CN112875976A - 一种印染废水中无机盐回收利用的制备方法 - Google Patents

一种印染废水中无机盐回收利用的制备方法 Download PDF

Info

Publication number
CN112875976A
CN112875976A CN202110177761.4A CN202110177761A CN112875976A CN 112875976 A CN112875976 A CN 112875976A CN 202110177761 A CN202110177761 A CN 202110177761A CN 112875976 A CN112875976 A CN 112875976A
Authority
CN
China
Prior art keywords
water
wastewater
dyeing
electrodialysis
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110177761.4A
Other languages
English (en)
Other versions
CN112875976B (zh
Inventor
王海涛
许以农
徐守疆
常娜
王奇梁
李国才
刘瑞
陈武帅
王岩
金铁瑛
阿如汗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rebon Separation Technology Tianjin Co ltd
Zhejiang Jinmo Environment Technology Co ltd
Tianjin Polytechnic University
Original Assignee
Rebon Separation Technology Tianjin Co ltd
Zhejiang Jinmo Environment Technology Co ltd
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rebon Separation Technology Tianjin Co ltd, Zhejiang Jinmo Environment Technology Co ltd, Tianjin Polytechnic University filed Critical Rebon Separation Technology Tianjin Co ltd
Priority to CN202110177761.4A priority Critical patent/CN112875976B/zh
Publication of CN112875976A publication Critical patent/CN112875976A/zh
Application granted granted Critical
Publication of CN112875976B publication Critical patent/CN112875976B/zh
Priority to US17/665,583 priority patent/US11802068B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • B01D61/146Ultrafiltration comprising multiple ultrafiltration steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/422Electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/06Specific process operations in the permeate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/08Specific process operations in the concentrate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/18Details relating to membrane separation process operations and control pH control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2623Ion-Exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4698Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electro-osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/30Nature of the water, waste water, sewage or sludge to be treated from the textile industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本申请涉及一种印染废水中无机盐回收利用的制备方法,属于工业废水处理领域,具体包括以下工艺步骤:S1、废水预处理,对反渗透膜(RO)浓水进行去杂、软化、除COD和脱色,得到预处理后废水;S2、无机盐浓缩,对步骤S1中得到的废水进行两段电渗析:一段电渗析淡化室获得的淡水返回RO工艺前端,浓缩室获得的盐水作为二段电渗析淡化室和浓缩室的原水;二段电渗析淡化室获得的淡水返回到一段电渗析的浓缩室,浓缩室获得的盐水即为浓盐水;S3、浓盐水回用,取步骤S2得到的浓盐水脱除碱度后调节pH,即得到可回用于印染厂染布的浓盐水。本申请有效解决印染废水处理领域RO浓水仍然需要大量排放而无法回用其中无机盐的问题。

Description

一种印染废水中无机盐回收利用的制备方法
技术领域
本申请涉及工业废水处理领域,更具体地,涉及一种印染废水中无机盐回收利用的制备方法。
背景技术
印染废水污染一直在我国工业行业中名列前茅,其废水排放量占全国废水排放的11%左右,每年18~20亿吨。化学需氧量(COD)排放量每年约24~26万吨,在全工业行业中占比9%左右。目前我国已成为印染废水排放量最高的国家,主要集中在浙江、江苏、广东、福建以及山东。从污染物质来看,印染废水污染物主要来自纤维材料、纺织用浆料、印染加工所用的染料、化学药剂、后整理废水、设备冲洗水等,废水pH在10~11间,有机物含量高,COD约800~2000mg/L,含盐量高(电导率在3000uS/cm以上),同时有约10%未成功上色的染料残留在废水中。总体来看具有污染物浓度高、种类多、碱性大、毒害大及色度高等特点,属于典型的高盐、高有机物工业废水。
随着国家环保政策的收紧,尤其是“水十条”的颁布实施以及各地方不断出台较国标和行业标准更高的污水排放水质、水量双限标准,一些中小企业面临停产、减产,行业发展与水资源、水环境要求发生矛盾。一些地区也采用了印染企业集中到工业园区的措施,如浙江绍兴,在限制排水量的同时,园区内企业排放水水质要达到纳管标准,即COD 500mg/L以下,园区外则需要200mg/L以下。
目前,以“UF(或MBR)+RO”双膜法为代表的废水处理工艺是印染行业中水回用的主流工艺,RO产水直接回用,RO浓水纳管排放。由于实际印染工艺中需要加入大量的Na2SO4或NaCl作为促染剂或缓染剂帮助固色,因此纳管排放RO高盐浓水不仅造成大量盐的浪费,且排入园区污水处理厂后影响后续生化处理效果。目前,将RO浓水经中压和高压反渗透膜浓缩后,再由MVR蒸发回收固体盐是资源化利用的传统工艺和思路,但设备投资大,运行成本较高。
发明内容
针对印染废水处理过程中,RO浓水直接排放造成大量无机盐浪费的问题,本申请提供一种印染废水中无机盐资源化利用新方法。
本申请提供的一种印染废水中无机盐回收利用的制备方法采用如下的技术方案:
一种印染废水中无机盐回收利用的制备方法,具体包括以下工艺步骤:
S1、废水预处理,对RO浓水进行去杂、软化、除COD和脱色,得到预处理后的废水;
S2、无机盐浓缩,具体为对所述步骤S1中预处理后废水进行两段电渗析:一段电渗析淡化室获得的淡水返回RO工艺前端,浓缩室获得的盐水作为二段电渗析淡化室和浓缩室的原水;二段电渗析淡化室获得的淡水返回到一段电渗析的浓缩室,浓缩室获得的盐水即为浓盐水;
S3、浓盐水回用,取所述步骤S2中得到的浓盐水脱除碱度后调节到合适的pH,即得到可回用于印染厂染布的浓盐水。
一般来说,染厂在对印染废水进行RO处理前,会经过冷却、物化(絮凝或气浮)、生化、超滤(或MBR)等预处理,对印染废水中的悬浮物、COD、色度、氨氮、总磷等进行处理,去除大部分污染物后再进行RO处理。由于RO对一、二价盐和污染物均有截留作用,其产水通常情况下符合纺织染整工业回用水水质标准(FZ/T 01107-2011),因而可以直接回用;而大部分的无机盐则被RO截留,存在于RO浓水中,同时一部分污染物也被截留到RO浓水中。正是由于RO对无机盐的截留和浓缩功能,使得在RO浓水中回用无机盐成为可能。
电渗析是以直流电为推动力,利用阴、阳离子交换膜对水溶液中阴、阳离子的选择透过性,使一个水体中的离子通过膜转移到另一水体中的物质分离过程,电渗析的核心是离子交换膜。本发明正是利用离子交换膜具有选择性透过离子的功能来实现印染废水中无机盐的浓缩。电渗析在使用过程中,废水中的颗粒状物质、钙和镁离子以及有机污染物(通常用COD来表示含量高低)容易污染离子交换膜,从而影响电渗析设备的使用寿命和效果,因而将RO浓水先经过去杂、软化、除COD和脱色后,有效保证电渗析设备的使用效率和寿命。
另外,印染废水中含有500~1500mg/L的碱度,碱度主要是由碳酸氢盐、碳酸盐和氢氧化物引起的,当印染废水经RO以及电渗析多段浓缩后,其浓盐水中碱度可达15000~40000mg/L,形成缓冲溶液,从而不利于后续调碱和染色。因此本申请将经电渗析浓缩后的浓盐水脱除碱度,将浓盐水的pH调节到可回用于印染厂染布的pH。
在本申请中,印染废水中的无机盐以浓盐水的形式回用到染色工艺段,取代了传统染色时在水中添加元明粉(Na2SO4)或NaCl的工艺,大大节约了印染企业的生产成本;同时,由于电渗析的淡水中含盐量很低,通过将其返回到RO工艺前端实现水资源的进一步利用;此外,相较于传统“多级浓缩+MVR蒸发”方式回用固体盐,本申请对印染废水中无机盐回收利用的处理方式更节约能源,有效降低了运行成本。
可选的,所述步骤S1具体包括以下工艺步骤:
a.去杂,利用柱式超滤对染厂的RO浓水进行处理,去除大部分颗粒状杂质后得到超滤废水,其中超滤膜为有机膜,优选PVDF膜;孔径0.01~0.1μm,优选0.03μm;
b.软化,利用螯合树脂对步骤a中得到的超滤废水进行软化处理,得到软化废水;
c.除COD和色度,利用卷式超滤对步骤b中得到的软化废水进行处理,以去除软化废水中的COD和色度,卷式超滤的浓缩水(含大部分COD和色度)进一步处理后达标排放;卷式超滤的产水进入后续电渗析,其中浓缩水体积与进水体积比为8~20%,优选10%;卷式超滤膜的切割相对分子量为1000~6000道尔顿,优选2000道尔顿;运行压力为0.7~1.2MPa,优选0.9MPa。
通过采用上述技术方案,依次对RO浓水进行超滤、树脂软化和卷式超滤,从而基本去除RO浓水中的悬浮物、硬度、COD和色度,从而使预处理后的废水中基本只存留盐分,以便于后续电渗析的进行,也便于将处理后的浓盐水代替元明粉溶液回用至染布工序。
可选的,所述步骤S2具体包括以下工艺步骤:
a.在一段电渗析的淡化室中通入所述步骤S1中得到预处理后的废水,此时废水中大部分的悬浮物、硬度、COD和色度等污染物已经被去除,浓缩室中起初通入自来水,后期为二段电渗析淡水,启动电渗析装置;当浓缩室中的盐水电导率达到35000-60000μS/cm时,将电渗析淡化室内的淡水返回RO工艺前端,进一步回用其中的水和无机盐;浓缩室中的盐水移入二段电渗析的淡化室和浓缩室;
b.根据染厂染不同材质和颜色的布的需求,当二段电渗析浓缩室盐水电导率达到90000-120000μS/cm时,此时浓缩室得到高含盐浓盐水,将二段电渗析淡化室内的淡水回流到一段电渗析的浓缩室。
通过采用上述技术方案,每一段电渗析都需要多次更换淡化室中处理后的印染废水,才能浓缩到所需终点。当一段电渗析浓缩室中的盐水电导率达到35000-60000μS/cm后,浓缩室盐水和淡化室淡水的电导率差距达到临界值,综合浓缩效率、效果以及能耗,此时为一段电渗析浓缩的最佳终点;当一段电渗析浓缩室盐水的电导率小于35000μS/cm时,电渗析虽然可正常进行浓缩,但二段电渗析浓缩室盐水的电导率无法达到所需的数值,只能增设三段电渗析继续浓缩,导致工艺链增长,成本增加;当一段电渗析浓缩室中盐水的电导率大于60000μS/cm时,浓缩室盐水和淡化室淡水的电导率差距过大,电渗析浓缩效率降低且能耗急剧增大。
此外,经过一段电渗析后,淡化室中淡水盐浓度有较大幅度下降,但电渗析迁移离子过程不能完成盐的全部转移,一段电渗析淡化室中淡水仍然有一定盐含量,此时将一段电渗析淡化室内的淡水返回RO工艺前端,RO产水直接回用,RO浓水经步骤S1预处理后再次进入S2电渗析浓缩步骤,进一步回用其中的无机盐。对于二段电渗析,当浓缩室中浓盐水的电导率达到90000-120000μS/cm时,可满足印染厂染布的盐浓度需求,同时具有相对较低的能耗;而对于淡化室中的淡水,由于其中仍含有一部分的无机盐,且淡水中污染物浓度较低,将其回流到一段电渗析的浓缩室继续浓缩回用。系统中的主要污染物通过S1预处理工艺中的卷式超滤浓缩后,离开本系统。
可选的,所述步骤S2中,按照体积比,通入一段电渗析淡化室中预处理后的废水与通入一段电渗析浓缩室中自来水或二段电渗析淡水的比例为(3~5):1;按照体积比,通入二段电渗析淡化室中的一段电渗析浓缩室盐水与通入二段电渗析浓缩室的盐水比例为(2.5~3.5):1。
通过采用上述技术方案,通过控制电渗析运行时浓缩室和淡化室的液体体积比,有效保障了电渗析浓缩室中的盐水浓度能够达到终点,同时降低每一段电渗析更换淡化室中淡水的次数,提高浓缩效率。另外,在电渗析浓缩过程中,淡化室中的部分水与无机盐离子一起透过离子交换膜,进入浓缩室内,使得浓缩室盐水的体积逐渐增大。因此,通过控制电渗析运行时浓缩室和淡化室的液体体积比,在降低电渗析更换淡化室淡水次数的同时,显著降低了最终浓缩室高盐水的体积,有效减轻后续S3步骤的处理压力。
可选的,所述步骤S3具体包括以下工艺步骤:
a.取所述步骤S2中二段电渗析浓缩室中的浓盐水,加入98%的硫酸用于脱除碱度,当浓盐水pH为1.2~3.5时停止,优选pH为1.5;
b.取步骤a调酸后的浓盐水,加入30%的液碱(NaOH),当浓盐水pH为8~9时停止,优选pH为8.5;
c.取步骤b调碱后的浓盐水,根据染色需求,加入适量的纯碱,得到可用于印染厂染布的浓盐水。
在印染厂染色工艺中,用来染色的水溶液除添加元明粉(Na2SO4)外,还需要加入纯碱,使染料与纤维发生化学结合而固着在纤维上。由于印染废水中含有500~1500mg/L的碱度,当印染废水经RO以及电渗析多段浓缩后,其浓盐水中碱度可达15000~40000mg/L,形成缓冲溶液,从而使得浓盐水的pH值相对稳定,不利于后续加碱调pH值。
本申请中将经电渗析浓缩后的浓盐水,加硫酸脱除绝大部分碱度后,加液碱回调到pH为8~9,最后根据染色需求,加入适量的纯碱,即得到可回用于印染厂染布的浓盐水,实现印染废水中无机盐的回收利用。
优选的,本申请的上述制备方法同样适用于经过纳滤处理后的浓水。
综上所述,本申请具有以下有益效果:
1、在本申请中,印染废水所含的无机盐以浓盐水的形式得到回收利用,与传统的RO浓水经中压和高压反渗透膜浓缩后,再由MVR蒸发回收固体盐相比,工艺路线简单,投资和运行成本较低。
2、本申请在回用印染废水中无机盐的同时,一段电渗析系统淡化室中的淡水可重新返回到RO工艺前端,其产水可直接回用,浓水重新进入本申请系统中,从而进一步回用其中的水和无机盐。
3、在本申请中,印染废水进入电渗析浓缩工艺前经过卷式超滤膜作为预过滤,去除了废水中的大部分COD和色度等污染物,有效减缓电渗析中离子交换膜的污染,延长离子交换膜使用寿命,保障了系统的稳定运行。
4、在本申请中,印染废水中无机盐回收率达到77%~89%,水回用率(含RO部分)可达80%以上,对本发明中卷式超滤的浓缩水进一步处理,可为印染行业废水零(近零)排放提供一种新途径。
附图说明
图1是本发明中实施例的工艺流程图。
具体实施方式
为了使本领域技术人员能够更清楚地理解本发明,以下结合实施例对本发明作进一步详细说明,但应当理解的是,以下实施例仅为本发明的优选实施方式,而本发明要求保护的范围并不仅局限于此。
设备和物料来源
柱式超滤,天津膜天膜科技股份有限公司;
螯合树脂,D851型号,浙江争光实业股份有限公司;
卷式超滤:美国GE(中国)公司;
电渗析:杭州蓝然环境技术股份有限公司;
硫酸:纯度98%,绍兴鼎垚化工物资有限公司;
液碱:纯度30%,浙江中星化工试剂有限公司;
纯碱:杭州龙山化工有限公司。
RO浓水:绍兴市某印染企业,其水质参数具体见下表1。
表1 RO浓水主要水质参数
Figure BDA0002940541030000061
实施例1
参照附图1,本申请具体包括以下工艺步骤:
S1、废水预处理,具体为对RO浓水进行去杂、软化、除COD和脱色,得到预处理后的废水;
S2、无机盐浓缩,具体为对所述步骤S1中预处理后废水进行两段电渗析:一段电渗析淡化室获得的淡水返回RO工艺前端,浓缩室获得的盐水作为二段电渗析淡化室和浓缩室的原水;二段电渗析淡化室获得的淡水返回到一段电渗析的浓缩室,浓缩室获得的盐水即为浓盐水;
S3、浓盐水回用,取所述步骤S2中得到的浓盐水脱除碱度后调节到合适的pH,即得到可回用于印染厂染布的浓盐水。
步骤S1具体包括以下工艺步骤:
a.去杂,利用柱式超滤对染厂的RO浓水进行处理,去除大部分颗粒状杂质后得到超滤废水,其中超滤膜为PVDF有机膜,孔径0.03μm;
b.软化,利用螯合树脂对步骤a中得到的超滤废水进行软化处理,得到软化废水;
c.除COD和色度,利用卷式超滤对步骤b中得到的软化废水进行处理,以去除软化废水中的COD和色度;卷式超滤的浓缩水进一步处理后达标排放;卷式超滤的产水进入后续电渗析。其中浓缩水体积与进水体积比为10%,卷式超滤膜的切割相对分子量为2000道尔顿,运行压力为0.9MPa。
步骤S2具体包括以下工艺步骤:
a.在一段电渗析的淡化室中通入所述步骤S1中得到预处理后的废水,浓缩室中起初通入自来水,后期为二段电渗析的淡水;按照体积比,通入一段电渗析淡化室中预处理后的废水与通入一段电渗析浓缩室中自来水(或二段电渗析淡水)的比例为3.5:1;启动电渗析装置,当浓缩室中的盐水电导率达到40000μS/cm时,将电渗析淡化室中的淡水返回RO工艺前端,浓缩室盐水移入二段电渗析的淡化室和浓缩室;
b.在二段电渗析的浓缩室和淡化室中均通入步骤a中的一段浓缩室盐水;按照体积比,通入二段电渗析淡化室中的一段浓缩室盐水与通入二段电渗析浓缩室中盐水的比例为3:1;当二段电渗析浓缩室盐水电导率达到100000μS/cm时,此时浓缩室得到高含盐浓盐水,将电渗析淡化室中的淡水回流到一段电渗析的浓缩室;
步骤S3具体包括以下工艺步骤:
a.取步骤S2中二段电渗析浓缩室中的浓盐水,加入98%的硫酸用于脱除碱度,当浓盐水pH为1.5时停止;
b.取步骤a调酸后的浓盐水,加入30%的液碱(NaOH),当浓盐水pH为8.5时停止;
c.取步骤b调碱后的浓盐水,根据染色需求,加入适量的纯碱(Na2CO3),得到可用于印染厂染布的浓盐水。
实施例2~13
实施例2~13与实施例1的不同之处在于,各项工艺参数与实施例1不同,其余与实施例1相同,且各项工艺参数如表2所示。
表2实施例工艺参数
Figure BDA0002940541030000071
对比实施例1
对比实施例1与实施例1的不同之处在于卷式超滤浓缩水与进水体积比为25%。
对比实施例2
对比实施例2与实施例1的不同之处在于卷式超滤膜的切割分子量为10000D。
对比实施例3
对比实施例3与实施例1的不同之处在于印染废水经螯合树脂软化后直接进入一段电渗析。
对比实施例4
对比实施例4与实施例1的不同之处在于一段电渗析淡化室与浓缩室水体积比例为2:1。
对比实施例5
对比实施例5与实施例1的不同之处在于二段电渗析淡化室与浓缩室水体积比例为2:1。
对比实施例6
对比实施例6与实施例1的不同之处在于浓盐水脱除碱度加酸时pH值终点为4。
对比实施例7
对比实施例7与实施例1的不同之处在于浓盐水不经过脱除碱度环节直接用来染色。
对比实施例1~7各项工艺参数如表3所示。
表3对比实施例工艺参数
Figure BDA0002940541030000081
检测方法:
使用DDS-11A电导率仪测试水的电导率;色度检测按照《GB11903-1989-水质色度的测定》中的规定进行;COD检测按照《HJ-T 399-2007水质化学需氧量的测定快速消解分光光度法》中的规定进行;碱度按照《GB/T15451-2006工业循环冷却水总碱及酚酞碱度的测定》中的规定进行;色差利用Datacolor 60测色仪测定;TDS按照《GB/T 5750.4-2006生活饮用水标准检验方法感官性状和物理指标》进行测定。
无机盐回收利用率计算方法:
结合附图1,本发明整个工艺中,除卷式超滤工艺段的浓缩水外排之外,其他工艺段中没有外排口,因此印染废水中无机盐回收利用率可按如下公式计算:
Figure BDA0002940541030000091
表4为各实施例以及对比实施例中卷式超滤产水和进水的TDS值以及由上式计算出的无机盐回收利用率。
表4无机盐回收利用率
Figure BDA0002940541030000092
Figure BDA0002940541030000101
表5为各实施例以及对比实施例最终获得的浓盐水各项水质指标和染色色差。
表5浓盐水水质指标及染色色差
Figure BDA0002940541030000102
Figure BDA0002940541030000111
本发明提供了一种印染废水中无机盐回收利用的制备方法,在评价实施效果时主要从以下几个方面考虑:一是染色色差,其染色效果应符合《GB/T 21898-2008纺织品颜色表示方法》中色差≤1的要求;二是无机盐的回收利用率应尽可能高;三是应尽可能使印染废水中的主要污染物指标在较低水平,以保障各工艺段的稳定运行;四是浓盐水应具有一定的含盐量,在回用染布时,避免因盐水浓度偏低而外加固体盐;五是应考虑运行成本,尽可能使系统运行能耗低。
综合考虑以上因素,参见表4和表5,实施例1~13的染色色差都符合要求,无机盐的回收利用率均在77%以上,达到预期效果。单从无机盐回收利用率角度考虑,实施例2和实施例5具有较高的利用率,但实施例2中为达到卷式超滤浓缩水与进水体积比为8%,需要提高泵的运行压力,运行能耗相对加大,同时加剧了卷式超滤膜的污染;实施例5由于采用切割分子量相对较高的卷式超滤膜,其产水中主要污染物浓度有所提升,增加了后端电渗析工作压力。综上,优选实施例1的工艺参数。
对于对比实施例1,尽管染色色差符合要求,但其无机盐回收利用率相对较低,只有72.27%;对比实施例2和3染色色差较大,不符合染色要求,尤其对比实施例3,省略了卷式超滤这一环节,造成了后端离子交换膜的迅速污染,需要频繁清洗,工艺不能稳定运行;对比实施例4和5,虽然染色符合要求,但浓盐水中无机盐的含量相对较低,需要外加固体无机盐,增加了操作步骤和成本;对比实施例6,浓盐水脱除碱度加酸时pH值终点为4,浓盐水中的碱度脱除不足,染色效果不符合要求;对比实施例7中省略了脱除碱度环节,其碱度高达22800mg/L,浓盐水形成缓冲溶液,在加纯碱调节pH时,达不到染厂的要求,无法进行染色。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (9)

1.一种印染废水中无机盐回收利用的制备方法,其特征在于:具体包括以下工艺步骤:
S1、废水预处理,对RO浓水进行去杂、软化、除COD和脱色,得到预处理后的废水;
S2、无机盐浓缩,具体为对所述步骤S1中预处理后废水进行两段电渗析:一段电渗析淡化室获得的淡水返回RO工艺前端,电渗析浓缩室获得的盐水作为二段电渗析淡化室和浓缩室的原水;二段电渗析淡化室获得的淡水返回到一段电渗析的浓缩室,浓缩室获得的盐水即为浓盐水;
S3、浓盐水回用,取所述步骤S2中得到的浓盐水脱除碱度后调节pH,即得到可回用于印染厂染布的浓盐水。
2.根据权利要求1所述的一种印染废水中无机盐回收利用的制备方法,其特征在于:所述步骤S1具体包括以下工艺步骤:
a.去杂,利用柱式超滤对染厂的RO浓水进行处理,得到超滤废水,其中超滤膜为有机膜,孔径0.01~0.1μm;
b.软化,利用螯合树脂对步骤a中得到的超滤废水进行软化处理,得到软化废水;
c.除COD和色度,利用卷式超滤对步骤b中得到的软化废水进行处理,以去除软化废水中的大部分COD和色度;卷式超滤的浓缩水进一步处理后达标排放;卷式超滤膜的产水进入后续电渗析工艺段,其中浓缩水体积与进水体积比为8~20%,卷式超滤膜切割相对分子量为1000~6000道尔顿,运行压力为0.7~1.2 MPa。
3.根据权利要求1所述的一种印染废水中无机盐回收利用的制备方法,其特征在于:所述步骤S2具体包括以下工艺步骤:
a.在一段电渗析的淡化室中通入所述步骤S1中得到预处理后的废水,浓缩室中起初通入自来水,当电渗析浓缩室中盐水电导率达到35000-60000μS/cm时,将电渗析淡化室内的淡水返回RO工艺前端,电渗析浓缩室盐水移入二段电渗析的淡化室和浓缩室;
b.当二段电渗析浓缩室盐水电导率达到90000-120000μS/cm时,此时浓缩室得到高含盐的浓盐水,将二段电渗析淡化室内的淡水回流到一段电渗析的浓缩室。
4.根据权利要求3所述的一种印染废水中无机盐回收利用的制备方法,其特征在于:所述步骤S2中,按照体积比,通入一段电渗析淡化室中预处理后的废水与通入一段电渗析浓缩室中自来水或二段电渗析淡水的比例为(3~5):1;按照体积比,通入二段电渗析淡化室中的一段电渗析浓缩室盐水与通入二段电渗析浓缩室的盐水比例为(2.5~3.5):1。
5.根据权利要求1所述的一种印染废水中无机盐回收利用的制备方法,其特征在于:所述步骤S3具体包括以下工艺步骤:
a.取所述步骤S2中二段电渗析浓缩室中的浓盐水,加入98%的硫酸用于脱除碱度,直至浓盐水pH为1.2~3.5;
b.取步骤a调酸后的浓盐水,加入30%的液碱,当浓盐水pH为8~9时停止;
c. 取步骤b调碱后的浓盐水,根据染色需求,加入纯碱,得到可用于印染厂染布的浓盐水。
6.根据权利要求1所述的一种印染废水中无机盐回收利用的制备方法,其特征在于:所述的无机盐主要包括Na2SO4和NaCl。
7.根据权利要求1所述的一种印染废水中无机盐回收利用的制备方法,其特征在于:所述RO浓水的主要水质指标:COD不超过500 mg/L,色度不超过400度,浊度不超过1NTU,电导率在8000~20000μS/cm。
8.根据权利要求1所述的一种印染废水中无机盐回收利用的制备方法,其特征在于:所述步骤S3获得的浓盐水中COD不超过300 mg/L,色度不超过100度,电导率不低于90000μS/cm,碱度不高于1500 mg/L。
9.根据权利要求1-8项任一所述的一种印染废水中无机盐回收利用的制备方法,其特征在于:该方法同样适用于经纳滤处理后的浓水。
CN202110177761.4A 2021-02-07 2021-02-07 一种印染废水中无机盐回收利用的制备方法 Active CN112875976B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110177761.4A CN112875976B (zh) 2021-02-07 2021-02-07 一种印染废水中无机盐回收利用的制备方法
US17/665,583 US11802068B2 (en) 2021-02-07 2022-02-06 Preparation method for recycling inorganic salt in printing and dyeing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110177761.4A CN112875976B (zh) 2021-02-07 2021-02-07 一种印染废水中无机盐回收利用的制备方法

Publications (2)

Publication Number Publication Date
CN112875976A true CN112875976A (zh) 2021-06-01
CN112875976B CN112875976B (zh) 2021-11-12

Family

ID=76056281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110177761.4A Active CN112875976B (zh) 2021-02-07 2021-02-07 一种印染废水中无机盐回收利用的制备方法

Country Status (2)

Country Link
US (1) US11802068B2 (zh)
CN (1) CN112875976B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114291938A (zh) * 2022-01-26 2022-04-08 浙江津膜环境科技有限公司 一种高盐印染废水回收利用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758347A (en) * 1986-02-07 1988-07-19 Ciba-Geigy Corporation Process for purifying dyeing wastewaters
CN108623104A (zh) * 2018-07-16 2018-10-09 南京工业大学 一种基于纳滤膜调配的高盐废水零排放处理方法及装置
CN110697960A (zh) * 2019-10-16 2020-01-17 德蓝水技术股份有限公司 一种通过电渗析技术从印染废水中分离盐的方法
CN111825276A (zh) * 2020-07-15 2020-10-27 杭州蓝然环境技术股份有限公司 一种活性染料染色残液硫酸钠促染剂资源化的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758347A (en) * 1986-02-07 1988-07-19 Ciba-Geigy Corporation Process for purifying dyeing wastewaters
CN108623104A (zh) * 2018-07-16 2018-10-09 南京工业大学 一种基于纳滤膜调配的高盐废水零排放处理方法及装置
CN110697960A (zh) * 2019-10-16 2020-01-17 德蓝水技术股份有限公司 一种通过电渗析技术从印染废水中分离盐的方法
CN111825276A (zh) * 2020-07-15 2020-10-27 杭州蓝然环境技术股份有限公司 一种活性染料染色残液硫酸钠促染剂资源化的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114291938A (zh) * 2022-01-26 2022-04-08 浙江津膜环境科技有限公司 一种高盐印染废水回收利用方法

Also Published As

Publication number Publication date
US11802068B2 (en) 2023-10-31
CN112875976B (zh) 2021-11-12
US20220250958A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
Lafi et al. Treatment of textile wastewater by a hybrid ultrafiltration/electrodialysis process
CN209368040U (zh) 一种高矿化度矿井水近零排放处理及综合资源化利用系统
CN104370405B (zh) 一种高硬度高盐分废水零排放的处理方法
CN105439341B (zh) 一种含盐废水处理系统及处理方法
CN110526512B (zh) 一种高盐高cod废水回收零排放系统及工艺
CN108117207B (zh) 一种含盐废水零排放处理工艺方法
CN106430794A (zh) 一种脱硫废水资源化处理方法及处理系统
CN104276711A (zh) 一种工业污水回用及零排放的反渗透膜法处理工艺
CN108275817A (zh) 一种高硬度高盐分废水资源化的处理方法
CN105000755A (zh) 一种废水“零排放”工业污水处理系统及处理方法
CN106396232B (zh) 一种高盐印染废水的零排放系统及方法
CN111362283B (zh) 一种黏胶废水资源化处理方法
CN205603386U (zh) 浓盐水零排放膜浓缩设备
CN107857438B (zh) 一种化工企业及园区废水处理零排放工艺
CN106587451B (zh) 用于微污染水源水处理的去离子一体化处理方法及其装置
CN106966536A (zh) 浓盐水零排放膜浓缩工艺及设备
CN113651468A (zh) 一种海水资源化处理工艺
CN101224930A (zh) 一种氨纶印染废水零排放回用处理方法
CN114085000A (zh) 一种含有印染废水的废水近零排放/零排放处理方法
CN112875976B (zh) 一种印染废水中无机盐回收利用的制备方法
CN110697960A (zh) 一种通过电渗析技术从印染废水中分离盐的方法
CN210528683U (zh) 可实现废酸、废碱、结晶盐资源化的废水零排放系统
CN110194559A (zh) 一种色纺纱染色废水零排放及资源回用的工艺方法
CN108164068A (zh) 一种灭多威肟生产废水的预处理工艺
CN107117758A (zh) 一种电厂脱硫废水低耗零排放处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant