CN112858360B - 测试金属材料液化裂纹敏感性的方法 - Google Patents

测试金属材料液化裂纹敏感性的方法 Download PDF

Info

Publication number
CN112858360B
CN112858360B CN202110188348.8A CN202110188348A CN112858360B CN 112858360 B CN112858360 B CN 112858360B CN 202110188348 A CN202110188348 A CN 202110188348A CN 112858360 B CN112858360 B CN 112858360B
Authority
CN
China
Prior art keywords
crack
sample
strip
fine
cracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110188348.8A
Other languages
English (en)
Other versions
CN112858360A (zh
Inventor
曾凡伟
张玮
杨华春
赖仙红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongfang Boiler Group Co Ltd
Original Assignee
Dongfang Boiler Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfang Boiler Group Co Ltd filed Critical Dongfang Boiler Group Co Ltd
Priority to CN202110188348.8A priority Critical patent/CN112858360B/zh
Publication of CN112858360A publication Critical patent/CN112858360A/zh
Application granted granted Critical
Publication of CN112858360B publication Critical patent/CN112858360B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2206Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/071Investigating materials by wave or particle radiation secondary emission combination of measurements, at least 1 secondary emission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/646Specific applications or type of materials flaws, defects
    • G01N2223/6462Specific applications or type of materials flaws, defects microdefects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/66Specific applications or type of materials multiple steps inspection, e.g. coarse/fine

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明公开了一种测试金属材料液化裂纹敏感性的方法,包括:A)取样:取全厚度试样;B)堆焊:采取熔化焊进行全厚度堆焊;C)切割;D)分析:如能借助光学显微镜观察裂纹形貌特征和分布特点,确认裂纹性质则直接判断;如裂纹细小不能判别时则:(1)利用金相显微镜核实细小裂纹的位置;(2)在细小裂纹四周标记出预取长条试样轮廓、并切割;(3)将长条形试样放置在‑50℃至‑100℃的环境中并保温,再沿着细小裂纹一次性掰断长条形试样;(4)利用扫描电镜对打开的裂纹缺陷面进行微观观察,确认其是否为液化裂纹;本发明解决了取样试验不具代表性的问题,降低了测试难度,具有简单有效的优点,并对细小裂纹缺陷也可准确判别。

