CN112857591B - Single laser source optical fiber laser system for cold atom interferometer - Google Patents

Single laser source optical fiber laser system for cold atom interferometer Download PDF

Info

Publication number
CN112857591B
CN112857591B CN202110026456.5A CN202110026456A CN112857591B CN 112857591 B CN112857591 B CN 112857591B CN 202110026456 A CN202110026456 A CN 202110026456A CN 112857591 B CN112857591 B CN 112857591B
Authority
CN
China
Prior art keywords
laser
optic modulator
acousto
module
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110026456.5A
Other languages
Chinese (zh)
Other versions
CN112857591A (en
Inventor
裴栋梁
路想想
刘简
张俊峰
陈玮婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
707th Research Institute of CSIC
Original Assignee
707th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 707th Research Institute of CSIC filed Critical 707th Research Institute of CSIC
Priority to CN202110026456.5A priority Critical patent/CN112857591B/en
Publication of CN112857591A publication Critical patent/CN112857591A/en
Application granted granted Critical
Publication of CN112857591B publication Critical patent/CN112857591B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods

Abstract

The invention relates to a single laser source fiber laser system for a cold atom interferometer, which comprises a laser source, wherein a modulation amplification module, a frequency doubling module and a laser beam splitting module are sequentially arranged in the laser output direction of the laser source, a frequency stabilizing module is arranged in the laser beam splitting direction of the laser beam splitting module, and the signal output end of the frequency stabilizing module is connected with the input end of the laser source. According to the invention, a single laser source is adopted, so that the design of an interferometer laser system with the laser frequency difference larger than 6.834GHz is realized; the optical fiber laser, the amplifier and the optical fiber component of the communication waveband are adopted, so that the stability and the environmental adaptability are enhanced, and the requirements on miniaturization and integration are met; the light splitting system is ingeniously designed, and the laser power utilization rate is improved.

Description

Single laser source optical fiber laser system for cold atom interferometer
Technical Field
The invention belongs to the technical field of atom precision measurement, relates to an optical fiber laser system, and particularly relates to a single laser source optical fiber laser system for a cold atom interferometer.
Background
Cold atomic interferometry has important applications in atomic precision measurement research. Cold atom gravimeters and gyroscopes based on cold atom interference have extremely high measurement precision in gravity and rotation measurement, and show great development potential. But the cold atom interferometer has a huge vacuum system, a complex optical path system and a circuit system, so that the cold atom interferometer is extremely difficult to move and dynamically measure. In recent years, with the continuous development of laser technology, optical component technology and atomic control technology, portable cold atomic gravimeters and gyroscopes have been developed by many groups at home and abroad.
Miniaturization and integration of laser systems are the basis for portability and dynamic measurement of cold atom interferometers. However, the cold atom interferometer needs to cool laser light, probe light, re-pump light, blow-off light, raman light and other lasers with various frequencies, and various lasers need to be switched on and off rapidly in real time, so that the laser system inevitably needs to enable the laser and various optical components to achieve output and real-time control of various lasers. In a traditional cold atom interferometer laser system, two lasers are used for respectively realizing two different laser frequency requirements needed in Raman laser, and the generation and real-time control of cooling light, re-pumping light, detecting light and blowing light are realized through frequency shift of an acousto-optic modulator, because two frequency differences needed by the Raman light are in GHz level, one laser is extremely difficult to realize the output and real-time control of the two frequency lasers.
With the development of optical technology and the more mature miniaturization technology of optical devices, the volume and the number of lasers in the cold atom interferometer have become the most important factors limiting the miniaturization of laser systems. Therefore, the independent development of miniaturized lasers and the reasonable design of laser systems, and the reduction of the number of the lasers is the key of the miniaturization of the current laser systems.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provides a single laser source optical fiber laser system for a cold atom interferometer, which is suitable for miniaturization and integration requirements.
The technical scheme adopted by the invention for solving the technical problem is as follows:
the utility model provides a single laser source fiber laser system for cold atom interferometer, includes the laser source, is equipped with modulation amplification module, doubling of frequency module and laser beam splitting module in proper order in the laser output direction of laser source, is equipped with the frequency stabilization module in the laser beam splitting direction of laser beam splitting module, and the signal output part of this frequency stabilization module is connected with the input of laser source.
And the laser source comprises a fiber laser and a fiber isolator, the signal input end of the fiber laser is connected with the signal output end of the frequency stabilization module, the fiber isolator is arranged in the laser output direction of the fiber laser, and the modulation amplification module is arranged in the laser output direction of the fiber isolator.
And the modulation amplification module comprises an optical fiber electro-optic modulator and an optical fiber amplifier, and the optical fiber electro-optic modulator and the optical fiber amplifier are sequentially arranged in the laser output direction of the laser source.
And the frequency doubling module comprises a first optical fiber collimator, a first focusing lens, a periodically polarized PPLN crystal, a second focusing lens, a bandwidth beam splitter and an optical DUMP, wherein the first optical fiber collimator, the first focusing lens, the periodically polarized PPLN crystal, the second focusing lens and the bandwidth beam splitter are sequentially arranged in the laser output direction of the modulation amplification module, the optical DUMP is arranged in the laser transmission direction of the bandwidth beam splitter, and the laser beam splitter is arranged in the laser reflection direction of the bandwidth beam splitter.
Moreover, the laser beam splitting module comprises a first lambda/2 wave plate, a first polarization beam splitter prism, a first 0-45 degree reflector, a first acousto-optic modulator, a second 0-45 degree reflector, a second acousto-optic modulator, a third 0-45 degree reflector, a third acousto-optic modulator, a fourth 0-45 degree reflector, a second fiber collimator and a mechanical switch, wherein the first lambda/2 wave plate and the first polarization beam splitter prism are sequentially arranged in the laser output direction of the frequency doubling module, the second fiber collimator and the frequency stabilizing module are sequentially arranged in the laser reflection direction of the first polarization beam splitter mirror, the first 0-45 degree reflector is arranged in the laser transmission direction of the first polarization beam splitter mirror, the first acousto-optic modulator is arranged in the laser reflection direction of the first 0-45 DEG reflector, the second 0-45 DEG reflector is arranged in the first order diffraction light output direction of the first acousto-optic modulator, the second acousto-optic modulator is arranged in the zero order diffraction light output direction of the first acousto-optic modulator, the third 0-45 DEG reflector is arranged in the first order diffraction light output direction of the second acousto-optic modulator, the third acousto-optic modulator is arranged in the zero order diffraction light output direction of the second acousto-optic modulator, the fourth 0-45 DEG reflector is arranged in the first order diffraction light output direction of the third acousto-optic modulator, and the mechanical switch is arranged in the zero order diffraction light output direction of the third acousto-optic modulator.
The frequency stabilization module comprises a fifth 0-45 degree reflector, a sixth 0-45 degree reflector, a phase electro-optic modulator, a second lambda/2 wave plate, a second polarization beam splitter prism, a rubidium bubble, a lambda/4 wave plate, a 780nm optical filter, a seventh 0-45 degree reflector, a photoelectric detector, a dual-channel signal source, a frequency mixer and a phase discriminator, wherein the fifth 0-45 degree reflector is arranged in the laser beam splitting direction of the laser beam splitter module, the sixth 0-45 degree reflector is arranged in the laser reflecting direction of the fifth 0-45 degree reflector, the phase electro-optic modulator, the second lambda/2 wave plate and the second polarization beam splitter prism are sequentially arranged in the laser reflecting direction of the sixth 0-45 degree reflector, the second polarization beam splitter prism is reversely arranged, the rubidium bubble, the lambda/4 wave plate, the optical filter and the seventh 0-45 degree reflector are arranged in the laser transmitting direction of the second polarization beam splitter prism, the reflecting surface of the seventh 0-45 degree reflector is connected with the output end of the hybrid optical filter, the output end of the phase electro-optic modulator is connected with the input end of the laser signal source, and the output end of the phase electro-optic detector is connected with the input end of the dual-phase signal source, and the phase signal source.
The invention has the advantages and positive effects that:
1. the invention realizes the laser output function required by the cold atom interferometer by using a frequency doubling technology through the optical fiber laser and the optical fiber amplifier of a single communication waveband, and optical components used in the system are mostly optical fiber components, thereby having important significance for the miniaturization and integration of a laser system of the cold atom interferometer.
2. The 1560nm fiber laser is used as seed laser, the frequency of the laser is modulated by an electro-optical modulator (EOM), the generated Raman laser with the frequency difference of 6.834GHz is generated, and the phase difference is constant; 1560nm laser with power of 10W is generated after passing through an optical fiber amplifier, and 780nm laser with 2W is generated by single pass of periodic polarization lithium niobate crystal (PPLN) crystal frequency doubling for realizing cold atom interference.
3. According to the invention, the output functions of different frequencies such as cooling light, detecting light, blowing light, raman light and the like are realized through the rapid frequency hopping of the electro-optic modulator and the frequency shifting of the electro-optic modulator; processing the processes of atom capture, atomic state preparation, interference and detection through laser time-sharing multiplexing; zero-order light of an acousto-optic modulator (AOM) of a beam splitting module is used as input light, and a time division multiplexing technology is combined, so that the maximum utilization of laser power is realized, and meanwhile, the automatic adjusting function of system power is increased.
4. The invention realizes the real-time adjustment function of the laser power by using the zero-order output light of the acousto-optic modulator as the next-stage input light and combining the amplitude modulation technology and the quick switching function of the acousto-optic modulator on the diffracted light, thereby optimizing the laser parameters in the interference process in real time and simultaneously improving the laser utilization rate.
Drawings
FIG. 1 is a single laser source fiber laser system of the cold atom interferometer of the present invention.
Fig. 2 is a light path diagram of a laser frequency stabilization system.
FIG. 3 is a schematic diagram of the laser frequency of a cold atom interferometer.
Detailed Description
The present invention is further illustrated by the following specific examples, which are intended to be illustrative, not limiting and are not intended to limit the scope of the invention.
The utility model provides a single laser source fiber laser system for cold atom interferometer, as shown in figure 1, includes laser source, modulation amplification module, frequency doubling module, frequency stabilization module and laser beam splitting module, is equipped with modulation amplification module, frequency doubling module and laser beam splitting module in proper order in the laser output direction of laser source, is equipped with the frequency stabilization module in the laser beam splitting direction of laser beam splitting module, and the signal output part of frequency stabilization module is connected with the laser source.
The laser source comprises an optical fiber laser 101 and an optical fiber isolator 102, wherein a signal input end of the optical fiber laser 101 is connected with a signal output end of the frequency stabilization module, the optical fiber isolator 102 is arranged in the laser output direction of the optical fiber laser 101, and a modulation amplification module is arranged in the laser output direction of the optical fiber isolator 102.
The modulation amplification module comprises an optical fiber electro-optic modulator 201 and an optical fiber amplifier 202, and the optical fiber electro-optic modulator 201 and the optical fiber amplifier 202 are sequentially arranged in the laser output direction of the optical fiber isolator 102.
The frequency doubling module comprises a first optical fiber collimator 301, a first focusing lens 302, a periodically poled PPLN crystal 303, a second focusing lens 304, a bandwidth beam splitter 305 and an optical DUMP306, wherein the first optical fiber collimator 301, the first focusing lens 302, the periodically poled PPLN crystal 303, the second focusing lens 304 and the bandwidth beam splitter 305 are sequentially arranged in the laser output direction of the optical fiber amplifier 202, the optical DUMP306 is arranged in the laser transmission direction of the bandwidth beam splitter 305, and the laser beam splitting module is arranged in the laser reflection direction of the bandwidth beam splitter 305.
The laser beam splitting module comprises a first lambda/2 wave plate 501, a first polarization beam splitter prism 502, a first 0-45 degree reflector 503, a first acousto-optic modulator 504, a second 0-45 degree reflector 505, a second acousto-optic modulator 506, a third 0-45 degree reflector 507, a third acousto-optic modulator 508, a fourth 0-45 degree reflector 509, a second optical fiber collimator 511 and a mechanical switch 510, wherein a polarization first lambda/2 wave plate 501 and a first polarization beam splitter prism 502 are sequentially arranged in the laser reflection direction of the broadband beam splitter mirror 305, a second optical fiber collimator 511 and a frequency stabilization module are sequentially arranged in the laser reflection direction of the first polarization beam splitter mirror 502, the first 0-45 degree reflector 503 is arranged in the laser transmission direction of the first polarization beam splitter mirror, a first acousto-optic modulator 504 is provided in the laser reflection direction of the first 0-45 ° mirror, a second 0-45 ° mirror 505 is provided in the first order diffraction light output direction of the first acousto-optic modulator 504, a second acousto-optic modulator 506 is provided in the zero order diffraction light output direction of the first acousto-optic modulator 504, a third 0-45 ° mirror 507 is provided in the first order diffraction light output direction of the second acousto-optic modulator 506, a third acousto-optic modulator 508 is provided in the zero order diffraction light output direction of the second acousto-optic modulator 506, a fourth 0-45 ° mirror 509 is provided in the first order diffraction light output direction of the third acousto-optic modulator 508, and a mechanical switch 510 is provided in the zero order diffraction light output direction of the third acousto-optic modulator 508.
The frequency stabilizing module is shown in fig. 2, and includes a fifth 0-45 ° reflector 401, a sixth 0-45 ° reflector 402, a phase electro-optic modulator 403, a second λ/2 wave plate 404, a second polarization beam splitter prism 405, a rubidium bubble 406, a λ/4 wave plate 407, a 780nm optical filter 408, a seventh 0-45 ° reflector 409, a photodetector 410, a dual-channel signal source 411, a mixer 412, and a phase detector 413, where the fifth 0-45 ° reflector 401 is arranged in the laser output direction of the second optical fiber collimator 511, the sixth 0-45 ° reflector 402 is arranged in the laser reflection direction of the fifth 0-45 ° reflector 401, the phase electro-optic modulator 403, the second λ/2 wave plate 404, and the second polarization beam splitter prism 405 are sequentially arranged in the laser reflection direction of the sixth 0-45 ° reflector 402, the second polarization beam splitter prism is placed in a reverse direction, the rubidium bubble 406, the λ/4 ° optical filter 408, the seventh λ/2 ° optical filter 404, and the seventh polarization beam splitter prism 405 are arranged in the laser transmission direction of the second polarization beam splitter prism, the rubidium bubble 406, the rubidium bubble signal output end of the rubidium bubble signal source, the rubidium bubble signal output end of the phase electro-45 ° reflector 408 is connected to the input end of the phase detector, the input end of the phase signal source of the phase detector is connected to the phase detector 412, the phase detector is connected to the phase detector 409 of the phase electro-polarization beam splitter prism is connected to the phase detector, and the phase detector 410, the phase detector 409 of the phase detector, and the phase detector is connected to the phase detector 409 of the phase detector 410, and the phase detector is connected to the phase detector 410, and the input end of the phase detector 410 of the phase detector.
As shown in FIG. 3, the experimental basis 87 The Laser required by the cold atom interferometer of Rb comprises 7 different lasers, namely Cooling light (Cooling Laser), re-pumping light (pumping Laser), probe Laser, blow light 1 (Blow Laser), blow light 2, raman light 1 (Raman Laser) and Raman light 2. Red detuning of cooling light frequency 87 Rb atom 5 2 S 1/2 ,F=2-5 2 P 3/2 F' =3 transition line 2 Γ -6 Γ (Γ is 5 Γ) 2 P 3/2 Energy level linewidth of F' =3, about 6 MHz); the re-pumping light resonates at 5 2 S 1/2 ,F=1-5 2 P 3/2 F' =2 transitions to be at 5 2 S 1/2 Atomic pumping of the F =1 state to 5 2 P 3/2 F' =2 state; the detection light is used for detecting atom interference signal with frequency resonance at 5 2 S 1/2 ,F=2-5 2 P 3/2 F' =3 transitions; in the atomic state control process, microwave and corresponding frequency laser selection 5 is required to be applied 2 S 1/2 ,F=2,m F Atom of =0, blow light 1 is at the same frequency as the re-pump light, for the remaining F =1,m F Blowing away atoms not equal to 0 for atom state selection; blow away light2 same as the probe light frequency, for the remaining F =2,m F And blowing away the atoms which are not equal to 0 to perform atom state selection. The Raman light 1 and the Raman light 2 are main lasers for realizing atomic interference, the frequency difference of the two beams of laser is 6.834GHz, and the coupling is 5 2 S 1/2 ,F=1-5 2 S 1/2 F =2 transition, two-photon transition, with both lasers being far detuned to 5 2 S 1/2 -5 2 P 3/2 About 600MHz.
The specific control process and optical path transmission process of the invention are as follows:
1560nm laser output by the optical fiber laser 101 passes through the optical fiber isolator 102, then a sideband with 6.834GHz is applied by the optical fiber electro-optic modulator 201, the high-power 1560nm laser is generated by the optical fiber amplifier 202, the laser is output through the first optical fiber collimator 301, then frequency multiplication is performed by the first focusing lens 302, the periodically polarized PPLN crystal 303 and the second focusing lens 304 to generate 780nm laser, the 780nm laser is filtered out after passing through the 780nm reflection/1560 nm transmission bandwidth beam splitter 305 and enters a laser beam splitting module for a cold atom interferometer, and the 1560nm laser is collected by the optical DUMP306 after passing through the broadband beam splitter 305. In the laser beam splitting module, 780nm laser is firstly split through a first λ/2 wave plate 501 and a first polarization beam splitting prism 502, reflected light of the first polarization beam splitting prism 502 is coupled through a second optical fiber collimator 511 to build a frequency stabilization module, transmitted light of the first polarization beam splitting prism 502 is reflected through a 0-45 degree reflector 503 to enter a first acousto-optic modulator 504, the modulation frequency is about 78.5MHz, first-order diffracted light thereof is reflected through a second 0-45 degree reflector 505 to be output and used as cooling light and re-pumping light, zero-order diffracted light enters a second acousto-optic modulator 506, the modulation frequency is about 700MHz, first-order diffracted light thereof is reflected through a third 0-45 degree reflector 507 to be output and used as raman light 1 and raman light 2, zero-order diffracted light thereof enters a third acousto-optic modulator 508, the modulation frequency is about 78.5MHz, first-order diffracted light thereof is reflected through a fourth 0-45 degree reflector 509 to be output and used as detection light, blowing away light 1 and zero-order blowing away light 2, and re-pumping light used as an atomic polarization gradient cooling process is switched through a mechanical switch 510. And each laser required by the system enters a sensing head of the atomic interferometer to realize the atomic interferometer.
In frequency-stabilizing module780nm laser is reflected by a fifth 0-45 degree reflector 401 and a sixth 0-45 degree reflector 402 and then modulated by a 12.5MHz phase electro-optic modulator 403, output laser is subjected to polarization selection by a second lambda/2 wave plate 404 and a second polarization beam splitter 405, the laser passes through a rubidium bubble 406 and a lambda/4 wave plate 407, is attenuated by a 780nm filter 408, is reflected by a seventh 0-45 degree reflector 409 and passes through the rubidium bubble 406, is reflected by the second polarization beam splitter 405, is collected by a photoelectric detector 410 and converted into an electric signal, is mixed with a reference signal output by a dual-channel signal source 411 by a mixer 412, is phase-discriminated by a phase discriminator 413 and outputs a voltage signal to control the locking laser frequency of the fiber laser 101, and the laser dominant frequency is locked at 5 2 S 1/2 ,F=1-5 2 P 3/2 F' =1,2 crossovers.
The system frequency control of the invention is as follows:
in the atomic cooling and capturing stage, the modulation frequency of the fiber electro-optic modulator 201 is 6.583GHz, so that the accuracy of the cooling light frequency and the frequency of the re-pumping light is ensured, and atomic cooling and capturing are realized;
in the polarization gradient cooling stage, the modulation frequency of the fiber electro-optic modulator 201 jumps from 6.583GHz to 6.683GHz, and meanwhile, the first acousto-optic modulator 504 reduces the power of radio frequency signals to further cool the atomic temperature;
in a state selection stage, the modulation frequency of the fiber electro-optical modulator 201 jumps to 6.599GHz/6.468GHz, the frequency of the third acousto-optical modulator 508 changes to 110MHz/78.5MHz to obtain a blown light 1 and a blown light 2 with corresponding frequencies, and the third acousto-optical modulator 508 performs laser switching and time division multiplexing;
in the atomic interference stage, the fiber electro-optical modulator 201 modulates the frequency jump of 6.834GHz, so as to ensure that the Raman light 1 and the Raman light 2 are coupled 5 2 S 1/2 ,F=1-5 2 S 1/2 F =2 transition while shifting the laser frequency by 700MHz, avoiding 5, by the second acousto-optic modulator 506 2 S 1/2 -5 2 P 3/2 The energy level transition of (a) affects atomic interference and performs fast switching.
In the atomic signal detection stage, the fiber electro-optic modulator 201 modulates the frequency hopping to 6.568GHz to obtain the corresponding frequency detection light and the re-pumping light, and performs binary detection.
The method for realizing the power control of the laser beam splitting module comprises the following steps:
by controlling the power of the radio frequency signal of the first acousto-optic modulator 504 in real time, the laser power of the cooling light and the re-pumping light can be controlled, and the laser power of the Raman light 1 and the laser power of the Raman light 2 can be controlled;
by controlling the power of the radio frequency signal of the second acousto-optic modulator 506 in real time, the laser power of the raman light 1 and the raman light 2 can be controlled, and the laser power of the probe light, the blow-away light 1 and the blow-away light 2 can be controlled at the same time.
In the above embodiment, the frequency value is not an accurate numerical value, but a frequency value near the frequency, and a specific frequency value depends on an experimental situation, which is not limited in the embodiment of the present invention.
The foregoing is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, various changes and modifications can be made without departing from the inventive concept, and these changes and modifications are all within the scope of the present invention.

Claims (4)

1. A single laser source fiber laser system for a cold atom interferometer, comprising a laser source, characterized in that: the laser beam splitting device comprises a laser source, a modulation amplification module, a frequency doubling module and a laser beam splitting module, wherein the modulation amplification module, the frequency doubling module and the laser beam splitting module are sequentially arranged in the laser output direction of the laser source; the laser beam splitting unit passes through a plurality of stages of acousto-optic modulators, and zero-order diffracted light of each stage of acousto-optic modulator is used as incident light of the next stage of acousto-optic modulator, so that the functions of quick switching and real-time automatic control of power of all lasers are realized;
the laser beam splitting module comprises a first lambda/2 wave plate, a first polarization beam splitting prism, a first 0-45 degree reflector, a first acousto-optic modulator, a second 0-45 degree reflector, a second acousto-optic modulator, a third 0-45 degree reflector, a third acousto-optic modulator, a fourth 0-45 degree reflector, a second fiber collimator and a mechanical switch, wherein the first lambda/2 wave plate and the first polarization beam splitting prism are sequentially arranged in the laser output direction of the frequency doubling module, the second fiber collimator and the frequency stabilizing module are sequentially arranged in the laser reflection direction of the first polarization beam splitting mirror, the first 0-45 degree reflector is arranged in the laser transmission direction of the first polarization beam splitting mirror, the first acousto-optic modulator is arranged in the laser reflection direction of the first 0-45 DEG reflector, the second 0-45 DEG reflector is arranged in the first order diffraction light output direction of the first acousto-optic modulator, the second acousto-optic modulator is arranged in the zero order diffraction light output direction of the first acousto-optic modulator, the third 0-45 DEG reflector is arranged in the first order diffraction light output direction of the second acousto-optic modulator, the third acousto-optic modulator is arranged in the zero order diffraction light output direction of the second acousto-optic modulator, the fourth 0-45 DEG reflector is arranged in the first order diffraction light output direction of the third acousto-optic modulator, and the mechanical switch is arranged in the zero order diffraction light output direction of the third acousto-optic modulator;
the frequency stabilization module comprises a fifth 0-45 degree reflector, a sixth 0-45 degree reflector, a phase electro-optic modulator, a second lambda/2 wave plate, a second polarization beam splitter prism, a rubidium bubble, a lambda/4 wave plate, a 780nm optical filter, a seventh 0-45 degree reflector, a photoelectric detector, a dual-channel signal source, a frequency mixer and a phase discriminator, wherein the fifth 0-45 degree reflector is arranged in the laser beam splitting direction of the laser beam splitter module, the sixth 0-45 degree reflector is arranged in the laser reflecting direction of the fifth 0-45 degree reflector, the phase modulator, the second lambda/2 wave plate and the second polarization beam splitter prism are sequentially arranged in the laser reflecting direction of the sixth 0-45 degree reflector, the second polarization beam splitter prism is reversely arranged, the rubidium bubble, the lambda/4 wave plate, the 780nm optical filter and the seventh 0-45 degree reflector are arranged in the laser transmitting direction of the second polarization beam splitter prism, the reflecting surface 780nm optical filter of the seventh 0-45 degree reflector is perpendicular to the output end of the laser beam splitter prism, the output end of the phase electro-optic signal source is connected with the input end of the laser signal source, and the output end of the phase electro-optic signal source is connected with the input end of the phase signal source.
2. The single laser source fiber laser system for a cold atom interferometer of claim 1, wherein: the laser source comprises a fiber laser and a fiber isolator, the signal input end of the fiber laser is connected with the signal output end of the frequency stabilization module, the fiber isolator is arranged in the laser output direction of the fiber laser, and the modulation amplification module is arranged in the laser output direction of the fiber isolator.
3. The single laser source fiber laser system for a cold atom interferometer of claim 1, wherein: the modulation amplification module comprises an optical fiber electro-optic modulator and an optical fiber amplifier, and the optical fiber electro-optic modulator and the optical fiber amplifier are sequentially arranged in the laser output direction of the laser source.
4. The single laser source fiber laser system for a cold atom interferometer of claim 1, wherein: the frequency doubling module comprises a first optical fiber collimator, a first focusing lens, a periodically polarized PPLN crystal, a second focusing lens, a bandwidth beam splitter and an optical DUMP, wherein the first optical fiber collimator, the first focusing lens, the periodically polarized PPLN crystal, the second focusing lens and the bandwidth beam splitter are sequentially arranged in the laser output direction of the modulation amplification module, the optical DUMP is arranged in the laser transmission direction of the bandwidth beam splitter, and the laser beam splitter is arranged in the laser reflection direction of the bandwidth beam splitter.
CN202110026456.5A 2021-01-08 2021-01-08 Single laser source optical fiber laser system for cold atom interferometer Active CN112857591B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110026456.5A CN112857591B (en) 2021-01-08 2021-01-08 Single laser source optical fiber laser system for cold atom interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110026456.5A CN112857591B (en) 2021-01-08 2021-01-08 Single laser source optical fiber laser system for cold atom interferometer

Publications (2)

Publication Number Publication Date
CN112857591A CN112857591A (en) 2021-05-28
CN112857591B true CN112857591B (en) 2022-10-25

Family

ID=76001914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110026456.5A Active CN112857591B (en) 2021-01-08 2021-01-08 Single laser source optical fiber laser system for cold atom interferometer

Country Status (1)

Country Link
CN (1) CN112857591B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113959426B (en) * 2021-11-19 2023-04-28 中国船舶重工集团公司第七0七研究所 Raman light parallelism adjusting device and method for atomic interferometer gyroscope
CN114488551B (en) * 2021-12-10 2024-02-23 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) Optical fiber beam splitting module for atomic interferometer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008531A (en) * 2017-11-30 2018-05-08 北京航空航天大学 A kind of raman laser light path matching system based on Mach-Zehnder interferometer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107959222B (en) * 2016-10-16 2024-03-19 华中科技大学 Atomic interferometer light source based on sideband suppression
CN107328355B (en) * 2017-09-01 2023-06-23 中科酷原科技(武汉)有限公司 Integrated optical system for cold atom interferometer
CN108225578B (en) * 2017-12-25 2020-05-12 中国科学技术大学 Dual-laser system suitable for cold atom interference precision measurement
CN108592783B (en) * 2018-06-29 2024-03-19 中国科学院武汉物理与数学研究所 Integrated optical system for atomic interferometers
CN109066274B (en) * 2018-09-26 2023-09-01 天水师范学院 Raman laser optical system based on atomic filter and filtering method thereof
CN110718853A (en) * 2019-10-23 2020-01-21 中国人民解放军军事科学院国防科技创新研究院 Integrated single laser source optical device for movable cold atom interferometer
CN111834875A (en) * 2020-06-08 2020-10-27 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) Cold atom interferometer cooling laser power stabilizing system and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008531A (en) * 2017-11-30 2018-05-08 北京航空航天大学 A kind of raman laser light path matching system based on Mach-Zehnder interferometer

Also Published As

Publication number Publication date
CN112857591A (en) 2021-05-28

Similar Documents

Publication Publication Date Title
CN112857591B (en) Single laser source optical fiber laser system for cold atom interferometer
CN111697422B (en) Phase modulation type Raman optical power control method and system
CN112834056B (en) Laser system for cold atom interferometer
GB2185567A (en) Optical frequency analyzer
CN109286124B (en) Laser linewidth compression method and system
EP1683284A1 (en) All-optical signal processing method and device
CN112421371B (en) Cold atom interferometer single laser light source system
CN112054795B (en) Compact beat frequency and frequency locking phase locking device for atomic interferometer
CN108933379A (en) Laser frequency-offset-lock system
CN103579896A (en) Pound-Drever-Hall laser frequency stabilizing system without phase shifter
CN109357672B (en) Two-way optical carrier microwave resonance system based on circulator structure and method for detecting angular velocity of two-way optical carrier microwave resonance system
CN112366515B (en) Bidirectional beam expansion frequency stabilization method and device for cold atom interferometer
CN105353520A (en) Spatial optical 90-degree mixer with high mixing efficiency
US11874113B2 (en) Bidirectional optical-carrying microwave resonance system based on circulator structure and method for detecting angular velocity by said system
US11378401B2 (en) Polarization-maintaining fully-reciprocal bi-directional optical carrier microwave resonance system and angular velocity measurement method thereof
CN114899702A (en) Laser device offset frequency stabilizing device and method based on optical fiber ring resonator
CN210926606U (en) Laser frequency locking device based on wavelength meter and numerical control feedback
CN110061406B (en) Photon type microwave frequency divider with multiple frequency division modes and frequency division method thereof
CN209608088U (en) A kind of semiconductor conical laser amplification device under one way and round trip composite mode
CN105576495A (en) Residual amplitude modulation stabilization device based on wedge angle electro-optic crystal
CN109270029B (en) Universal NICE-OHMS system for detecting sub-Doppler spectrum
CN116230287A (en) Laser system and method for rubidium atom double-color magneto-optical trap
CN114336240B (en) Modularized cold atom interference laser system based on single-frequency fiber laser
CN214538272U (en) Dual-channel microwave source phase noise testing device based on polarization multiplexing
CN115102031A (en) Device and method for adjusting output frequency of laser based on atomic transition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant