CN112885891A - 一种提高氮化镓hemt功率器件击穿电压的结构及其制备方法 - Google Patents

一种提高氮化镓hemt功率器件击穿电压的结构及其制备方法 Download PDF

Info

Publication number
CN112885891A
CN112885891A CN202110123878.4A CN202110123878A CN112885891A CN 112885891 A CN112885891 A CN 112885891A CN 202110123878 A CN202110123878 A CN 202110123878A CN 112885891 A CN112885891 A CN 112885891A
Authority
CN
China
Prior art keywords
layer
doped region
breakdown voltage
gallium nitride
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110123878.4A
Other languages
English (en)
Inventor
邵国键
林罡
陈韬
刘柱
陈堂胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN202110123878.4A priority Critical patent/CN112885891A/zh
Publication of CN112885891A publication Critical patent/CN112885891A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提供了一种提高氮化镓HEMT功率器件击穿电压的结构及其制备方法,结构包括衬底、外延层、源极、漏极以及栅极;所述外延层位于所述衬底上方,包括由下至上设置的成核层、第一材料层、沟道层以及势垒层;所述沟道层内具有二维电子气,所述势垒层内具有离子掺杂区域。本发明通过在栅极、漏极之间引入离子掺杂区域,改变沟道中部分区域的二维电子气浓度,在栅极一侧改变电场分布,该峰值电场显著低于无离子掺杂区域的器件,栅漏间的电场均匀性得到加强,电场分布得到有效改善,避免栅边缘电场峰值引起器件的提前击穿,器件可以承受更高的漏极电压。最终器件的击穿电压得到提升,且器件的频率特性不会降低。

Description

一种提高氮化镓HEMT功率器件击穿电压的结构及其制备方法
技术领域
本发明属于功率半导体技术领域,尤其是涉及一种提高氮化镓HEMT功率器件击穿电压的结构及其制备方法。
背景技术
GaN作为第三代宽禁带化合物半导体材料,具有禁带宽度大、击穿电压高、电子漂移速度快和抗辐射能力强等特点,AlGaN/GaN结构的HEMT器件具有耐高温、耐高压、良好的高频大功率等特性。AlGaN/GaN异质结具有较强的极化效应,即使在未掺杂时,器件也可获得高达1×1013cm-2面密度的二维电子气。近年来,在现有AlGaN/GaN异质结构的基础上,如何进一步优化GaN HEMT器件结构和提升器件击穿电压成为研究的热点。
造成器件击穿的因素有多方面:
1、栅极边缘电场强度过高;当在AlGaN/GaN HEMT器件漏极施加较高电压时,沟道中的耗尽区会逐渐移动至漏极一侧。势垒层的极化正电荷引起的电场分布会集中指向栅极边缘,在边缘位置形成峰值电场。当电场强度超出器件的耐压能力时,器件容易发生击穿现象。
2、栅极泄漏电流;器件的表面的缺陷、沾污、悬挂键等容易形成表面态,其表面漂移点到现象造成栅极的泄漏电流。当栅极电压过高时,电子通过栅极峰值电场的边缘隧穿到栅源之间的表面态中,造成器件击穿。
为解决以上问题,通常在器件中设计场板,利用场板技术将峰值电场平坦化的分布于栅漏之间,以提高器件的击穿电压。但场板的引入会带来额外的电容,降低器件的频率特性。
发明内容
为解决上述问题,本发明提供了一种提高氮化镓HEMT功率器件击穿电压的结构及其制备方法。
为实现上述目的,本发明的技术方案为:
一种提高氮化镓HEMT功率器件击穿电压的结构,包括:
衬底;
外延层,位于所述衬底上方,包括由下至上设置的成核层、第一材料层、沟道层以及势垒层;所述沟道层内具有二维电子气,所述势垒层内具有离子掺杂区域;
源极,位于所述外延层上方;
漏极,位于所述外延层上方;
栅极,位于所述源极与漏极之间;
其中,所述离子掺杂区域位于栅极与漏极之间,靠近栅极一侧。
进一步的,所述势垒层包括第二材料层。
进一步的,所述势垒层还包括第三材料层,所述第三材料层位于沟道层与第二材料层之间,所述第三材料层的禁带宽度大于第二材料层。
进一步的,所述势垒层还包括第四材料层,所述第四材料层位于第二材料层上方。
进一步的,所述离子掺杂区域的宽度为栅极与漏极间距的1%~90%,高度为所述势垒层的厚度。
一种提高氮化镓HEMT功率器件击穿电压的结构的制备方法,包括以下步骤:
提供衬底,在衬底上形成外延层,所述外延层包括由下至上堆叠而成的成核层、第一材料层、沟道层以及势垒层;
在势垒层内进行离子掺杂形成离子掺杂区域;
对离子掺杂区域进行快速热处理,使掺杂离子分布均匀;
并在外延层表面采用光刻和蒸发工艺形成源极和漏极;
在源极、掺杂区域之间的外延层表面形成栅极,并使栅极靠近离子掺杂区域。
进一步的,所述离子掺杂所采用的离子元素为氟、硅、磷、硫、氯、锗、砷以及硒中的一种或多种组合,浓度为1×1012cm-3~1×1018cm-3
进一步的,所述快速热处理的温度为200℃~1300℃,时间为5s~600s。
相对于现有技术,本发明的有益效果在于:
本发明在形成源极、漏极后并未立即制作栅极,而是在预设的栅极边缘的特定区域进行离子掺杂。而在栅极、漏极之间引入离子掺杂区域,可以改变沟道中部分区域的二维电子气浓度,在栅极一侧改变电场分布,该峰值电场显著低于无离子掺杂区域的器件,栅漏间的电场均匀性得到加强,电场分布得到有效改善,避免栅边缘电场峰值引起器件的提前击穿,器件可以承受更高的漏极电压。最终器件的击穿电压得到提升,且器件的频率特性不会降低。
附图说明
图1A~图1C为本公开实施例1中提高氮化镓HEMT功率器件击穿电压的结构的制备方法示意图。
图2A~图2C为本公开实施例2中提高氮化镓HEMT功率器件击穿电压的结构的制备方法示意图。
图3A~图3C为本公开实施例3中提高氮化镓HEMT功率器件击穿电压的结构的制备方法示意图。
图中:1、衬底;2、外延层;201、成核层;202、第一材料层;203、沟道层;204、第二材料层;205、二维电子气;206、第三材料层;207、第四材料层;3、离子掺杂区域;4、源极;5、栅极;6、漏极。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
实施例1:
参照图1A-图1C,本实施例中一种提高氮化镓HEMT功率器件击穿电压的结构的制备方法,包括以下步骤:
步骤1:如图1A所示,选择碳化硅为衬底1材料,在衬底1上依次由下至上形成成核层201、第一材料层202、沟道层203以及第二材料层204;其中成核层201的材料为氮化铝,第一材料层202的材料为氮化镓,沟道层203的材料为氮化镓,第二材料层204的材料为铝镓氮;利用光刻工艺,将非离子掺杂区域遮挡,利用注入工艺在第二材料层204中引入砷离子,浓度为5×1013cm-3,形成离子掺杂区域3,离子掺杂区域3宽度LIMP为1um;
步骤2:进行快速热处理,处理温度350℃,时间为200s,使掺杂的砷离子分布均匀;
步骤3:如图1B所示,在第二材料层204表面采用光刻和蒸发工艺形成源极4和漏极6,其中,源极4、漏极6位于离子掺杂区域3两侧,源极4到漏极6距离LSD为5um;
步骤4:如图1C所示,利用光刻和蒸发工艺在源极4和漏极6之间制备栅极5,栅极5宽度LG为0.5um,栅极5与源极4的间距LSG为1um,栅极5与漏极6的间距LGD为3.5um,栅极5边缘与离子掺杂区域3相邻。
在其他相同条件下,相对于传统的半导体器件,本实施例的半导体器件的击穿电压由440V提升为590V。
实施例2:
参照图2A-图2C,本实施例中一种提高氮化镓HEMT功率器件击穿电压的结构的制备方法,包括以下步骤:
步骤1:如图2A所示,选择碳化硅为衬底1材料,在衬底1上依次由下至上形成成核层201、第一材料层202、沟道层203、第三材料层206以及第二材料层204;其中成核层201的材料为氮化铝,第一材料层202的材料为氮化镓,沟道层203的材料为氮化镓,第三材料层206的材料为铟镓氮,第二材料层204的材料为铝镓氮;利用光刻工艺,将非离子掺杂区域遮挡,利用注入工艺在第二材料层204、第三材料层206中引入氟离子,浓度为1.5×1015cm-3,形成离子掺杂区域3,离子掺杂区域3宽度LIMP为0.8um;
步骤2:进行快速热处理,处理温度500℃,时间为90s,使掺杂的氟离子分布均匀;
步骤3:如图2B所示,在第二材料层204表面采用光刻和蒸发工艺形成源极4和漏极6,其中,源极4、漏极6位于离子掺杂区域3两侧,源极4到漏极6距离LSD为4um;
步骤4:如图2C所示,利用光刻和蒸发工艺在源极4和漏极6之间制备栅极5,栅极5宽度LG为0.35um,栅极5与源极4的间距LSG为0.9um,栅极5与漏极6的间距LGD为2.75um,栅极5边缘与离子掺杂区域3相邻。
在其他相同条件下,相对于传统的半导体器件,本实施例的半导体器件的击穿电压由310V提升为390V。
实施例3:
参照图3A-图3C,本实施例中一种提高氮化镓HEMT功率器件击穿电压的结构的制备方法,包括以下步骤:
步骤1:如图3A所示,选择碳化硅为衬底1材料,在衬底1上依次由下至上形成成核层201、第一材料层202、沟道层203、第二材料层204以及第四材料层207;其中成核层201的材料为氮化铝,第一材料层202的材料为氮化镓,沟道层203的材料为氮化镓,第二材料层204的材料为铝镓氮,第四材料层207的材料为氮化镓;利用光刻工艺,将非离子掺杂区域遮挡,利用注入工艺在第二材料层204、第四材料层207中引入磷离子,浓度为6×1014cm-3,形成离子掺杂区域3,离子掺杂区域3宽度LIMP为0.6um;
步骤2:进行快速热处理,处理温度430℃,时间为160s,使掺杂的磷离子分布均匀;
步骤3:如图3B所示,在第四材料层207表面采用光刻和蒸发工艺形成源极4和漏极6,其中,源极4、漏极6位于离子掺杂区域3两侧,源极4到漏极6距离LSD为3.5um;
步骤4:如图3C所示,利用光刻和蒸发工艺在源极4和漏极6之间制备栅极5,栅极5宽度LG为0.25um,栅极5与源极4的间距LSG为0.75um,栅极5与漏极6的间距LGD为2.5um,栅极5边缘与离子掺杂区域3相邻。
在其他相同条件下,相对于传统的半导体器件,本实施例的半导体器件的击穿电压由210V提升为280V。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (8)

1.一种提高氮化镓HEMT功率器件击穿电压的结构,其特征在于,包括:
衬底;
外延层,位于所述衬底上方,包括由下至上设置的成核层、第一材料层、沟道层以及势垒层;所述沟道层内具有二维电子气,所述势垒层内具有离子掺杂区域;
源极,位于所述外延层上方;
漏极,位于所述外延层上方;
栅极,位于所述源极与漏极之间;
其中,所述离子掺杂区域位于栅极与漏极之间,靠近栅极一侧。
2.根据权利要求1所述的提高氮化镓HEMT功率器件击穿电压的结构,其特征在于:所述势垒层包括第二材料层。
3.根据权利要求2所述的提高氮化镓HEMT功率器件击穿电压的结构,其特征在于:所述势垒层还包括第三材料层,所述第三材料层位于沟道层与第二材料层之间,所述第三材料层的禁带宽度大于第二材料层。
4.根据权利要求2或3所述的提高氮化镓HEMT功率器件击穿电压的结构,其特征在于:所述势垒层还包括第四材料层,所述第四材料层位于第二材料层上方。
5.根据权利要求1或2或3所述的提高氮化镓HEMT功率器件击穿电压的结构,其特征在于:所述离子掺杂区域的宽度为栅极与漏极间距的1%~90%,高度为所述势垒层的厚度。
6.一种提高氮化镓HEMT功率器件击穿电压的结构的制备方法,其特征在于包括以下步骤:
提供衬底,在衬底上形成外延层,所述外延层包括由下至上堆叠而成的成核层、第一材料层、沟道层以及势垒层;
在势垒层内进行离子掺杂形成离子掺杂区域;
对离子掺杂区域进行快速热处理,使掺杂离子分布均匀;
并在外延层表面采用光刻和蒸发工艺形成源极和漏极;
在源极、掺杂区域之间的外延层表面形成栅极,并使栅极靠近离子掺杂区域。
7.根据权利要求6所述的提高氮化镓HEMT功率器件击穿电压的结构的制备方法,其特征在于:所述离子掺杂所采用的离子元素为氟、硅、磷、硫、氯、锗、砷以及硒中的一种或多种组合,浓度为1×1012cm-3~1×1018cm-3
8.根据权利要求6所述的提高氮化镓HEMT功率器件击穿电压的结构的制备方法,其特征在于:所述快速热处理的温度为200℃~1300℃,时间为5s~600s。
CN202110123878.4A 2021-01-29 2021-01-29 一种提高氮化镓hemt功率器件击穿电压的结构及其制备方法 Withdrawn CN112885891A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110123878.4A CN112885891A (zh) 2021-01-29 2021-01-29 一种提高氮化镓hemt功率器件击穿电压的结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110123878.4A CN112885891A (zh) 2021-01-29 2021-01-29 一种提高氮化镓hemt功率器件击穿电压的结构及其制备方法

Publications (1)

Publication Number Publication Date
CN112885891A true CN112885891A (zh) 2021-06-01

Family

ID=76053482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110123878.4A Withdrawn CN112885891A (zh) 2021-01-29 2021-01-29 一种提高氮化镓hemt功率器件击穿电压的结构及其制备方法

Country Status (1)

Country Link
CN (1) CN112885891A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809155A (zh) * 2021-08-25 2021-12-17 西安电子科技大学 一种带有终端结构的GaN基射频器件及其制作方法
WO2023082058A1 (en) * 2021-11-09 2023-05-19 Innoscience (Suzhou) Technology Co., Ltd. Nitride-based semiconductor device and method for manufacturing thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809155A (zh) * 2021-08-25 2021-12-17 西安电子科技大学 一种带有终端结构的GaN基射频器件及其制作方法
WO2023082058A1 (en) * 2021-11-09 2023-05-19 Innoscience (Suzhou) Technology Co., Ltd. Nitride-based semiconductor device and method for manufacturing thereof

Similar Documents

Publication Publication Date Title
WO2023142393A1 (zh) 集成高速续流二极管的碳化硅分离栅mosfet及制备方法
CN113571584A (zh) 一种SiC MOSFET器件及其制备方法
CN112635544B (zh) 具有偶极子层的增强型AlGaN-GaN垂直型超结HEMT及其制备方法
CN112885891A (zh) 一种提高氮化镓hemt功率器件击穿电压的结构及其制备方法
CN111048580A (zh) 一种碳化硅绝缘栅双极晶体管及其制作方法
CN115148820A (zh) 一种SiC沟槽MOSFET器件及其制造方法
US8659057B2 (en) Self-aligned semiconductor devices with reduced gate-source leakage under reverse bias and methods of making
CN117080269A (zh) 一种碳化硅mosfet器件及其制备方法
US20210384345A1 (en) Vertical umosfet device with high channel mobility and preparation method thereof
CN112885890A (zh) 一种提高耗尽型氮化镓hemt功率器件击穿电压的结构及其制备方法
CN116013989A (zh) 具有SiO2阻挡层的垂直结构Ga2O3晶体管及制备方法
CN112864228A (zh) 一种掺杂工艺提高半导体器件击穿电压的结构及其制备方法
CN102290434A (zh) 带栅下缓冲层结构的金属半导体场效应晶体管及制作方法
CN107170797B (zh) 基于漏场板的电流孔径异质结晶体管及其制作方法
CN115579290A (zh) 一种p-GaN增强型器件制备方法
JP2015099920A (ja) 横チャネル領域を有する接合型電界効果トランジスタセル
CN115084224A (zh) 一种垂直结构的NiO/Ga2O3 JFET及其制备方法
CN110808212B (zh) 氧化镓场效应晶体管及其制备方法
CN110676166B (zh) P-GaN帽层的FinFET增强型器件及制作方法
CN112885892A (zh) 一种正离子掺杂工艺提高半导体器件击穿电压的结构及其制备方法
CN111509037A (zh) 一种带有槽型jfet的碳化硅mos器件及其制备工艺
CN113990918B (zh) 一种具有阶梯屏蔽环的垂直型ⅲ族氮化物功率半导体器件及其制备方法
US20230108909A1 (en) Semiconductor Device, Manufacturing Method and Electronic Equipment
US11869982B2 (en) Single sided channel mesa power junction field effect transistor
US20240120370A1 (en) Vertically conductive semiconductor structures and manufacturing methods therefor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20210601