Description

测试金属材料液化裂纹敏感性的方法
技术领域
本发明涉及一种测试金属材料液化裂纹敏感性的方法。
背景技术
新材料的研发和应用过程,需要研究材料的焊接工艺性,特别是高等级材料。焊接工艺评定时,除检测焊缝及热影响区的力学性能外,还需观察焊缝及热影响区是否存在缺陷,特别是焊接裂纹缺陷。焊接裂纹分为:冷裂纹、再热裂纹和热裂纹,其中热裂纹又包含液化裂纹、结晶裂纹和多边化裂纹。对于母材液化裂纹而言,系金属材料在焊接热循环作用下,热影响区形成低熔点共晶(或原晶界上就存在低熔点共晶)熔化,在随后的冷却收缩过程中,熔化的晶界位置出现的裂纹称之为液化裂纹。液化裂纹在高合金钢、不锈钢和耐热合金钢的热影响区中时常发现。目前,常用的液化裂纹敏感性试验方法有:Y型坡口试验法、T形接头试验、环形槽抗裂试验、鱼骨状试验等;对于这些试验方法,前提条件是需要所取的试样必须具有代表性,且试样需加工坡口,试验需要采用工装夹具等,再对打开的裂纹缺陷面进行微观观察,根据其形貌特征和分布特点判定裂纹缺陷的性质;这些试验方法均存在工序较为复杂、采用较多工装夹具的缺点,对测试金属材料液化裂纹敏感性存在诸多不便和局限性,增加了测试难度,特别是高等级材料(G115、铁镍基合金和镍基合金等)当厚壁管材或锻件等,其在厚度方向上存在较为明显的化学成分(如W、Nb等元素)偏析时,按照上述方法,取试样为非全尺寸厚度,试验结果可能不具代表性;且对于细小裂纹因金属韧性,难以获取裂纹缺陷面的真实形貌,无法准确判断。
发明内容
本发明的目的是针对现有技术的上述不足,提供一种测试金属材料液化裂纹敏感性的方法,它解决了取样试验不具代表性的问题,降低了测试难度,具有简单有效的优点,并对细小裂纹缺陷也可准确判别。
为了达到上述目的,本发明的测试金属材料液化裂纹敏感性的方法,其特征在于包括以下步骤:A)取样:取工件在厚度方向上的全厚度试样;B)堆焊:在试样横截面采取熔化焊进行全厚度堆焊;C)切割:将堆焊好的试样按垂直于堆焊层的方向进行全厚度解剖,制备全厚度金相试样; D)分析:观察金相试样焊缝热影响区内是否存在裂纹缺陷,如能借助光学显微镜观察裂纹形貌特征和分布特点,确认裂纹性质则直接判断;如裂纹比较细小不能判别时则:(1)利用金相显微镜核实细小裂纹的位置;(2)在细小裂纹四周标记出预取长条试样轮廓、并按轮廓切割下长条形试样,所述预取长条形试样轮廓的长度方向与细小裂纹的长度方向垂直;(3)将含有细小裂纹的长条形试样放置在-50℃至-100℃的环境中并保温10分钟以上,再沿着细小裂纹一次性掰断长条形试样;(4)利用扫描电镜对打开的裂纹缺陷面进行微观观察,根据其形貌特征和分布特点判定裂纹缺陷的性质,确认其是否为液化裂纹;
上述步骤B)中熔化焊可为埋弧焊或激光焊或电弧焊中的一种;
本发明采用全厚度试样范围内堆焊方法,试样不要求加工坡口,也不用工装夹具等拘束装置,可实现全厚度金属材料的液化裂纹敏感性测试,特别适用于存在微观成分偏析的金属材料液化裂纹敏感性测试,很好解决了常规试验方法取样时无法确保所取试样具有代表性的问题,而且试验方法简单,降低了测试难度,具有简单有效的优点;对于细小裂纹,通过准确定位、取下长条形试样并进行冷脆处理并利于掰断长条形试样,掰断长条形试样后实现无损的打开裂纹缺陷面,借助扫描电镜放大后、确认其是否为液化裂纹,细小裂纹缺陷也可准确判别;
作为本发明的进一步改进,所述步骤B)的工序(2)中,利用显微维氏硬度计在细小裂纹四周做四个定位压痕,再用笔沿着压痕勾勒出所述预取长条形试样轮廓;通过显微维氏硬度计压出四个定位压痕,不易被后续工序消除,利于准确勾勒出预取长条形试样轮廓及掰断操作;
作为本发明的进一步改进,所述步骤B)的工序(2)中,切割的长条形试样利用酒精清洗;可清除各工序中产生的杂质;
综上所述,本发明解决了取样试验不具代表性的问题,降低了测试难度,具有简单有效的优点,并对细小裂纹缺陷也可准确判别。
附图说明
图1为本发明实施例在钢管上截取的瓦片状全厚度试样的立体图。
图2为图1堆焊后的立体图。
图3切割获得的全厚度金相试样的立体图。
图4为光学显微镜观察到的细小裂纹的金相图。
图5利用显微维氏硬度计在细小裂纹缺陷四周做定位压痕后的金相图。
图6为长条形试样的立体图。
图7为细小裂纹缺陷面扫描电镜放大200倍后的金相图。
图8为细小裂纹缺陷面扫描电镜放大1000倍后的金相图。
图9为细小裂纹缺陷面扫描电镜放大3000倍后的金相图。
图10为细小裂纹缺陷面扫描电镜放大5000倍后的金相图。
具体实施方式
下面结合附图,以钢管作为工件为例,对本发明作进一步详细的说明。
该实施例的测试金属材料液化裂纹敏感性的方法,包括以下步骤:A)取样:如图1所示,取钢管在厚度方向上的瓦片状全厚度试样1;B)堆焊:如图2所示,在瓦片状全厚度试样1的横截面采取埋弧焊进行全厚度堆焊,获得堆焊层2;C)切割:如图3所示,将堆焊好的试样按垂直于堆焊层的方向进行全厚度解剖,制备全厚度金相试样3; D)分析:观察金相试样焊缝热影响区内是否存在裂纹缺陷,如能借助光学显微镜观察裂纹形貌特征和分布特点,确认裂纹性质则直接判断是否为液化裂纹;如裂纹比较细小不能判别时则:(1)如图4所示,利用金相显微镜核实细小裂纹4的位置;(2)如图5所示,利用显微维氏硬度计在细小裂纹4四周做四个定位压痕5,再用记号笔或签字笔沿着压痕勾勒出预取长条形试样轮廓,两预取长条试样轮廓线6的长度方向与细小裂纹4的长度方向垂直,细小裂纹4尽量位于长条形试样长度方向的中部位置,按轮廓切割下长条形试样、利用酒精清洗;(3)如图6所示,将含有细小裂纹4的长条形试样7放置在-80℃的酒精槽中并保温20分钟,再沿着细小裂纹一次性掰断长条形试样;(4)利用扫描电镜对打开的裂纹缺陷面进行微观观察,如图7至图10所示,扫描电镜可放大至较高的倍数,金相图片清晰、可辨,根据其形貌特征和分布特点判定裂纹缺陷的性质,确认其是否为液化裂纹;
本发明采用全厚度试样范围内堆焊方法,试样不要求加工坡口,也不用工装夹具等拘束装置,可实现全厚度金属材料的液化裂纹敏感性测试,特别适用于存在微观成分偏析的金属材料液化裂纹敏感性测试,很好解决了常规试验方法取样时无法确保所取试样具有代表性的问题,而且试验方法简单,降低了测试难度,具有简单有效的优点;对于细小裂纹,通过定位压痕准确定位、取下长条形试样并在低温进行冷脆处理,掰断长条形试样后实现无损的打开裂纹缺陷面,保持裂纹缺陷面的真实形貌,借助扫描电镜放大后、确认其是否为液化裂纹,细小裂纹缺陷也可准确判别是否为液化裂纹;通过显微维氏硬度计压出四个定位压痕,不易被后续的酒精清洗、低温冷脆工序消除,利于准确勾勒出预取长条试样轮廓及掰断操作;
本发明不限于上述实施方式,步骤B)中熔化焊也可为激光焊或电弧焊中的一种,冷脆时的温度也可调整,均属于本专利的保护范围。

Claims (4)

1.一种测试金属材料液化裂纹敏感性的方法,其特征在于包括以下步骤:A)取样:取工件在厚度方向上的全厚度试样;B)堆焊:在试样横截面采取熔化焊进行全厚度堆焊;C)切割:将堆焊好的试样按垂直于堆焊层的方向进行全厚度解剖,制备全厚度金相试样; D)分析:观察金相试样焊缝热影响区内是否存在裂纹缺陷,如能借助光学显微镜观察裂纹形貌特征和分布特点,确认裂纹性质则直接判断;如裂纹比较细小不能判别时则:(1)利用金相显微镜核实细小裂纹的位置;(2)在细小裂纹四周标记出预取长条试样轮廓、并按轮廓切割下长条形试样,所述预取长条形试样轮廓的长度方向与细小裂纹的长度方向垂直;(3)将含有细小裂纹的长条形试样放置在-50℃至-100℃的环境中并保温10分钟以上,再沿着细小裂纹一次性掰断长条形试样;(4)利用扫描电镜对打开的裂纹缺陷面进行微观观察,根据其形貌特征和分布特点判定裂纹缺陷的性质,确认其是否为液化裂纹。
2.根据权利要求1所述的测试金属材料液化裂纹敏感性的方法,其特征在于:所述步骤B)中熔化焊为埋弧焊或激光焊或电弧焊。
3.根据权利要求1或2所述的测试金属材料液化裂纹敏感性的方法,其特征在于:所述步骤B)的工序(2)中,利用显微维氏硬度计在细小裂纹四周做四个定位压痕,再用笔沿着压痕勾勒出所述预取长条形试样轮廓。
4.根据权利要求3所述的测试金属材料液化裂纹敏感性的方法,其特征在于:所述步骤B)的工序(2)中,切割的长条形试样利用酒精清洗。
CN202110188348.8A 2021-02-19 2021-02-19 测试金属材料液化裂纹敏感性的方法 Active CN112858360B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110188348.8A CN112858360B (zh) 2021-02-19 2021-02-19 测试金属材料液化裂纹敏感性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110188348.8A CN112858360B (zh) 2021-02-19 2021-02-19 测试金属材料液化裂纹敏感性的方法

Publications (2)

Publication Number Publication Date
CN112858360A CN112858360A (zh) 2021-05-28
CN112858360B true CN112858360B (zh) 2022-11-29

Family

ID=75988202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110188348.8A Active CN112858360B (zh) 2021-02-19 2021-02-19 测试金属材料液化裂纹敏感性的方法

Country Status (1)

Country Link
CN (1) CN112858360B (zh)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101380703B (zh) * 2007-09-05 2011-09-28 北京有色金属研究总院 一种多元微合金化含钪铝镁系合金焊丝及其制备方法
CA2898313C (en) * 2013-12-24 2019-06-11 Liburdi Engineering Limited Precipitation strengthened nickel based welding material for fusion welding of superalloys
CN103866163B (zh) * 2014-03-14 2016-03-30 钢铁研究总院 一种镍铬钴钼耐热合金及其管材制造工艺
CN104475960B (zh) * 2014-10-30 2016-08-17 中国科学院金属研究所 一种铁镍基合金焊接接头热影响区晶界液化裂纹控制方法
CN104777046B (zh) * 2015-04-23 2017-05-10 北京航空航天大学 基于小时间尺度的疲劳裂纹扩展机理测试方法
CN106563929B (zh) * 2015-10-08 2019-09-17 利宝地工程有限公司 修复和制造涡轮发动机部件的方法及涡轮发动机部件
CN106077951B (zh) * 2016-06-30 2019-01-11 上海交通大学 控制镍基合金多层激光填丝焊热影响区裂纹形成的方法
CN109855933B (zh) * 2019-01-14 2022-07-29 大冶特殊钢有限公司 一种金相试样制备方法
CN110132979A (zh) * 2019-05-05 2019-08-16 东方电气集团东方锅炉股份有限公司 一种金属材料显微缺陷的分析方法
CN110788507B (zh) * 2019-10-09 2021-07-20 东方电气集团东方汽轮机有限公司 时效强化型镍基高温合金与耐热钢的焊接与热处理方法
CN110823696A (zh) * 2019-11-20 2020-02-21 南京钢铁股份有限公司 一种快速准确查找宽厚板探伤缺陷的方法
CN111929256B (zh) * 2020-08-12 2022-10-28 南京迪威尔高端制造股份有限公司 锻件十字内孔堆焊后内壁裂纹的检测及原因判断方法

Also Published As

Publication number Publication date
CN112858360A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
Tong et al. Deformation and fracture of miniature tensile bars with resistance-spot-weld microstructures
Wei et al. Influence of heat input on post weld microstructure and mechanical properties of friction stir welded HSLA-65 steel
Martin et al. Liquid–metal-induced fracture mode of martensitic T91 steels
LaLonde et al. Quantitative metallography of β-Sn dendrites in Sn-3.8 Ag-0.7 Cu ball grid array solder balls via electron backscatter diffraction and polarized light microscopy
Kalashami et al. The role of internal oxides on the liquid metal embrittlement cracking during resistance spot welding of the dual phase steel
CN112432862B (zh) 一种焊接热裂纹敏感性的综合评价方法
CN112858360B (zh) 测试金属材料液化裂纹敏感性的方法
Kadoi et al. Crack repair welding by CMT brazing using low melting point filler wire for long-term used steam turbine cases of Cr-Mo-V cast steels
Ayer et al. Interface structure in a Fe–Ni friction stir welded joint
Leinenbach et al. Quasistatic fracture behaviour and defect assessment of brazed soft martensitic stainless steel joints
Gray Ion and laser microprobes applied to the measurement of corrosion produced hydrogen on a microscopic scale
Louthan Optical metallography
CN112881389B (zh) 一种钢板电阻点焊熔核区直径的金相检测方法
Kasuya et al. Hydrogen distribution in multipass submerged arc weld metals
Koster et al. Digital image correlation for the characterization of fatigue damage evolution in brazed steel joints
CN110132979A (zh) 一种金属材料显微缺陷的分析方法
CN113418759A (zh) 一种热模拟试样的测试方法
CN113777270A (zh) 高温合金粉末热裂敏感性和热裂敏感温度的表征方法
Fairchild et al. Fractographic investigation of cleavage initiation in steel friction stir welds
Hurst et al. A renaissance in Small Punch testing at Swansea University
Smith Characterization of linear friction welded in-service Inconel 718 superalloy
Amavisca et al. Investigation of the residual stress distribution in repairs in H13 steel by friction hydro pillar processing
Cabibbo et al. Mechanical and microstructural characteristics of laser welded titanium–aluminium joints
Constantin et al. Establishing the Dependence of Output Parameters Depending on Local Process Conditions for Friction Stir Welding of Pure Copper Plates
Cojocaru et al. Possibilities for Application of Friction Stir Welding Process to Titanium TiGr2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant