CN112899292A - Upland cotton plant height regulating gene GhGA20ox6 and its use - Google Patents

Upland cotton plant height regulating gene GhGA20ox6 and its use Download PDF

Info

Publication number
CN112899292A
CN112899292A CN202110162359.9A CN202110162359A CN112899292A CN 112899292 A CN112899292 A CN 112899292A CN 202110162359 A CN202110162359 A CN 202110162359A CN 112899292 A CN112899292 A CN 112899292A
Authority
CN
China
Prior art keywords
ghga20ox6
gene
upland cotton
plant height
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110162359.9A
Other languages
Chinese (zh)
Other versions
CN112899292B (en
Inventor
喻树迅
冯震
李黎贝
杨炳磊
刘林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang A&F University ZAFU
Original Assignee
Zhejiang A&F University ZAFU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang A&F University ZAFU filed Critical Zhejiang A&F University ZAFU
Priority to CN202110162359.9A priority Critical patent/CN112899292B/en
Publication of CN112899292A publication Critical patent/CN112899292A/en
Application granted granted Critical
Publication of CN112899292B publication Critical patent/CN112899292B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/11Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with 2-oxoglutarate as one donor, and incorporation of one atom each of oxygen into both donors (1.14.11)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses a upland cotton plant height regulating gene GhGA20ox6 and application thereof, wherein the gene has the nucleotide sequence shown in SEQ ID NO: 1. By regulating GhGA20ox6, the plant height of upland cotton can be regulated and controlled at molecular level, so that upland cotton can be improved and dwarfed, and the upland cotton has strong lodging-resistant capability, and the utilization rate of the group light energy of crops can be increased, so that the yield of the crops can be increased.

Description

Upland cotton plant height regulating gene GhGA20ox6 and its use
Technical Field
The invention relates to the technical field of genetic engineering, in particular to a upland cotton plant height regulating gene GhGA20ox6 and application thereof.
Background
Gibberellin (Gibberellin, GA) asOne of six plant hormones, namely a tetracyclic diterpenoid plant hormone plays an important role in each growth and development stage of plants, and plays an important role in seed germination, root cap elongation, flowering and fruiting, stem elongation, leaf growth and development and the like. In higher plants, various enzymes are involved in the biosynthesis and metabolism of gibberellin through a multi-step enzymatic reaction, and the expression of these enzyme genes is effective in regulating the anabolic rate of gibberellin. There are many enzymes involved in gibberellin anabolism, GA2-oxidase (GA2-oxidase) is a key enzyme in the degradation of GA in plants, and GA2ox can decompose and inactivate GAs active in plants and their precursors and intermediates, thereby maintaining the homeostasis between the active GAs in plants. GA3-oxidase (GA3-oxidase) and GA20-oxidase (GA20-oxidase) as key enzymes in the last step of plant gibberellin anabolic pathway to catalyze GA12And GA53Conversion to active GA1And GA4In addition, GA3ox and GA20ox in turn regulate negative feedback of active GAs within the receptor. The plant gibberellin oxidase gene family belongs to the 2OG-Fe (II) oxidase subfamily and can be coded by a polygene family. To date, the gibberellin synthesis and metabolic pathways of the model plant Arabidopsis thaliana have been well studied, and gibberellin-related genes have also been cloned and identified. Researches show that the 'green revolution' of the current main crops has close relationship with gibberellin. In plants, gibberellin participates in the regulation of the growth and development of plants, the advantages of promoting stem elongation and plant height increase are that, for example, in rice, through cloning and gene silencing of GA20ox related genes, the genes are found to influence the stem length of the rice, and then the rice is caused to have a dwarf phenotype, and researches of Mauriat et al find that the GA20ox related genes influence the stem elongation of populus tremuloides, and GA20ox related gene expression is enhanced on populus tremuloides seedlings, so that the gibberellin promotes the synthesis of active gibberellin in seedlings.
Cotton, the most important natural fiber source in the world, is one of the most widely cultivated cotton species in the world and remains an important commercial crop in many countries. The plant height is an important excellent agronomic character in crop breeding, and the lodging phenomenon can be generated when the plant is too high, so that the yield of the crops is reduced, the dwarfing of the plant can have stronger lodging resistance, the group light energy utilization rate of the crops can be improved, and the yield of the crops can be improved. Upland cotton (g.hirsutum l., AADD) has A, D subgenomic groups, and at present, in agriculture, plant height is basically controlled by castration and topping, which increases labor force and working time. The improvement of the upland cotton on the molecular level has important significance.
Disclosure of Invention
The invention aims to provide an upland cotton plant height regulating gene GhGA20ox6 and application thereof, wherein the upland cotton plant height can be regulated and controlled from a molecular level by regulating GhGA20ox6, so that upland cotton is improved and dwarfed, the upland cotton has stronger lodging resistance, the group light energy utilization rate of crops is improved, and the yield of the crops is increased.
The technical scheme adopted by the invention for solving the technical problems is as follows:
an upland cotton plant height regulatory gene GhGA20ox6, which has the nucleotide sequence shown in SEQ ID NO: 1.
Through research and study, the inventor screens the whole genome of the gossypium hirsutum for the first time to obtain 13 candidate genes, then further researches and analyses the candidate genes, finds and determines a key gene GhGA20ox6 for regulating the plant height of the gossypium hirsutum, and verifies the functions of the key gene GhGA20ox 6. The discovered functional gene is utilized to regulate and control the plant height of upland cotton from the molecular level, thereby improving upland cotton germplasm resources.
A plasmid comprising the upland cotton plant height-regulating gene GhGA20ox6 according to claim 1.
A plant expression vector comprising the upland cotton plant height regulatory gene GhGA20ox6 according to claim 1.
A host cell comprising the upland cotton plant height-regulating gene GhGA20ox6 according to claim 1.
A protein encoded by a gossypium hirsutum plant height regulatory gene GhGA20ox6, which has the amino acid sequence shown in SEQ ID NO: 14, or a pharmaceutically acceptable salt thereof.
An application of a gossypium hirsutum plant height regulating gene GhGA20ox6 in regulating the height of gossypium hirsutum.
A method for dwarfing upland cotton features that the plant height of upland cotton is reduced by silencing the plant height regulating gene GhGA20ox 6.
The invention has the beneficial effects that: by regulating GhGA20ox6, the plant height of upland cotton can be regulated and controlled at molecular level, so that upland cotton can be improved and dwarfed, and the upland cotton has strong lodging-resistant capability, and the utilization rate of the group light energy of crops can be increased, so that the yield of the crops can be increased.
Drawings
FIG. 1 shows the expression levels of the GhGA20ox6 gene in different tissues of upland cotton.
FIG. 2 is the subcellular localization of GhGA20ox6 in Nicotiana benthamiana; 35S, GhGA20ox6, GFP (A-C), 35S, GFP (D-F) subcellular localization in Nicotiana benthamiana leaf cells. A. D: epidermal cells under 488nm laser; B. e: epidermal cells under bright field; C. f: laser and bright field combined epidermal cells, 20 μm scale.
FIG. 3 is the positive control (CLCrVA:: PDS), VIGS plant (Line1, Line2 and Line3) and empty vector control (CLCrVA) phenotypes.
FIG. 4 shows plant height and internode length of VIGS positive plants and control group; p <0.05, P < 0.01.
FIG. 5 shows the relative expression level of GhGA20ox6 in different internodes between VIGS positive strain and control group; p <0.05, P < 0.01.
FIG. 6 is the phenotype of wild type Arabidopsis and GhGA20ox6 transgenic Arabidopsis. Note: a is Col-0 and positive strain rosette leaf phenotype; B. c is Col-0 and the height phenotype of the positive strain.
Figure 7 is the expression level of GhGA20ox6 in transgenic arabidopsis thaliana,. P < 0.01; the reference gene is AtUBQ 10.
Detailed Description
The technical solution of the present invention will be further specifically described below by way of specific examples.
In the present invention, the raw materials and equipment used are commercially available or commonly used in the art, unless otherwise specified. The methods in the following examples are conventional in the art unless otherwise specified.
Example (b):
1 materials and methods
1.1 Experimental materials and treatment
Upland cotton (G.hirsutum L., AADD) TM-1 material is selected for analyzing tissue expression quantity, planted in a greenhouse of Pingshan base of Zhejiang agriculture and forestry university (Hangzhou city Lingan area in Zhejiang province), and managed by adopting a conventional field mode.
The Nicotiana benthamiana is selected for gene transient transformation, planted in 16 climate rooms of Zhejiang agriculture and forestry university, and under the environmental conditions: the illumination is 16h, and the darkness is 8 h; the temperature is 23 ℃; the relative humidity is 70-75%.
Selecting upland cotton TM-1 material to perform VIGS phenotype statistics and gene expression analysis, planting in 16 climate rooms of Zhejiang agriculture and forestry university, and performing temperature conditions: the illumination is 16h, and the darkness is 8 h; the temperature is 24 ℃; the relative humidity is 65-70%.
A transgenic overexpression experiment is carried out by utilizing Arabidopsis thaliana (Arabidopsis thaliana) col wild type material, and the wild type material is planted in a 16-climate chamber of Zhejiang university of agriculture and forestry under the temperature condition: the temperature is 25 ℃; the illumination is 16h, and the darkness is 8 h; the relative humidity is 65-70%.
The materials used are all from the cotton breeding laboratory of Zhejiang agriculture and forestry university.
1.2 vectors and reagents used
The transgene expression vectors pBI121, pBINGFP4 and the cotton crinkle leaf virus vectors pCLCrVA (empty vector), pCLCrVB (helper vector) and pCLCrVA-PDS (positive control vector) were stored in the laboratory. Escherichia coli DH 5. alpha. and Agrobacterium tumefaciens strain GV3101 were purchased from Shanghai unique organisms, Inc. Restriction enzymes XbaI, SpeI, SacI were purchased from TaKaRa (China, Dalian) and AscI was purchased from NEB. The RNA extraction kit and the plasmid extraction kit are purchased from Tiangen Biotechnology (Beijing) Co., Ltd. Gene cloning vector pMD18-T, MightyAmp Hi-Fi enzyme, PrimeScriptTMRT reagent Kit with gDNA Eraser reverse transcription Kit, DNA fragment purification Kit and fluorescent reagent TB
Figure BDA0002935958890000031
Premix Ex TaqTMII was purchased from TaKaRa Inc. (Dalian, China). 2-morpholinoethanesulfonic acid, acetosyringone and 1/2MS solid medium were purchased from Yuansha, Inc., and the synthesis of primers and gene sequencing were performed by Youkang Biotech, Inc., Hangzhou. The sequences of the primers used in this experiment are shown in Table 1.
Primer sequences used in Table 1
Figure BDA0002935958890000032
Figure BDA0002935958890000041
Note: the restriction sites are underlined.
1.3 extraction of RNA and Synthesis of cDNA
According to the instruction of the RNAprep Pure polysaccharide polyphenol plant total RNA extraction kit (DP441), 9 tissue RNAs of 15DPA fibers, ovules, flowers, sepals, terminal buds, stems, leaves, pistils and stamens of TM-1 are extracted, and the tissue RNAs are subjected to reverse transcription by using a reverse transcription kit to synthesize single-stranded cDNA.
1.4 GhGA20ox6 Gene clone
The upland cotton genome database released by the university of agriculture in Huazhong was downloaded from (A), (B), (C), (https://cottonfgd.org/) And constructing a local Blast database, and screening to obtain 13 candidate genes, wherein the 13 candidate genes are respectively as follows: GhGA20ox1(SEQ ID NO: 2), GhGA20ox3(SEQ ID NO: 3), GhGA20ox4(SEQ ID NO: 4), GhGA20ox5(SEQ ID NO: 5), GhGA20ox6(SEQ ID NO: 1), GhGA20ox7(SEQ ID NO: 7), GhGA20ox8(SEQ ID NO: 8), GhGA20ox9(SEQ ID NO: 9), GhGA20ox10(SEQ ID NO: 10), GhGA20ox11(SEQ ID NO: 11), GhGA20ox12(SEQ ID NO: 12), GhGA20ox13(SEQ ID NO: 13).
Through further exploration tests, a GhGA20ox6 gene with high expression level in stems is finally obtained, specific primers GhGA20ox6-F and GhGA20ox6-R are designed, cDNA of stem tissues of TM-1 materials is used as a template for amplification of GhGA20ox6, the obtained fragments are connected to a pMD18-T vector, recombinant plasmids are transformed into escherichia coli DH5 alpha, and the single clone bacterial liquid with correct sequencing is stored for subsequent laboratories.
1.5 bioinformatic analysis of GhGA20ox6
The obtained GhGA20ox6 protein sequence was extracted with ExPASy (C: (B))https://web.expasy.org/ protparam/) The online analysis website predicts the physicochemical properties of the protein, including the length, isoelectric point and molecular mass of the protein. The amino acid sequence of the target gene was analyzed for conservation using DNAMAN. The conserved domain of GhGA20ox6 was obtained using SMART online website.
1.6 GhGA20ox6 spatial pattern expression
According to TB
Figure BDA0002935958890000051
Premix Ex TaqTMThe reaction system and the corresponding program of the II kit carry out Real-time quantitative fluorescence PCR (Real-time quantitative PCR, RT-PCR), the model of the instrument is Roche LightCycler 96, and the operation method is carried out according to the instruction of the instrument. The quantitative primers used are GhGA20ox6-qF and GhGA20ox6-qR, and the Actin7 gene is selected as the reference gene of cotton. By use of 2-△△CtThe method analyzes the relative expression quantity of the gene, ensures 3 times of biological and technical repetition, and analyzes and draws a gene relative expression graph by using Excel and Graphpad software.
1.7 subcellular localization of GhGA20ox6
The target gene fragment is connected to a GFP fluorescent protein vector by using a pair of primers, namely GhGA20ox6-SF and GhGA20ox6-SR, and the constructed over-expression vector 35S, GhGA20ox6, GFP is transformed into an agrobacterium strain GV3101 by using an agrobacterium transformation method. According to the instant transformation method of Nicotiana benthamiana, the Agrobacterium liquid is injected into tobacco leaves cultured for 20 days. And (3) carrying out dark treatment on the infected tobacco leaves for 10 hours, and observing GFP cell position signals in the tobacco leaves under an LSM880 confocal microscope after culturing for 28 hours.
1.8 construction and infection of Virus-induced Gene silencing Vector (VIGS)
And (3) putting full seeds of the TM-1 material on the seedling raising blocks until two cotyledons are completely opened. The enzyme cutting primer GhGA20ox6-VF and GhGA20ox6-VR is used for recombining partial gene fragment of GhGA20ox6 with pCLCrVA virus vector, the constructed vectors pCLCrVA-GhGA20ox6, pCLCrVA-pCLCrVB and PDS-pCLCrVB are transferred to agrobacterium CV3101, and the agrobacterium liquid is injected into the cotyledon with consistent growth potential, dark treatment is carried out for 24 hours, and then the cotyledon is placed into a climatic chamber for normal culture. Observing and recording the change between six leaf stages and the total length, taking stem tissues to detect the gene expression amount, and verifying the silencing effect.
1.9 transgenic Arabidopsis overexpression
Transferring the pBI121-GhGA20ox6 overexpression vector with correct sequencing into the GV3101 agrobacterium strain for amplification, transforming colarabidopsis thaliana with pod-bearing siliques cut off by using an agrobacterium flower dipping transformation method, and performing dark treatment for 20h in a climatic chamber to obtain seeds T0And (5) seed generation. Will T0Subculturing the seeds until the seeds are pure and the generation is complete. Observing and recording the flowering period and height difference of the transgenic arabidopsis thaliana of the homozygous generation, and detecting the gene expression quantity of the GhGA20ox6 in the transgenic arabidopsis thaliana.
2 results and analysis
2.1 sequence analysis of the GhGA20ox6 Gene
GhGA20ox6 is located on chromosome 9 of subgroup D, and has an open reading frame of 1155bp, an amino acid sequence of 384 nucleotides in length (SEQ ID NO: 14), 2 introns and 3 exons. The relative molecular mass of the GhGA20ox6 protein sequence is predicted to be 42.32kDa by using ExPASy online software, and the isoelectric point is 6.37. The DIOX _ N domain is located at amino acid sequences 63-172, and the 2OG-Fe (II) oxidase domain is located at amino acid sequence 228-323. The amino acid sequence analysis of the proteins corresponding to the 13 candidate genes shows that the proteins corresponding to the 13 candidate genes including the GhGA20ox6 all have a common conserved protein sequence: the highly conserved motif LPWKET associated with substrate binding, the conserved sequence NYPXCQKP associated with binding 2-ketoglutarate, all have Fe2+A binding site.
2.2 spatial expression Pattern analysis of the GhGA20ox6 Gene
To study the tissue expression characteristics of GhGA20ox6, the expression level of the GhGA20ox6 in 9 tissues of TM-1 upland cotton material 15DPA fiber, ovule, flower, sepal, terminal bud, stem, leaf, pistil and stamen was analyzed by qRT-PCR method. The results show that: in these 9 tissues, GhGA20ox6 was predominantly expressed in the stem, whereas the expression level was lower in both ovule and flower tissues (fig. 1). It is further speculated that GhGA20ox6 functions during the growth and development of the stem.
2.3 subcellular localization analysis of GhGA20ox6 protein
The protein sequence of GhGA20ox6 is shown in WoLF PSORT (https://wolfpsort.hgc.jp/) Subcellular localization prediction was performed on online software, and results showed localization at cell membranes. To verify whether the GhGA20ox6 protein was localized on the cell membrane, leaf cells of Nicotiana benthamiana were transiently expressed with GhGA20ox6 (FIG. 2). The results showed that there was a bright green distribution in the cell membrane, indicating that there was a large amount of green fluorescence signal in the cell membrane, consistent with the predicted results, indicating that the GhGA20ox6 protein is a membrane localization protein.
2.4 phenotypic Observation and expression level analysis of the GhGA20ox6 Gene after silencing
Cotton plants of the positive control pCLCrVA-PDS exhibited the albino phenotype, and cotton plants of pCLCrVA-GhGA20ox6 exhibited different degrees of shortening between the internodes of the stem compared to the control group (FIG. 3), and the plant height data were plotted as a histogram (FIG. 4). The results show that the height of the positive strain subjected to virus-induced gene silencing is obviously reduced, the length of the first internode and the length of the third internode are slightly shortened, and the length of the second internode, the length of the fourth internode and the length of the sixth internode are obviously shortened, which indicates that GhGA20ox6 silencing can cause dwarfing of the strain type. The level of the expression level of the GhGA20ox6 between the six sections was determined, and the real-time fluorescence quantitative results showed that the expression level of the GhGA20ox6 between the first section and the third section was not significantly different from that of the inoculated no-load control group, and the expression level of the GhGA20ox6 between the second section, the fourth section, the fifth section and the sixth section was significantly different from that of the control group (FIG. 5). Silencing of the GhGA20ox6 gene is presumed to result in shortening between different nodes of the stem.
2.5 functional verification of GhGA20ox6 Gene in Arabidopsis thaliana
Under long-day conditions, wild-type and transgenic Arabidopsis thaliana were grown simultaneously and growth was observed (FIG. 6). The results show that the wild type arabidopsis started bolting 22 days after seedling transplantation, the average bolting time was 25 days, the transgenic arabidopsis started bolting 18 days after seedling transplantation, the average bolting time was 20 days, and the bolting time was significantly earlier than that of the control wild type. The average plant height of the transgenic arabidopsis lines was about 31cm, which was significantly higher than the control group arabidopsis, and the number of rosette leaves of the transgenic arabidopsis was also significantly increased (table 2). The stem of transgenic arabidopsis is sampled, RNA is extracted, the expression condition of the GhGA20ox6 gene in the stem of arabidopsis is detected (figure 7), the GhGA20ox6 in the transgenic arabidopsis is highly expressed, the condition that a 35S promoter drives the transfer of an exogenous gene is met, the GhGA20ox6 is integrated on the chromosome of arabidopsis, and the GhGA20ox6 gene promotes the growth of the stem.
TABLE 2 bolting time, plant height and rosette leaf number statistics for wild type and transgenic Arabidopsis thaliana
Material Plant height Number of rosette leaves Bolting time
Materials Plant height(cm) Number of rosette leaves Bolting time(d)
WT 24.00+0.26 9.90+0.26 25.44+0.71
Line1 31.46+0.47** 11.80+0.21** 20.22+0.70**
Line2 30.21+0.29** 11.55+0.17** 20.56+0.56**
Line3 29.67+0.35** 11.40+0.18** 20.67+0.60**
3. Discussion of the related Art
The gibberellin 20 oxidase family plays an important role in the growth and development of plants and environmental adaptation, and is an important key enzyme for synthesizing active gibberellin in plants.
The invention clones 1 gibberellin oxidase gene GhGA20ox6 from TM-1 land cotton material, and through amino acid multiple sequence comparison, finds that the GhGA20ox6 protein sequence has highly conserved motif LPWKET combined with substrate, conserved sequence NYXYXCQKP related to combined 2-ketoglutarate, and the GhGA20ox6 gene has obvious difference in expression level in different TM-1 tissues and higher expression level in stem tissues. The GhGA20ox6 gene is considered to be involved in the growth and development of cotton stems, and influences the plant height trait.
At present, the plant height is basically controlled by castration and topping in agriculture, so that on one hand, labor force is increased, and the working time is prolonged. By using VIGS experiments and transgenic overexpression experiments, the research on the expression level of the GhGA20ox6 gene in plants on a molecular level proves that the GhGA20ox6 gene plays a role in regulating and controlling the plant height traits of the plants.
4. Conclusion
The invention clones GhGA20ox6 gene from stem of upland cotton material TM-1 by T-A cloning method, and the GhGA20ox6 gene has 2OG-Fe (II) oxidative gene and DIOX _ N structural domain by amino acid sequence analysis. The cDNA of the GhGA20ox6 gene is 1155bp, and codes 384 amino acids. Subcellular localization prediction and experimental results show that both localize to the cell membrane. The expression level of TM-1 shows that the GhGA20ox6 gene has obvious tissue specificity and the highest expression level in stem. The VIGS experiment results show that the silencing of the GhGA20ox6 gene in cotton enables different stem nodes of the cotton to have dwarfing phenotypes of different degrees compared with a control group, and the expression level of the GhGA20ox6 gene between different nodes is reduced in different degrees. The results of heterologous overexpression of the transgenic arabidopsis show that compared with the wild type, the transgenic arabidopsis has the advantages of increased rosette leaf number, advanced bolting time and obvious increase of plant height, and the GhGA20ox6 gene plays an important role in plant height and shape.
The above-described embodiments are only preferred embodiments of the present invention, and are not intended to limit the present invention in any way, and other variations and modifications may be made without departing from the spirit of the invention as set forth in the claims.
Sequence listing
<110> Zhejiang agriculture and forestry university
<120> upland cotton plant height regulatory gene GhGA20ox6 and use thereof
<130> 2021.02
<160> 28
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1155
<212> DNA
<213> upland cotton (G.hirsutum L.)
<400> 1
atgtctctct ctgtcttaat ggattcaggt tctccaacca ttcttttaca tccatccata 60
gaaccaagag atgagacggg tggtgtcctt tttgacccat ccaagttgca aaaccaatca 120
agtttaccct cagagttcat atggccatgt ggggacttgg ttcacaccca agaagagctt 180
aacgaaccat tgatagactt gggcgggttc atcaaaggag acgaagaagc tactgcacat 240
gcagtgggcc ttgttaagac tgcctgttct aaacatggtt tcttccaagt tacaaaccat 300
ggtgttgatt caaaccttat ccaagctgct taccaagaga ttgatgctgt gtttaagtta 360
ccccttaaca agaagctaag tttccaaaga aagcctggtg gtttttcagg ctattctgct 420
gcccatgctg accggttttc cgctaagttg ccatggaagg aaacattttc ttttggctac 480
caaggactta actccgatcc ttctgtggtt cattatttca gctctgcctt gggggaagat 540
tttgagcaaa ccgggtggat ttaccaaaag tattgtgaaa agatgaggga gctgtcgcta 600
ctgatattcg aactgttggc aatcagcttg gggatagatc gtttacacta cagaaaattt 660
ttcgaagatg ggaattcaat aatgaggtgt aattactatc ccccatgcaa taattctggc 720
ctcacccttg gcactggccc tcactctgat cctacttcct taacaattct tcaccaagat 780
caagtgggag ggctcgaagt tttcaacaat aacaaatggt atgctgttcg acctcgacaa 840
gatgcctttg tcattaacat tggtgatact ttcatggcat tatgtaacgg aagatacaag 900
agttgcctgc atagagcagt ggtgaacaag gagagggaga ggagatcatt ggtatacttt 960
gtgtgcccaa aagaagacaa aatagtgaga cccccacaag atctaatgtg cagatcagga 1020
gggccaagag tgtatcctga tttcacatgg tctgatttgt tggaattcac tcaaaatcac 1080
tatagagctg acgttgctac actccaaagc ttcttccctt ggctcctttc ttctaaccct 1140
acttccaact tctag 1155
<210> 2
<211> 1140
<212> DNA
<213> upland cotton (G.hirsutum L.)
<400> 2
atggcaattg attgcgtttc caagataccc tccatgcctc atcatcctaa agatgaaaaa 60
agagaggagc aaaaacaact ggtttttgat gcctcggtgc ttaaatacca acccgacata 120
ccaaaacaat ttatatggcc cgaccacgaa aagcctaatg ttaatgcacc agaactccaa 180
gtgccattca ttgacctagg agggttcctt tccggtgacc ctgtttctgc aatggaagca 240
tcgaggctgg tcggcgaggc atgtcggcag catggtttct tccttgtggt taatcatgga 300
gtggatgcaa cactggtggc tgatgctcac agttatatgg gtaacttctt tgaattgcca 360
ctcaatgata agcaaagggc tcagaggaaa cttggtgagc actgtggata tgctagtagc 420
ttcactggta gattctcctc caagctgcca tggaaggaaa cgctttcctt ccggtattca 480
gctgacaaaa agtcatccaa gattgttgaa gactaccttg atggcaaatt gggagatgaa 540
ttcaagcatt tcgggagggt ttaccaagat tactgcgagg caatgagcaa gctatctcta 600
gggataatgg agctattagc cattagtctt ggcgtaggaa gatcacattt cagggaattt 660
ttcgaggaaa atgaatcaat aatgaggctg aattactacc caccatgcca aaaaccagac 720
ctcactttag gaacagggcc tcattgcgat ccaacctcat taaccatcct tcaccaagac 780
cgagttggtg gtcttcaagt gtttgtagac aatgaatggc gttcaattag cccaaatgtc 840
gaagcatttg tcgttaacat tggcgacacc ttcatggcac tttcaaatgg gcgatacaag 900
agttgcttgc accgggcagt ggtgaaccgc cacatcccaa gaaaatctct ggctttcttc 960
ctatgtccca agggtgataa agtggtagcc ccaccaacag agttggtcga cgcctataat 1020
cccagagtat atccagattt tacttggcct atgctgcttg aattcacaca aaagcattat 1080
agagctgata tgaacacact tgaagtcttc tcaaactggg ttcaacagag aaacagctga 1140
<210> 3
<211> 1257
<212> DNA
<213> upland cotton (G.hirsutum L.)
<400> 3
atgataccaa ataatttgat aatagcttgt aatgggagtc tattacctat atttaatgca 60
actctctcac cttcttgccc tacgtccaca tacactgtct tcctaatgga ttcaacgcat 120
ctcctttcct ctccgcttga gattcaagat caaacactag ttgaccatca tagttcttct 180
atcggctcat cttttctcca aaaccaaacc aacgtcccca aagaatttct ttggcccaaa 240
gttgatttag ttaatgctca tcaagagctg ttggagccac ttgtagatct tgaacgcttc 300
tttagaggtg atgaattggc gattcaacag gctgccaagg tcattagggc tgcttgtcta 360
acccacggtt gctttcaagt catcaatcat ggggttgatt cccacctcat caatgctgca 420
tattatcacc tcaatcgttt cttccatttg ccacttagcc acaaattaag ggctcgaagg 480
gccactactg ctggattaaa caccttgagc tattcaggtg cacattcgga tcgtttctct 540
tcgaatttgc catggaagga aactttaact ttccggttgc atgagaatcc caaggaatcc 600
agtgtcgtag atttgttcaa atccagttta ggagatgatt ttgaagaaat gggcataaca 660
tatcaaaagt actgtgaagg aatgaagagc ttagctctag cagtgatgga aatactagca 720
atcagcttgg gagttgatcg attgcactat aaaaattatt ttcaggacgg tgggtctata 780
atgcgatgta actattatcc gccatgcccc gagccaggac ttaccttcgg cactggtcct 840
cattgtgacg ccacatcttt aacaattctc caccaagacg aagttggagg cttggaaatc 900
tttgcaaaca acaaatggca gattgttcga cctcgtcagg atgccctagt aatcaacatc 960
ggtgagacct tcacggcatt aacaaatggg agatacaaga gttgcctgca tagggcagta 1020
gtaaacagcg agagggcgag aaaatcattg gtatactttg tttgcccacg agaagacaag 1080
gtggtgagac ccccagagga tcttgtacaa gttgatcaac tcccaagagc ttaccctgat 1140
ttcacatggt ccgatttcct ccatttcacc caaaactact acagagctga cgctcatact 1200
ctccatagct tcatcaaatg gctctcatct tccagcccca ttcatcacaa ccgttaa 1257
<210> 4
<211> 1140
<212> DNA
<213> upland cotton (G.hirsutum L.)
<400> 4
atggcaattg actgcgtctc cagcatagcc tccatgcctc accatctcaa agacgacagt 60
aaagatgagc aaaaacaact agtttttgat gcttctgtgc ttaaatacca atcctgcata 120
ccacaacaat ttatatggcc tgacgacgaa aagccttgcg ctagtgcacc agaactccaa 180
gtaccactca ttgacattaa aggtttcctc tctggtgacc ctgttgctgc gatggaagct 240
tcaaggcttg tcggcgaggc atgtcaacag catggtttct ttcttgtagt taatcatgga 300
gtcgatgcca cactcgtggc cgatgctcat aggtacatgg ataacttctt tgaattgcca 360
ctctgcgaaa agcaatgggc tcagagaaaa gttggtgagc actgtggata tgccagcagc 420
ttcaccggca ggttctcctc caagttgcct tggaaagaaa cactttcttt tcgctactca 480
gctcagagaa acgcatccac gatggttgaa gactaccttg ttaataaaat gggagatgaa 540
ttcaggcatt tcggaagggt ataccagagc tactgcgagg ctatgagcaa gctttctcta 600
gggattatgg agcttttagc catcagtctg ggcgtaggca gagcgcattt cagggaattt 660
tttgaggaaa atgattcaat aatgaggctg aattactatc cgctttgcca aaaaccagac 720
ctcactttag gaacggggcc tcattgcgat ccaacgtctt taaccatcct tcaccaagac 780
cgagttggtg gtcttcaagt gtttgtagac aacgaatggc gttcaatcag cccaaatttc 840
gaagcatttg ttgttaacat tggcgacacc ttcatggctt tatcaaatgg aagatacaaa 900
agttgcttgc accgggcggt tgtgaacagt cacaccccaa gaaaatccct tgctttcttt 960
ttgtgcccaa agggtgataa agtggttacc ccaccaaaag agttggtgga cgcaaatagc 1020
cccagagtat atccagattt tacatggcct atgctgcttg aattcacaca aaagcactac 1080
agagctgaca tgaatacgct tgaagtattc tcaaactggg ttcaacagag aagccgctga 1140
<210> 5
<211> 1158
<212> DNA
<213> upland cotton (G.hirsutum L.)
<400> 5
atggtacatt gtctgccaaa ggtttctgtc attcaagaca agccgatgct tccaccaact 60
gctgctgtcg caaagaataa gcatcgccct ttagctttcg atgcatcaat ccttggatct 120
gagatatcct ctcagttcat atggcctgac gacgacaagc catgcctgga tgccccggaa 180
cttgtaattc caaccattga cttgggagct ttcttgcttg gggactctct tgctgtatca 240
aaagcggcag aggcggtgaa tgaggcatgc aagaagcatg ggttttttct ggttgtaaac 300
catggggtgg attcagggct tatagacaaa gctcatcagt acatggaccg cttcttcagc 360
ctgcaactct ctgagaagca aaaggctaag agaaaagtag gagaaagcta tgggtatgca 420
agcagtttcg ttgggaggtt ttcctccaag ttgccatgga aagaaacact gtcttttcgg 480
tactgtcctc acactcaaaa catcgtgcaa cactatatgg tgaattggat gggtgaagat 540
tttagagatt tcgggaggct ttaccaggaa tattgtgaag ccatgaacaa ggtttcccaa 600
gagataatgg ggctgctagg gataagtcta ggacttgacc aagcctactt caaagacttt 660
ttcgacgaaa atgattcaat cctgagactg aatcactacc ctccatgcca aaagcctgag 720
ttgactctgg ggactggtcc ccacaccgat cccacttcct tgacaatcct tcatcaggat 780
caagttggag gccttcaagt gtttgcagat gaaaagtggc actccgttgc tcccatccca 840
cgagctttcg ttgtcaacat tggcgacaca ttcatggctt tgacaaacgg tatttacaag 900
agctgcttgc acagagcagt ggtgaatact gaaacggtga gaaaatcact tgtattcttt 960
ctatgtccca agctggagag accggtgaca ccagcagctg gcctagttaa tgccgcaaat 1020
tcgaggaagt acccagactt tacttgggca gcactgcttg aatttacaca gaaccattac 1080
cgtgctgaca tgaaaaccct tgttgcattc tccaaatggg ttcaagaaca agaatcgaac 1140
aacaaattaa taccttag 1158
<210> 6
<211> 1128
<212> DNA
<213> upland cotton (G.hirsutum L.)
<400> 6
atggttcatt gtctgccaaa ggtttctgtc attcaagaca agccgatgct tccatcaact 60
tctgctgtcg caaaggatga gtattggccg cctttagctt tcgatgcatc gatccttgga 120
tctgaatcca acataccctc tcagttcata tggcctgacg acgagaagcc atgcctggat 180
gccccagaac ttgtaattcc aaccattgac ttgggagctt tcttgcttag gtactctctt 240
gctgtatcaa aagcggcaga ggtggtgaat gaggcatgca agaagcatgg gttttttctg 300
gttgtaaacc atggggtgga ttcagggctt atagacaaag ctcatcagta catggaccgc 360
ttcttcagcc tgcaactttc tgagaagcaa aaggctaaga gaaaagtagg agaaagctat 420
gggtatgcaa gcagtttcgt tgggaggttt tcctccaagt tgccatggaa agaaacactg 480
tcttttcggt actgtcctca cactcaaaat atcgtgcaac actatatggt gaatttgatg 540
ggtgaagatt ttagagattt cgggttccaa gagataatgg ggctgctagg gataagtcta 600
ggacttgacc aagcctactt caaagacttc ttcgaagaaa atgattcaat cctgagactg 660
aatcactatc ccccatgcca aaagcctgag ttgactctgg gaaccggtcc ccacaccgat 720
cccacttcct tgacaatcct tcatcaggat caagtgggag gcctttcagg ttttgcagat 780
gaaaagtggc actccgttgc tcccatccca ggagctttcg ttgtcaacat tggcgacaca 840
ttcatggctt tgacaaacgg tatttacaag agctgcttgc acagagcagt ggtgaatact 900
gaaacggtga gaaaatcact tgcattcttt ctatgtccca agctggagag accggtgaca 960
ccagcagctg gcttagtaaa tgccgcaaat ccgaggaaat acccagactt cacttgggca 1020
gcactgctga aatttacaca gaaccattac cgtgctgaca tgaaaaccct tgttgcattc 1080
tccaaatggg ttcaagaaca agaatcgaac aacaaattaa taccttag 1128
<210> 7
<211> 1104
<212> DNA
<213> upland cotton (G.hirsutum L.)
<400> 7
atggcaattg attgcgtttc caagatatcc atgcctcatc atcctaaaga tgaaaaaaga 60
gaggagcaaa aacaactggt ttttgatgcc tcggtgctta aataccaacc cgacatacca 120
aaacaattta tatggcccga caaggaaaag cctagtgtta atgcaccaga actccaagtg 180
ccattcattg acctaggagg gttcctttcc ggtgaccctg tttctgcaat ggaagcatcg 240
aggctggtgg gcgaggcatg tcggcagcat ggtttcttcc ttgtggttaa tcatggagtg 300
gatgcaacac tggtggctga tgctcacagt tatatggcaa aggctcagag gaaacttggt 360
gagcactgtg gatatgctag tagcttcact ggtagattct cctccaagct gccatggaag 420
gaaacgcttt cctttcggta ttcagctgac aaaaactcat ccaagattgt tgaagactac 480
cttgttggca aattgggaga tgaattcaag catttcggga gggtttacca agattactgc 540
gaggcaatga gcaagctatc tctagggata atggagctat tagccattag tcttggcgta 600
ggaagatcac atttcaggga attttttgag gaaaatgaat caataatgag gctcaattac 660
tacccaccat gccaaaaacc agacctcacc ttaggaacag ggcctcattg cgatccaacg 720
tcattaacca tccttcacca agaccgagtt ggtggtcttc aagtgtttgt agacaatgaa 780
tggcgttcaa ttagcccaaa tctcgaagca tttgtcgtta acattggcga caccttcatg 840
gcactttcaa atgggcgata caagagttgc ttgcaccggg cagtggtgaa ccgccacatc 900
ccaagaaaat ctctggcttt cttcctatgt cccaagggtg ataaagtggt agccccacca 960
acagagttgg tcgacgccta taatcccaga gtatatccag attttacttg gcctatgctg 1020
cttgaattca cacaaaagca ttatagagct gatatgaaca cactcgaagt cttctcaaac 1080
tgggttcaac agagaaacag ctga 1104
<210> 8
<211> 1140
<212> DNA
<213> upland cotton (G.hirsutum L.)
<400> 8
atggcaattg attgcgtttc caagataccc tccatgcctc atcatcctaa agatgaaaaa 60
agagaggagc aaaaacaact ggtttttgat gcctcggtgc ttaaatacca acccgacata 120
ccaaaacaat ttatatggcc cgaccacgaa aagcctaatg ttaatgcacc agaactccaa 180
gtgccattca ttgacctagg agggttcctt tccggtgacc ctgtttctgc aatggaagca 240
tcgaggctgg tcggcgaggc atgtcggcag catggtttct tccttgtggt taatcatgga 300
gtggatgcaa cactggtggc tgatgctcac agttatatgg gtaacttctt tgaattgcca 360
ctcaatgata agcaaagggc tcagaggaaa cttggtgagc actgtggata tgctagtagc 420
ttcactggta gattctcctc caagctgcca tggaaggaaa cgctttcctt ccggtattca 480
gctgacaaaa agtcatccaa gattgttgaa gactaccttg atggcaaatt gggagatgaa 540
ttcaagcatt tcgggagggt ttaccaagat tactgcgagg caatgagcaa gctatctcta 600
gggataatgg agctattagc cattagtctt ggcgtaggaa gatcacattt cagggaattt 660
ttcgaggaaa atgaatcaat aatgaggctg aattactacc caccatgcca aaaaccagac 720
ctcactttag gaacagggcc tcattgcgat ccaacctcat taaccatcct tcaccaagac 780
cgagttggtg gtcttcaagt gtttgtagac aatgaatggc gttcaattag cccaaatgtc 840
gaagcatttg tcgttaacat tggcgacacc ttcatggcac tttcaaatgg gcgatacaag 900
agttgcttgc accgggcagt ggtgaaccgc cacatcccaa gaaaatctct ggctttcttc 960
ctatgtccca agggtgataa agtggtagcc ccaccaacag agttggtcga cgcctataat 1020
cccagagtat atccagattt tacttggcct atgctgcttg aattcacaca aaagcattat 1080
agagctgata tgaacacact tgaagtcttc tcaaactggg ttcaacagag aaacagctga 1140
<210> 9
<211> 1152
<212> DNA
<213> upland cotton (G.hirsutum L.)
<400> 9
atggattcaa cgcatctcct ttcctctccg cttgagattc aagatcagac actagtcgac 60
catcataatt cttctatcgg ctcatctttt ctccaaaacc aaaccaacgt ccccaaagaa 120
tttctttggc ccaaagttga tttagttaat gctcatcaag agctgttgga gccacttgta 180
gatcttgaac gcttctttag aggtgatgaa ttggcgattc agcagtctgc caaggtcatt 240
agggctgctt gtctaaccca cggttgcttt caagtcatca atcatggggt tgattcccac 300
ctcatcaatg ctgcatatta tcacctcaat cgtttcttcc atttgccact tagccacaaa 360
ttaagggctc gaagggccac tactgctgga ttaaacacct tgaactattc aggtgcacat 420
tcggatcgtt tctcttcgaa tttgccatgg aaggaaactt taactttccg ggtccatgag 480
aatctcaagg aatccagtgt cgtagacttg ttcaaatcca gtttaggaga tgattttgaa 540
gaaatgggca taacatatca aaagtactgt gaaggaatga agagcttagc tctagcagtg 600
atggaaatac tagcaatcag cttgggagtt gatcgattgc actataaaaa ttattttcag 660
gacggtgggt ctataatgcg atgtaactat tatccgccat gccccgagcc aggacttacc 720
ttcggcactg gtcctcattg tgacaccaca tctttaacaa ttctccacca agacgaagtt 780
gggggcctgg aaatctttgc aaacaacaaa tggcagattg ttcgacctcg tcaggatgcc 840
ctagtaatca acatcggtga gaccttcacg gcattaacaa atgggagata caagagttgc 900
ctgcataggg cagtagtaaa cagcgagagg gcgagaaaat cattggtata ctttgtttgc 960
ccacgagaag acaaggtggt gagaccccca gaggatcttg tacaaggtga tcaactccca 1020
agagcttacc ctgatttcac atggtccgat ttcctccatt tcacccaaaa ctactacaga 1080
gctgacgctc atactctcca tagcttcatc aaatggctct catcttccaa ccccattcat 1140
cacaaccgtt aa 1152
<210> 10
<211> 1164
<212> DNA
<213> upland cotton (G.hirsutum L.)
<400> 10
atggtacatt gtctgccaaa ggtttttgtc attcaagaca agccgatgct tccatcaact 60
gctgctgtcg caaaggatga gcatcggcct ttagctttcg atgcatcgat ccttggatct 120
gaatccaaca taccctctca gttcatatgg cctgacgacg agaagccatg cctggatgcc 180
ccggcacttg taattccaac cattgacttg ggagctttct tgcttgggga ctctcttgct 240
gtatcaaaag cggcagaggt ggtgaatgag gcatgcaaga agcatgggtt ttttctggtt 300
gtaaaccatg gggtggattc agggcttata gacaaagccc atcagtacat ggaccgcttc 360
ttcagcctac aactctctga gaagcaaaag gctaagagaa aagtaggaga aagctatggg 420
tatgcaagca gtttcgttgg caggttttcc tccaagttgc catggaaaga gacactgtct 480
tttcggtact gtcctcacac tcaaaatatc gtgcaacact atatggtgaa ttggatgggt 540
gaagatttta gagatttcgg gaggctttac caggaatatt gtgaagccat gaacaaggtt 600
tcccaagaga taatggggct gctagggata agtctaggac ttgaccaagc ctacttcaaa 660
gactttttcg aacaaaatga ttcaatcctg agactgaatc actatccccc atgccaaaag 720
cctgagttga ctctgggaac cggtccccac accgatccca cttccttgac aatccttcat 780
caggatcaag ttggaggcct tcaggtgttt gcagatgaaa agtggcactc cgttgctccc 840
atcccaggag cttttgttgt caacgttggc gacacattca tggctttgac aaacggtttt 900
tacaagagct gcttgcacag agcagtggtg aatactgaaa cggtgagaaa atcacttgca 960
ttctttctat gtcccaagct ggagagaccg gtgacaccag cagctggctt agttactgcc 1020
gaaaatccga ggaaataccc agacttcact tgggcagcac tgctgaagtt cacacagaac 1080
cattaccgtg ctgacatgaa aacccttgtt gcattctcca aatgggttca agaacaagaa 1140
tcgaactaca aattaatacc ttag 1164
<210> 11
<211> 1155
<212> DNA
<213> upland cotton (G.hirsutum L.)
<400> 11
atgtctctct ctgtcttaat ggattcaagt tctccaacca ttcttttaca tccatccata 60
gaaccaagag atgagacggg tagtgtcctt tttgacccat ccaagttgca aaaacaatca 120
agtttaccct cagagttcat atggccatgt ggggacttgg ttcacaccca agaagagctt 180
aacgagccat tgatagactt gggtgggttc atcaaaggag acgaagaagc tactgcacat 240
gcagtcgacc ttgttaagac tgcctgttct aaacatggtt tcttccaagt tacaaaccat 300
ggtgttgatt caaatcttat ccaagctgct taccaagaga ttgatgctgt gtttaagtta 360
ccccttaaca agaagctcgg tttccaaaga aagcctggtg gtttttcagg ctattctgct 420
gcccatgctg accggttttc cgctaagttg ccatggaagg aaacattttc ttttggctac 480
caaggactta actccgatcc ttctgtggtt cattatttca gctctgcttt gggggaagat 540
tttgagcaca ccgggaggat ttaccaaaag tattgtgaaa agatgaggga gctgtcgcta 600
gtgatcttcg aactgttggc aatcagcttg gggatagatc gtttacacta cagaaaattt 660
ttcgaagatg ggaattcaat aatgaggtgt aattactatc ccccatgcaa taattctggc 720
ctcacccttg gcactggccc tcactctgat cctacttcct taacaattct tcaccaagat 780
caagtgggag ggctcgaagt tttcatcaat aacaaatggt atgctgttcg acctcgacaa 840
gatgcctttg tcattaacat tggtgatact ttcatggcat tatgtaacgg aagatacaag 900
agttgcctgc atagagcagt ggtgaacaag gagagagaga ggagatcatt ggtatacttt 960
gtgtgcccaa aagaagacaa aatagtgaga cccccacaag atctaatgtg cagatcagga 1020
gggccaagag tgtatcctga tttcacatgg tctgatttgt tggacttcac tcaaaatcac 1080
tatagagctg acgttgctac actccaaagc ttctttcctt ggctcctttc ttctaaccct 1140
acttccaact tctag 1155
<210> 12
<211> 1083
<212> DNA
<213> upland cotton (G.hirsutum L.)
<400> 12
atggcaattg attgcgtttc caagataccc tccatgcctc atcatcctaa agatgaaaaa 60
agagaggagc aaaaacaact ggtttttgat gcctcgccta atgttaatgc accagaactc 120
caagtgccat tcattgacct aggagggttc ctttccggtg accctgtttc tgcaatggaa 180
gcatcgaggc tggtcggcga ggcatgtcgg cagcatggtt tcttccttgt ggttaatcat 240
ggagtggatg caacactggt ggctgatgct cacagttata tgggtaactt ctttgaattg 300
ccactcaatg ataagcaaag ggctcagagg aaacttggtg agcactgtgg atatgctagt 360
agcttcactg gtagattctc ctccaagctg ccatggaagg aaacgctttc cttccggtat 420
tcagctgaca aaaagtcatc caagattgtt gaagactacc ttgatggcaa attgggagat 480
gaattcaagc atttcgggag ggtttaccaa gattactgcg aggcaatgag caagctatct 540
ctagggataa tggagctatt agccattagt cttggcgtag gaagatcaca tttcagggaa 600
tttttcgagg aaaatgaatc aataatgagg ctgaattact acccaccatg ccaaaaacca 660
gacctcactt taggaacagg gcctcattgc gatccaacct cattaaccat ccttcaccaa 720
gaccgagttg gtggtcttca agtgtttgta gacaatgaat ggcgttcaat tagcccaaat 780
gtcgaagcat ttgtcgttaa cattggcgac accttcatgg cactttcaaa tgggcgatac 840
aagagttgct tgcaccgggc agtggtgaac cgccacatcc caagaaaatc tctggctttc 900
ttcctatgtc ccaagggtga taaagtggta gccccaccaa cagagttggt cgacgcctat 960
aatcccagag tatatccaga ttttacttgg cctatgctgc ttgaattcac acaaaagcat 1020
tatagagctg atatgaacac acttgaagtc ttctcaaact gggttcaaca gagaaacagc 1080
tga 1083
<210> 13
<211> 1140
<212> DNA
<213> upland cotton (G.hirsutum L.)
<400> 13
atggccatcg actgcatctc caacatagcc tccatgactc accatccgaa agatgaaaaa 60
aaagatgagc agaaaaagct ggtttttgat gcctcggtgc tcaagttcga atcccagata 120
ccaaaagaat ttatatggcc tgatgacgaa aagccttccg ctaatgcacc agaactccaa 180
gtaccactca ttgacctagg aggcttcctt tctggtgacc ctgttgctac aatggaagct 240
tcaaggttta tcagcgaggc atgtcagcag catggtttct tccttgtagt taatcatgga 300
gtcgatgcaa aactcttggc tgatgcccac aagtacatgg ataacttctt tctattgcca 360
cttagacaaa agcaaagggc tcaaagaaaa cttggtgagc actgtggata tgccagtagc 420
ttcactggca ggttctcgac caagctccca tggaaggaaa cactttcttt tcgctattca 480
gccgagaaca actcatccaa gatggtggaa gactaccttg ttaataaaat gggaaatgaa 540
ttgaggcaac tcgggagggt ttaccaggac tactgcgagg cgatgagcaa gctttctctg 600
gggataatgg agcttttagc cattagtctg ggcgtaggca gagcacattt ccgggagttt 660
tttgataaaa atgattcaat aatgagacta aactactatc ccccttgtca aaaaccagac 720
ctcactttag gaacagggcc tcattgcgat ccaacgtctt taaccatcct tcaccaagac 780
agagttggtg gccttcaagt gtttgtagac aacgaatggc attcaattag cccaaatttc 840
gaagcatttg tcgttaacat tggcgacacc tttatggcac tgtcaaatgg gagatataaa 900
agttgcttgc accaagcagt ggtgaacagc cataagccaa gaaaatctct ggctttcttt 960
ttgtgtccag agggggataa agtggtaacc ccaccagcag agttggtgag ccagaacagt 1020
cccagagtat atccagattt tacatggcct atgctgcttg aattcacaca aaagcattac 1080
agagctgaca tgaacactct tcaagaattc tcaaactggg ttcaacagag aaacagctga 1140
<210> 14
<211> 384
<212> PRT
<213> upland cotton (G.hirsutum L.)
<400> 14
Met Ser Leu Ser Val Leu Met Asp Ser Gly Ser Pro Thr Ile Leu Leu
1 5 10 15
His Pro Ser Ile Glu Pro Arg Asp Glu Thr Gly Gly Val Leu Phe Asp
20 25 30
Pro Ser Lys Leu Gln Asn Gln Ser Ser Leu Pro Ser Glu Phe Ile Trp
35 40 45
Pro Cys Gly Asp Leu Val His Thr Gln Glu Glu Leu Asn Glu Pro Leu
50 55 60
Ile Asp Leu Gly Gly Phe Ile Lys Gly Asp Glu Glu Ala Thr Ala His
65 70 75 80
Ala Val Gly Leu Val Lys Thr Ala Cys Ser Lys His Gly Phe Phe Gln
85 90 95
Val Thr Asn His Gly Val Asp Ser Asn Leu Ile Gln Ala Ala Tyr Gln
100 105 110
Glu Ile Asp Ala Val Phe Lys Leu Pro Leu Asn Lys Lys Leu Ser Phe
115 120 125
Gln Arg Lys Pro Gly Gly Phe Ser Gly Tyr Ser Ala Ala His Ala Asp
130 135 140
Arg Phe Ser Ala Lys Leu Pro Trp Lys Glu Thr Phe Ser Phe Gly Tyr
145 150 155 160
Gln Gly Leu Asn Ser Asp Pro Ser Val Val His Tyr Phe Ser Ser Ala
165 170 175
Leu Gly Glu Asp Phe Glu Gln Thr Gly Trp Ile Tyr Gln Lys Tyr Cys
180 185 190
Glu Lys Met Arg Glu Leu Ser Leu Leu Ile Phe Glu Leu Leu Ala Ile
195 200 205
Ser Leu Gly Ile Asp Arg Leu His Tyr Arg Lys Phe Phe Glu Asp Gly
210 215 220
Asn Ser Ile Met Arg Cys Asn Tyr Tyr Pro Pro Cys Asn Asn Ser Gly
225 230 235 240
Leu Thr Leu Gly Thr Gly Pro His Ser Asp Pro Thr Ser Leu Thr Ile
245 250 255
Leu His Gln Asp Gln Val Gly Gly Leu Glu Val Phe Asn Asn Asn Lys
260 265 270
Trp Tyr Ala Val Arg Pro Arg Gln Asp Ala Phe Val Ile Asn Ile Gly
275 280 285
Asp Thr Phe Met Ala Leu Cys Asn Gly Arg Tyr Lys Ser Cys Leu His
290 295 300
Arg Ala Val Val Asn Lys Glu Arg Glu Arg Arg Ser Leu Val Tyr Phe
305 310 315 320
Val Cys Pro Lys Glu Asp Lys Ile Val Arg Pro Pro Gln Asp Leu Met
325 330 335
Cys Arg Ser Gly Gly Pro Arg Val Tyr Pro Asp Phe Thr Trp Ser Asp
340 345 350
Leu Leu Glu Phe Thr Gln Asn His Tyr Arg Ala Asp Val Ala Thr Leu
355 360 365
Gln Ser Phe Phe Pro Trp Leu Leu Ser Ser Asn Pro Thr Ser Asn Phe
370 375 380
<210> 15
<211> 21
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 15
atgtctctct ctgtcttaat g 21
<210> 16
<211> 20
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 16
ctagaagttg gaagtagggt 20
<210> 17
<211> 27
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 17
tgctctagag caatgtctct ctctgtc 27
<210> 18
<211> 23
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 18
cgagctcgct agaagttgga agt 23
<210> 19
<211> 30
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 19
cgagctcgat gtctctctct gtcttaatgg 30
<210> 20
<211> 23
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 20
ggactagtga agttggaagt agg 23
<210> 21
<211> 27
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 21
ggactagtgt gaacaaggag agagaga 27
<210> 22
<211> 28
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 22
ttggcgcgcc aagtagggtt agaagaaa 28
<210> 23
<211> 22
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 23
tgcacatgca gtcgaccttg tt 22
<210> 24
<211> 22
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 24
ggtcagcatg ggcagcagaa ta 22
<210> 25
<211> 19
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 25
atcctccgtc ttgaccttg 19
<210> 26
<211> 19
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 26
tgtccgtcag gcaactcat 19
<210> 27
<211> 24
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 27
agatccagga caaggaaggt attc 24
<210> 28
<211> 22
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 28
cgcaggacca agtgaagagt ag 22

Claims (7)

1. A upland cotton plant height regulatory gene GhGA20ox6, which is characterized in that the gene has the sequence shown in SEQ ID NO: 1.
2. A plasmid comprising the upland cotton plant height-regulating gene GhGA20ox6 according to claim 1.
3. A plant expression vector comprising the upland cotton plant height regulatory gene GhGA20ox6 according to claim 1.
4. A host cell, characterized in that: the host cell comprises the upland cotton plant height regulatory gene GhGA20ox6 of claim 1.
5. A protein coded by a gossypium hirsutum plant height regulatory gene GhGA20ox6, which is characterized in that: the protein has the amino acid sequence shown in SEQ ID NO: 14, or a pharmaceutically acceptable salt thereof.
6. The application of a gossypium hirsutum plant height regulatory gene GhGA20ox6 is characterized in that: is used for regulating and controlling the plant height of upland cotton.
7. A dwarfing method of upland cotton is characterized in that the plant height of upland cotton is reduced by gene silencing of upland cotton plant height regulating gene GhGA20ox6, so that dwarfing is realized.
CN202110162359.9A 2021-02-05 2021-02-05 Upland cotton plant height regulating gene GhGA20ox6 and its use Active CN112899292B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110162359.9A CN112899292B (en) 2021-02-05 2021-02-05 Upland cotton plant height regulating gene GhGA20ox6 and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110162359.9A CN112899292B (en) 2021-02-05 2021-02-05 Upland cotton plant height regulating gene GhGA20ox6 and its use

Publications (2)

Publication Number Publication Date
CN112899292A true CN112899292A (en) 2021-06-04
CN112899292B CN112899292B (en) 2022-10-25

Family

ID=76122981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110162359.9A Active CN112899292B (en) 2021-02-05 2021-02-05 Upland cotton plant height regulating gene GhGA20ox6 and its use

Country Status (1)

Country Link
CN (1) CN112899292B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020053095A1 (en) * 1998-08-10 2002-05-02 Arnold White & Durkee Methods for controlling gibberellin levels
US20180051295A1 (en) * 2016-08-17 2018-02-22 Monsanto Technology Llc Methods and compositions for short stature plants through manipulation of gibberellin metabolism to increase harvestable yield
WO2018196709A1 (en) * 2017-04-24 2018-11-01 中国科学院上海生命科学研究院 Gene for regulating crop dwarf and yield and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020053095A1 (en) * 1998-08-10 2002-05-02 Arnold White & Durkee Methods for controlling gibberellin levels
US20180051295A1 (en) * 2016-08-17 2018-02-22 Monsanto Technology Llc Methods and compositions for short stature plants through manipulation of gibberellin metabolism to increase harvestable yield
WO2018196709A1 (en) * 2017-04-24 2018-11-01 中国科学院上海生命科学研究院 Gene for regulating crop dwarf and yield and application thereof
CN108728420A (en) * 2017-04-24 2018-11-02 中国科学院上海生命科学研究院 It is a kind of regulation and control crop downgrade and its yield gene and its application

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
佚名: "XM_016812635", 《GENBANK》 *
冯怡: "棉花GA 20-氧化酶基因GhGA20ox1的超量表达及其对番茄果实发育的影响", 《中国优秀博硕士学位论文全文数据库(硕士)农业科技辑》 *
张国芳: "特异启动子控制的GhGA20ox1基因对棉花纤维发育的影响", 《中国优秀博硕士学位论文全文数据库(硕士)农业科技辑》 *
肖月华: "棉花GA20-氧化酶基因的克隆和功能分析", 《中国优秀博硕士学位论文全文数据库(博士)农业科技辑》 *
邓伟等: "棉花GA 20-氧化酶基因转毛白杨的研究", 《西北植物学报》 *

Also Published As

Publication number Publication date
CN112899292B (en) 2022-10-25

Similar Documents

Publication Publication Date Title
CN100381465C (en) Bacterial leaf spot resistance related protein and its coding gene and uses
CN107164347A (en) Control Culm of Rice rugosity, tiller number, grain number per spike, mass of 1000 kernel and the ideotype gene NPT1 of yield and its application
CN110628808B (en) Arabidopsis AtTCP5 gene and application thereof in regulating plant height
CN109134632B (en) Protein for regulating and controlling plant root development and coding gene and application thereof
CN110079534B (en) Gene and promoter for regulating and controlling flowering period of corn and application of gene and promoter
CN110872598B (en) Cotton drought-resistant related gene GhDT1 and application thereof
CN113150097B (en) Plant stress tolerance related protein OsERF096 and encoding gene and application thereof
CN111172173B (en) Method for reducing plant height of corn or delaying flowering
CN113337518A (en) Corn ZmDnaja6 gene related to high-temperature and drought dual stress as well as vector and application thereof
CN114292857B (en) Peanut salt-tolerant gene AhMADS and application thereof
CN109879947B (en) Phyllostachys pubescens transcription factor PheDof2 gene and application thereof
CN110093353B (en) Cold-resistant related coding gene of ordinary wild rice in bud stage and application thereof
CN101812462B (en) Application of rice GT transcription factor family gene OsGT gamma-1 in controlling salt tolerance of rice
CN107266544B (en) Application of protein SiNADP-ME3 and coding gene thereof in regulation and control of plant stress resistance
CN106554964B (en) Application of cotton GbABR1 gene in verticillium wilt resistance
CN111235179B (en) OsABA8ox2Expression application of promoter in root meristem, glume flower and filling stage seeds
CN111826391B (en) Application of NHX2-GCD1 double gene or protein thereof
CN112028979B (en) Method for improving low temperature resistance of cucumber plant
CN116162142B (en) Application of plant GS3 gene or protein in regulation and control of saline-alkali tolerance of plants
CN107973844B (en) Wheat heading period related protein Ta-Hd4A and application thereof
CN114703199B (en) Plant drought resistance related gene TaCML46 and application thereof
CN114560919B (en) Plant drought tolerance related transcription factor VcMYB and coding gene and application thereof
CN112899292B (en) Upland cotton plant height regulating gene GhGA20ox6 and its use
CN112280784B (en) Rice lateral root development control gene OsLRD2, encoding protein and application thereof
CN111534539B (en) SiMYB4 protein related to plant stress resistance and related biological material and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant