方法,其特征在于,所述砷元素采用30keV的能量注入元素,注入剂量为2.0x1015离子/平方厘米。
4.根据权利要求2所述的硅掺杂铈元素红外探测器的制备方法,其特征在于,所述硼元素采用30keV的能量注入元素,注入剂量为1.0x1015离子/平方厘米。
5.根据权利要求2所述的硅掺杂铈元素红外探测器的制备方法,其特征在于,所述铈元素依次采用2MV的能量注入元素,注入剂量为2.5×1013离子/平方厘米、采用1.4MV的能量注入元素,注入剂量为1.6×1013离子/平方厘米、采用0.95MV的能量注入元素,注入剂量为1.2×1013离子/平方厘米、采用0.6MV的能量注入元素,注入剂量为9×1012离子/平方厘米、采用0.35MV的能量注入元素,注入剂量为6×1012离子/平方厘米的顺序注入耗尽层。
6.根据权利要求2所述的硅掺杂铈元素红外探测器的制备方法,其特征在于,所述铈离子注入层体积密度为1.6×1016cm-3
7.一种硅掺杂铈元素红外探测器的制备系统,其特征在于,包括:
N型半导体制备模块,用于通过离子注入的方法在硅片背面中注入砷元素作为二极管的N型半导体,并通过1000℃退火20s;
P型半导体制备模块,用于通过离子注入的方法在硅片正面注入硼元素作为二极管的P型半导体,再分向所述P型半导体的耗尽层注入五次铈元素,形成1微米厚的铈离子注入层,通过1050℃退火10s;
电极镀入模块,用于通过氢氟酸腐蚀掉所述硅片表面的二氧化硅,并将所述硅片放入真空镀膜仪中镀上正反面电极,取出后通过快速热退火炉360℃退火2mins;
圆柱形台面制备模块,用于采用黑蜡保护所述硅片的正面电极及整个所述硅片的背面,将所述硅片切割成一个个独立器件,磁力搅拌机上湿法刻蚀15mins形成圆柱形台面;
探测器制备完成模块,用于采用80℃氢氧化钾溶液浸泡2mins完成刻蚀表面抛光工作,去掉黑蜡得到探测器。
CN202110086317.1A 2021-01-22 2021-01-22 一种硅掺杂铈元素红外探测器、制备方法及系统 Active CN112909117B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110086317.1A CN112909117B (zh) 2021-01-22 2021-01-22 一种硅掺杂铈元素红外探测器、制备方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110086317.1A CN112909117B (zh) 2021-01-22 2021-01-22 一种硅掺杂铈元素红外探测器、制备方法及系统

Publications (2)

Publication Number Publication Date
CN112909117A CN112909117A (zh) 2021-06-04
CN112909117B true CN112909117B (zh) 2022-08-02

Family

ID=76118687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110086317.1A Active CN112909117B (zh) 2021-01-22 2021-01-22 一种硅掺杂铈元素红外探测器、制备方法及系统

Country Status (1)

Country Link
CN (1) CN112909117B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870131A (ja) * 1994-08-29 1996-03-12 Nec Corp 赤外線検出器の製造方法
US5936268A (en) * 1988-03-29 1999-08-10 Raytheon Company Epitaxial passivation of group II-VI infrared photodetectors
KR100670828B1 (ko) * 2005-12-12 2007-01-19 한국전자통신연구원 적외선 레이저 레이다의 영상 신호를 검출하기 위한 광검출기 및 그 제조방법
WO2007120443A2 (en) * 2006-03-27 2007-10-25 Los Alamos National Security, Llc Nanocomposite scintillator, detector, and method
CN101578534A (zh) * 2007-01-05 2009-11-11 皇家飞利浦电子股份有限公司 快速辐射探测器
CN103137768A (zh) * 2013-02-07 2013-06-05 湖北大学 一种双吸收层pin结构光伏器件及制备方法
CN103681937A (zh) * 2013-11-21 2014-03-26 中国科学院上海技术物理研究所 基于光子晶体限光效应的焦平面探测器结构的设计方法
CN105115599A (zh) * 2015-08-17 2015-12-02 电子科技大学 一种基于MEMS微结构硅的Si-PIN四象限光电探测器及其制备方法
WO2019040486A1 (en) * 2017-08-24 2019-02-28 Board Of Regents, The University Of Texas System MEDIUM INFRARED DETECTOR USING HIGHLY DOPED REAR PANEL FOR SENSOR STRUCTURE
CN109997234A (zh) * 2016-11-24 2019-07-09 Lg伊诺特有限公司 半导体元件和包括该半导体元件的半导体元件封装
CN111916513A (zh) * 2020-08-21 2020-11-10 合肥的卢深视科技有限公司 红外探测器、红外成像仪及红外探测器的制备方法
CN111916512A (zh) * 2020-08-21 2020-11-10 合肥的卢深视科技有限公司 红外探测器、红外成像仪及红外探测器的制备方法
CN112216710A (zh) * 2020-10-12 2021-01-12 北京智创芯源科技有限公司 红外焦平面探测器芯片及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936268A (en) * 1988-03-29 1999-08-10 Raytheon Company Epitaxial passivation of group II-VI infrared photodetectors
JPH0870131A (ja) * 1994-08-29 1996-03-12 Nec Corp 赤外線検出器の製造方法
KR100670828B1 (ko) * 2005-12-12 2007-01-19 한국전자통신연구원 적외선 레이저 레이다의 영상 신호를 검출하기 위한 광검출기 및 그 제조방법
WO2007120443A2 (en) * 2006-03-27 2007-10-25 Los Alamos National Security, Llc Nanocomposite scintillator, detector, and method
CN101578534A (zh) * 2007-01-05 2009-11-11 皇家飞利浦电子股份有限公司 快速辐射探测器
CN103137768A (zh) * 2013-02-07 2013-06-05 湖北大学 一种双吸收层pin结构光伏器件及制备方法
CN103681937A (zh) * 2013-11-21 2014-03-26 中国科学院上海技术物理研究所 基于光子晶体限光效应的焦平面探测器结构的设计方法
CN105115599A (zh) * 2015-08-17 2015-12-02 电子科技大学 一种基于MEMS微结构硅的Si-PIN四象限光电探测器及其制备方法
CN109997234A (zh) * 2016-11-24 2019-07-09 Lg伊诺特有限公司 半导体元件和包括该半导体元件的半导体元件封装
WO2019040486A1 (en) * 2017-08-24 2019-02-28 Board Of Regents, The University Of Texas System MEDIUM INFRARED DETECTOR USING HIGHLY DOPED REAR PANEL FOR SENSOR STRUCTURE
CN111916513A (zh) * 2020-08-21 2020-11-10 合肥的卢深视科技有限公司 红外探测器、红外成像仪及红外探测器的制备方法
CN111916512A (zh) * 2020-08-21 2020-11-10 合肥的卢深视科技有限公司 红外探测器、红外成像仪及红外探测器的制备方法
CN112216710A (zh) * 2020-10-12 2021-01-12 北京智创芯源科技有限公司 红外焦平面探测器芯片及其制备方法

Also Published As

Publication number Publication date
CN112909117A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
US4206003A (en) Method of forming a mercury cadmium telluride photodiode
JP6082060B2 (ja) トンネル誘電体層を伴う太陽電池の製造方法
Hansen Silicon UV-photodiodes using natural inversion layers
US4616247A (en) P-I-N and avalanche photodiodes
KR101155343B1 (ko) 백 콘택 태양전지의 제조 방법
JP2015111716A (ja) ポリシリコンエミッタ太陽電池のためのパターン化ドーピング
US7811913B2 (en) Method of fabricating a low, dark-current germanium-on-silicon pin photo detector
CN110676333B (zh) 一种单光子Si-APD探测器及其制造方法
KR20130062775A (ko) 태양 전지 및 이의 제조 방법
CN102931287A (zh) 一种n型电池片及其制备方法
CN108352413B (zh) 双面电池制造方法
CN112909117B (zh) 一种硅掺杂铈元素红外探测器、制备方法及系统
WO2023221714A1 (zh) 一种δ掺杂层制备方法及电子器件
Hu et al. Dependence of the optoelectronic properties of selenium-hyperdoped silicon on the annealing temperature
DOĞANCI et al. Fabrication and characterization of Si-PIN photodiodes
CN111739963B (zh) 一种硅基宽光谱光电探测器的制备方法
KR102502561B1 (ko) Uv-ir 영역에 대한 수광성능이 개선된 수광소자의 구조 및 그 제조방법
JP2014072293A (ja) 裏面電極型太陽電池、及び裏面電極型太陽電池の製造方法
US4003759A (en) Ion implantation of gold in mercury cadmium telluride
KR100416739B1 (ko) 실리콘 태양전지의 제조방법
US20120322192A1 (en) Method of defect reduction in ion implanted solar cell structures
JP2020123637A (ja) 太陽電池セルおよびその製造方法並びに太陽電池モジュール
TW201138145A (en) Self-aligned ion implantation for IBC solar cells
KR20050121090A (ko) 핑거형 확산층을 갖는 반도체장치와 그 제조방법
KR101788012B1 (ko) 태양전지의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant