CN112859173B - 一种低勘探新区断陷湖盆烃源岩sastf预测方法 - Google Patents

一种低勘探新区断陷湖盆烃源岩sastf预测方法 Download PDF

Info

Publication number
CN112859173B
CN112859173B CN202110038710.3A CN202110038710A CN112859173B CN 112859173 B CN112859173 B CN 112859173B CN 202110038710 A CN202110038710 A CN 202110038710A CN 112859173 B CN112859173 B CN 112859173B
Authority
CN
China
Prior art keywords
lake
deep
semi
deep lake
depressions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110038710.3A
Other languages
English (en)
Other versions
CN112859173A (zh
Inventor
李磊
龚广传
剧永涛
张威
刘豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Shiyou University
Original Assignee
Xian Shiyou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Shiyou University filed Critical Xian Shiyou University
Priority to CN202110038710.3A priority Critical patent/CN112859173B/zh
Publication of CN112859173A publication Critical patent/CN112859173A/zh
Application granted granted Critical
Publication of CN112859173B publication Critical patent/CN112859173B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/48Processing data
    • G01V1/50Analysing data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/306Analysis for determining physical properties of the subsurface, e.g. impedance, porosity or attenuation profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/616Data from specific type of measurement
    • G01V2210/6169Data from specific type of measurement using well-logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/62Physical property of subsurface
    • G01V2210/624Reservoir parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种低勘探新区断陷湖盆烃源岩SASTF预测方法,先在钻井已证实富烃洼陷,计算各烃源岩发育层系的洼陷总沉降量,求取最小值作为可发育深湖‑半深湖环境总沉降量的下限;总结发育深湖‑半深湖烃源岩地层的地震相,建立深湖‑半深湖烃源岩地震相识别标准;然后在低勘探待证实洼陷,计算洼陷总沉降量,寻找潜在可发育深湖‑半深湖的洼陷;在潜在可发育深湖‑半深湖的洼陷,依据洼陷可容空间与沉积物供给关系寻找发育深湖‑半深湖泥岩的洼陷;最后综合考虑湖盆类型,结合深湖‑半深湖相烃源岩地震相识别标准,预测烃源岩空间展布;本发明能够准确预测优质烃源岩发育的富烃洼陷,降低油气勘探风险,提高钻井成功率,降低油气勘探成本。

Description

一种低勘探新区断陷湖盆烃源岩SASTF预测方法
技术领域
本发明涉及烃源岩预测技术领域,具体为一种低勘探新区断陷湖盆烃源岩SASTF预测方法。
背景技术
优质烃源岩的准确预测与否制约了我国油气勘探产业的发展,准确识别、预测富烃洼陷可以降低油气藏勘探风险、提高钻井成功率,降低油气藏勘探成本,具有重要意义。
现有的基于地球化学、钻测井资料的烃源岩预测和评价方法,其通过泥岩样品实测TOC数据与测井、地震资料建立烃源岩TOC定量预测模型,进行烃源岩预测,其存在的缺点为:在无井或少井的低勘探新区有一定的局限性,不能实现对烃源岩的有效预测。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种低勘探新区断陷湖盆烃源岩SASTF预测方法,能够实现对烃源岩的有效预测。
为达到上述目的,本发明采取的技术方案为:
一种低勘探新区断陷湖盆烃源岩SASTF预测方法,包括以下步骤:
1)在n个钻井已证实的富烃洼陷,分别利用公式(1)~(3)计算各烃源岩发育层系洼陷总沉降量Sm(Total Subsidence):Sm1,Sm2,Sm3,……,Smn,并求取最小值Sm0=min{Sm1,Sm2,Sm3……Smn}作为可发育深湖-半深湖环境标准沉降量的下限;
Sm=ST+STh (1)
Figure BDA0002894598430000021
Figure BDA0002894598430000022
其中,Sm:总沉降量,m;ST:构造沉降量,m;STh:热沉降量,m;ρm:地幔密度,3.33g/cm3;ρs:沉积物平均密度,2.30g/cm3;ρw:湖水密度,1.00g/cm3;Hc:经压实校正的沉积物充填厚度,m;Wd:古湖水深,m;ΔSL:相对于现今的古湖平面变化量,m;β:拉伸系数,1.1~1.7,无量纲;αv:热膨胀系数,3.28×10-5C-1;Ta:软流圈温度,1333℃;yL:初始岩石圈厚度,125km;
2)在n个钻井证实的富烃洼陷,归纳总结发育深湖-半深湖烃源岩地层的地震相特征,建立深湖-半深湖烃源岩地震相F(Seismic Facies)识别标准;
3)利用公式(1)~(3),计算低勘探新区待证实的k个洼陷总沉降量S:S1,S2,……,Sk,依据S>Sm0寻找潜在可发育深湖-半深湖的洼陷;
4)在潜在可发育深湖-半深湖的洼陷中,依据洼陷可容空间与沉积物供给关系A/S(Accommodation/SedimentSupply),进一步寻找A/S≥1、发育深湖-半深湖泥岩的洼陷;
5)综合考虑湖盆类型T(Lake-Basin Types),平衡充填洼陷发育的深湖-半深湖泥岩有利于烃源岩发育,结合深湖-半深湖相烃源岩地震相F(Seismic Facies)识别标准,预测烃源岩空间展布。
本发明的有益效果为:
本发明采用烃源岩SASTF预测技术,解决了无井或少井的低勘探新区无法利用现有基于地球化学、钻测井资料的烃源岩预测和评价方法进行预测烃源岩的难题,降低油气勘探风险,真正提高了油气勘探成功率。
本发明能够准确预测优质烃源岩发育的富烃洼陷,可应用于低勘探区油气勘探工作中,可以降低油气勘探风险,能够有效提高钻井成功率,降低油气勘探成本,具有重要的应用前景和经济价值。
附图说明
图1为本发明的流程图。
图2为本发明实施例1的毗邻低勘探A区的钻井已证实的6个富烃洼陷(Am1~Am6)总沉降量直方图。
图3为本发明实施例1的毗邻低勘探A区的钻井已证实的6个富烃洼陷深湖-半深湖烃源岩典型地震相。
图4为本发明实施例1的低勘探A区各洼陷(A1~A8)总沉降量直方图。
图5为本发明实施例1的低勘探A区A1湖盆类型、地震相典型地震剖面。
图6为本发明实施例1的低勘探A区A1洼陷某段烃源岩预测平面图。
图7为本发明实施例2的毗邻低勘探B区的钻井已证实的5个富烃洼陷(Bm1~Bm5)总沉降量直方图。
图8为本发明实施例2的毗邻低勘探B区的钻井已证实的5个富烃洼陷深湖-半深湖烃源岩典型地震相。
图9为本发明实施例2的低勘探B区各洼陷(B1~B7)总沉降量直方图。
图10为本发明实施例2的低勘探B区B1湖盆类型、地震相典型地震剖面。
图11为本发明实施例2的低勘探B区B1洼陷某段烃源岩预测平面图。
具体实施方式
下面结合附图和实施例对本发明作详细说明。
实施例1,参照图1,低勘探新区A,一种低勘探新区断陷湖盆烃源岩SASTF预测方法,包括以下步骤:
1)在6个钻井已证实的富烃洼陷,分别利用公式(1)~(3)计算各烃源岩发育层系的洼陷总沉降量Sm(TotalSubsidence):Sm1,Sm2,Sm3,……,Sm6,并求取最小值Sm0=min{Sm1,Sm2,Sm3……Sm6}=450作为可发育深湖-半深湖环境标准沉降量的下限;
Sm=ST+STh (1)
Figure BDA0002894598430000041
Figure BDA0002894598430000042
其中,Sm:总沉降量,m;ST:构造沉降量,m;STh:热沉降量,m;ρm:地幔密度,3.33g/cm3;ρs:沉积物平均密度,2.30g/cm3;ρw:湖水密度,1.00g/cm3;Hc:经压实校正的沉积物充填厚度,m;Wd:古水深,m;ΔSL:相对于现今的古湖平面变化量,m;β:拉伸系数,1.1~1.7,无量纲;αv:热膨胀系数,3.28×10-5C-1;Ta:软流圈温度,1333℃;yL:初始岩石圈厚度,125km;本实施例可发育深湖-半深湖洼陷总沉降量下限Sm0的确定,如图2所示,从图中可以看出发育深湖-半深湖洼陷总沉降量下限Sm0=450m;
2)在6个钻井证实的富烃洼陷,归纳总结发育深湖-半深湖烃源岩地层的地震相特征,建立深湖-半深湖烃源岩地震相F(Seismic Facies)识别标准,如图3所示,从图中可以看出典型深湖-半深湖烃源岩地震相具有4类特征之一:中低振幅、中低频波状-杂乱特征;低振幅、低频复合-空白反射特征;低振幅、中低频低连续复合特征;中强振幅平行亚平行反射夹无反射特征;
3)利用公式(1)~(3),计算低勘探新区待证实的8个洼陷总沉降量S:S1,S2,……,S8,依据S>Sm0=450m寻找潜在可发育深湖-半深湖的洼陷,如图4所示,从图中可以看出A1洼、A5洼、A6洼和A8洼的总沉降量大于Sm0(450m),这4个洼陷均具有发育深湖-半深湖的潜力;
4)在潜在可发育深湖-半深湖的洼陷,依据洼陷可容空间与沉积物供给关系A/S(Accommodation/Sediment Supply),进一步寻找A/S≥1、发育深湖-半深湖泥岩的洼陷,如图5所示,从图中可以看出A1洼A/S≥1,洼陷发育深湖-半深湖泥岩;
5)综合考虑湖盆类型T(Lake-Basin Type),平衡充填洼陷发育的深湖-半深湖泥岩有利于烃源岩发育,结合深湖-半深湖相烃源岩地震相F(SeismicFacies)识别标准,预测烃源岩空间展布,如图6所示,从图中可以看出A1洼陷上文昌组发育深湖-半深湖相烃源岩,面积42km2
本实施例的有益效果为:a)本实施例基于钻井已证实富烃洼陷的烃源岩判识标准,利用低勘探新区待证实洼陷的总沉降量S、洼陷A/S、湖盆类型T、地震相F等因素预测烃源岩,克服了现有基于地球化学、钻测井资料的烃源岩预测和评价方法在无井或少井的低勘探新区无法进行烃源岩预测的局限性。
b)本实施例基于低勘探新区地震资料,综合总沉降量S、A/S、湖盆类型T、地震相F等因素进行烃源岩预测,减小了地震反演预测烃源岩这一地球物理反演问题解的多解性。
c)本实施例的烃源岩空间预测结果,有效推进了低勘探A区目标评价,降低了勘探风险。
实施例2,参照图1,低勘探新区B,一种低勘探新区断陷湖盆烃源岩SASTF预测方法,包括以下步骤:
1)在5个钻井已证实的富烃洼陷,分别利用公式(1)~(3)计算各烃源岩发育层系的洼陷总沉降量Sm(TotalSubsidence):Sm1,Sm2,Sm3,……,Sm5,并求取最小值Sm0=min{Sm1,Sm2,Sm3……Sm5}=480作为可发育深湖-半深湖环境标准沉降量的下限;
Sm=ST+STh (1)
Figure BDA0002894598430000061
Figure BDA0002894598430000071
其中,Sm:总沉降量,m;ST:构造沉降量,m;STh:热沉降量,m;ρm:地幔密度,3.33g/cm3;ρs:沉积物平均密度,2.30g/cm3;ρw:湖水密度,1.00g/cm3;Hc:经压实校正的沉积物充填厚度,m;Wd:古水深,m;ΔSL:相对于现今的古湖平面变化量,m;β:拉伸系数,1.1~1.7,无量纲;αv:热膨胀系数,3.28×10-5C-1;Ta:软流圈温度,1333℃;yL:初始岩石圈厚度,125km。本实施例B可发育深湖-半深湖洼陷总沉降量下限Sm0的确定,如图7所示,从图中可以看出发育深湖-半深湖洼陷总沉降量下限Sm0=480m;
2)在5个钻井证实的富烃洼陷,归纳总结发育深湖-半深湖烃源岩地层的地震相特征,建立深湖-半深湖烃源岩地震相F(Seismic Facies)识别标准,如图8所示,从图中可以看出典型深湖-半深湖烃源岩地震相具有4类特征之一:中低振幅、中低频波状-杂乱特征;低振幅、低频复合-空白反射特征;低振幅、中低频低连续复合特征;中强振幅平行亚平行反射夹无反射特征;
3)利用公式(1)~(3),计算低勘探区待证实的7个洼陷总沉降量S:S1,S2,……,S7,依据S>Sm0=480m寻找潜在的深湖-半深湖洼陷,如图9所示,从图中可以看出B1洼~B6洼的总沉降量大于Sm0(480m),这6个洼陷均具有发育深湖-半深湖的潜力;
4)在潜在可发育深湖-半深湖的洼陷,依据洼陷可容空间与沉积物供给关系A/S(Accommodation/Sediment Supply),进一步寻找A/S≥1、发育深湖-半深湖泥岩的洼陷,如图10所示,从图中可以看出B1洼A/S≥1,洼陷发育深湖-半深湖泥岩;
5)综合考虑湖盆类型T(Lake-Basin Type),平衡充填洼陷发育的深湖-半深湖泥岩有利于烃源岩发育,结合深湖-半深湖相烃源岩地震相F(Seismic Facies)识别标准,预测烃源岩空间展布,如图11所示,从图中可以看出B1洼陷和B2洼陷恩平组发育深湖-半深湖相烃源岩,面积分别为25km2和37km2
本实施例的有益效果为:a)本实施例基于钻井已证实富烃洼陷的烃源岩判识标准,利用低勘探新区待证实洼陷的总沉降量S、洼陷A/S、湖盆类型T、地震相F等因素预测烃源岩,克服了现有基于地球化学、钻测井资料的烃源岩预测和评价方法在无井或少井的低勘探新区无法进行烃源岩预测的局限性。
b)本实施例基于低勘探新区地震资料,综合总沉降量S、洼陷A/S、湖盆类型T、地震相F等因素进行烃源岩预测,减小了地震反演预测烃源岩这一地球物理反演问题解的多解性。
c)基于本实施例的低勘探新区断陷湖盆烃源岩SASTF预测技术的烃源岩空间预测结果,有效推进了低勘探B区目标评价,降低了勘探风险。

Claims (1)

1.一种低勘探新区断陷湖盆烃源岩SASTF预测方法,其特征在于,包括以下步骤:
1)在n个钻井已证实的富烃洼陷,分别利用公式(1)~(3)计算各烃源岩发育层系洼陷总沉降量Sm(Total Subsidence):Sm1,Sm2,Sm3,……,Smn,并求取最小值Sm0=min{Sm1,Sm2,Sm3……Smn}作为可发育深湖-半深湖环境标准沉降量的下限;
Sm=ST+STh (1)
Figure FDA0004117213000000011
Figure FDA0004117213000000012
其中,Sm:总沉降量,m;ST:构造沉降量,m;STh:热沉降量,m;ρm:地幔密度,3.33g/cm3;ρs:沉积物平均密度,2.30g/cm3;ρw:湖水密度,1.00g/cm3;Hc:经压实校正的沉积物充填厚度,m;Wd:古湖水深,m;ΔSL:相对于现今的古湖平面变化量,m;β:拉伸系数,1.1~1.7,无量纲;αv:热膨胀系数,3.28×10-5C-1;Ta:软流圈温度,1333℃;yL:初始岩石圈厚度,125km;
2)在n个钻井证实的富烃洼陷,归纳总结发育深湖-半深湖烃源岩地层的地震相特征,建立深湖-半深湖烃源岩地震相F(Seismic Facies)识别标准;
3)利用公式(1)~(3),计算低勘探新区待证实的k个洼陷总沉降量S:S1,S2,……,Sk,依据S>Sm0寻找潜在可发育深湖-半深湖的洼陷,Sm0为发育深湖-半深湖环境标准沉降量的下限;
4)在潜在可发育深湖-半深湖的洼陷中,依据洼陷可容空间与沉积物供给关系A/S(Accommodation/Sediment Supply),进一步寻找A/S≥1、发育深湖-半深湖泥岩的洼陷;
5)综合考虑湖盆类型T(Lake-Basin Types),平衡充填洼陷发育的深湖-半深湖泥岩有利于烃源岩发育,结合深湖-半深湖相烃源岩地震相F(Seismic Facies)识别标准,预测烃源岩空间展布。
CN202110038710.3A 2021-01-12 2021-01-12 一种低勘探新区断陷湖盆烃源岩sastf预测方法 Active CN112859173B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110038710.3A CN112859173B (zh) 2021-01-12 2021-01-12 一种低勘探新区断陷湖盆烃源岩sastf预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110038710.3A CN112859173B (zh) 2021-01-12 2021-01-12 一种低勘探新区断陷湖盆烃源岩sastf预测方法

Publications (2)

Publication Number Publication Date
CN112859173A CN112859173A (zh) 2021-05-28
CN112859173B true CN112859173B (zh) 2023-04-18

Family

ID=76003052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110038710.3A Active CN112859173B (zh) 2021-01-12 2021-01-12 一种低勘探新区断陷湖盆烃源岩sastf预测方法

Country Status (1)

Country Link
CN (1) CN112859173B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116520421B (zh) * 2023-06-29 2023-10-13 中海石油(中国)有限公司深圳分公司 断陷湖盆洼陷生烃潜力定量评价方法及系统
CN118068440A (zh) * 2024-01-25 2024-05-24 中海石油(中国)有限公司海南分公司 一种低勘探程度区烃源岩综合识别评价方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111101935A (zh) * 2019-12-25 2020-05-05 中海石油(中国)有限公司 一种少井条件下的油页岩预测方法
AU2020101809A4 (en) * 2020-06-09 2020-09-17 China University Of Geosciences, Beijing A simulation system for depositional sequence formation and evolution

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104111483B (zh) * 2014-03-26 2017-07-21 中国石油化工股份有限公司 一种断陷湖盆斜坡带油藏分布的勘探方法
CN106291698B (zh) * 2016-08-03 2018-07-13 中国石油天然气股份有限公司 地震相沉积相确定方法和装置
CN107015290B (zh) * 2017-03-13 2018-05-08 西北大学 一种改造型断陷盆地原始沉积面貌恢复的方法
RU2661062C1 (ru) * 2017-06-26 2018-07-11 Федеральное государственное бюджетное учреждение науки Институт Земной коры Сибирского отделения Российской академии наук Способ выявления рапогазоносных структур с аномально высоким пластовым давлением флюидов
CN108680956B (zh) * 2018-01-08 2020-04-10 中国石油大港油田勘探开发研究院 一种富油凹陷成熟探区整体勘探方法
CN110441813B (zh) * 2019-07-25 2021-01-01 中国石油大学(北京) 一种湖相优质烃源岩的发育分布的预测方法
AU2020102186A4 (en) * 2020-09-09 2020-10-15 Xi’an Northwest Nonferrous Geophysical & Geochemical Exploration Co., Ltd A method for positioning sedimentary bauxite ore

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111101935A (zh) * 2019-12-25 2020-05-05 中海石油(中国)有限公司 一种少井条件下的油页岩预测方法
AU2020101809A4 (en) * 2020-06-09 2020-09-17 China University Of Geosciences, Beijing A simulation system for depositional sequence formation and evolution

Also Published As

Publication number Publication date
CN112859173A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
Blöcher et al. 3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir
Novlesky et al. Shale gas modeling workflow: from microseismic to simulation--a Horn River case study
AlRassas et al. CO2 storage capacity estimation under geological uncertainty using 3-D geological modeling of unconventional reservoir rocks in Shahejie Formation, block Nv32, China
CN112859173B (zh) 一种低勘探新区断陷湖盆烃源岩sastf预测方法
Khan et al. Impact of mechanical anisotropy on design of hydraulic fracturing in shales
Barba Liquids Rich Organic Shale Recovery Factor Application
Ejofodomi et al. Development of an optimized completion strategy in the Vaca Muerta Shale with an anisotropic geomechanical model
Zhang et al. Application of integrated geology and geomechanics to stimulation optimization workflow to maximize well potential in a tight oil reservoir, Ordos Basin, northern central China
Xin et al. Numerical Investigation on Gas Production Performance in Methane Hydrate of Multilateral Well under Depressurization in Krishna‐Godavari Basin
Salem et al. Impact of natural fractures on production from an unconventional shale: The Delaware Basin Wolfcamp shale
CN116047602A (zh) 基于生烃数值模拟的ii型水合物饱和度预测方法
Ganpule et al. Impact of geomechanics on well completion and asset development in the Bakken formation
Ouenes et al. Estimation of propped volume permeability using strain from geomechanical modeling of interacting hydraulic and natural fractures-application to the eagle ford
Yi et al. Vesicle distribution in basalt lava flow units in the Mesozoic rift basins of northeast China and its application in gas reservoir prediction
El sgher et al. Contribution of hydraulic fracture stage on the gas recovery from the Marcellus Shale
Nikitin et al. Hydraulic Fracture Geometry Investigation for Successful Optimization of Fracture Modeling and Overall Development of Jurassic Formation in Western Siberia
Wallace et al. Understanding Completion Performance in Niobrara-Codell Reservoirs Through the Use of Innovative Software-Guided Workflows and Models
CN115099014B (zh) 一种基于随钻录井的天然气井地质探明储量计算方法
Vijouyeh et al. Prediction of wellbore sand production potential from analysis of petrophysical data coupled with field stress: a case study from the Shah-Deniz gas field (Caspian Sea Basin)
Koceir et al. Influence of stress and lithology on hydraulic fracturing in Hassi Messaoud reservoir, Algeria
Dubinya et al. Usage of imitational geological-petrophysical models to reduce drilling risks for offshore reservoirs exploration
Pei et al. Characterization of artesian flow and heat transition in an ATES research wellbore using DTS monitoring and numerical modelling
Cao et al. A new model for predicting flow in fractured‐vuggy carbonate reservoirs under pseudosteady state condition
Pooniwala et al. First Unconventional Onshore Proppant Fracturing Treatment in UAE–Not an Easy One
Liu et al. Fracability evaluation method and influencing factors of the tight sandstone reservoir

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant