CN109357672B - A bidirectional optical carrier microwave resonance system based on circulator structure and method for detecting angular velocity - Google Patents
A bidirectional optical carrier microwave resonance system based on circulator structure and method for detecting angular velocity Download PDFInfo
- Publication number
- CN109357672B CN109357672B CN201811290663.6A CN201811290663A CN109357672B CN 109357672 B CN109357672 B CN 109357672B CN 201811290663 A CN201811290663 A CN 201811290663A CN 109357672 B CN109357672 B CN 109357672B
- Authority
- CN
- China
- Prior art keywords
- optical
- cavity length
- cavity
- circulator
- microwave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 213
- 230000002457 bidirectional effect Effects 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 14
- 230000010287 polarization Effects 0.000 claims abstract description 75
- 238000001514 detection method Methods 0.000 claims abstract description 31
- 230000001172 regenerating effect Effects 0.000 claims abstract description 31
- 238000002789 length control Methods 0.000 claims abstract description 25
- 239000013307 optical fiber Substances 0.000 claims abstract description 25
- 230000008929 regeneration Effects 0.000 claims abstract description 17
- 238000011069 regeneration method Methods 0.000 claims abstract description 17
- 230000000694 effects Effects 0.000 claims description 19
- 239000000835 fiber Substances 0.000 claims description 15
- 238000001914 filtration Methods 0.000 claims description 12
- 230000003595 spectral effect Effects 0.000 claims description 12
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 230000035559 beat frequency Effects 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 9
- 230000010355 oscillation Effects 0.000 abstract description 6
- 238000005259 measurement Methods 0.000 abstract description 5
- 238000000926 separation method Methods 0.000 abstract 3
- 230000008030 elimination Effects 0.000 abstract 1
- 238000003379 elimination reaction Methods 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000010356 wave oscillation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/58—Turn-sensitive devices without moving masses
- G01C19/64—Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
- G01C19/66—Ring laser gyrometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/58—Turn-sensitive devices without moving masses
- G01C19/64—Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
- G01C19/66—Ring laser gyrometers
- G01C19/661—Ring laser gyrometers details
- G01C19/665—Ring laser gyrometers details control of the cavity
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
Abstract
本发明公开了一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法。本发明利用再生锁模技术、腔长控制技术和偏振态分离技术在光纤环中产生顺逆双向偏振态垂直的高稳定度的光载微波,用于测量旋转角速度。本发明采用环形器结构,通过双向再生锁模技术实现双向光载微波谐振;基于宽谱光干涉仪的非互易性误差消除技术,实现了互易的双向光载微波谐振系统;采用偏振态分离技术实现光信号的双波长分离,并采用垂直的偏振态在敏感环内相向传输,提高敏感环检测能力;采用腔长控制技术,将一个方向的微波振荡频率锁定到高稳定度标准时间参考源上,稳定了光谐振腔的相对腔长。本发明系统及方法具有实用性强、测量精度高等特点。
The invention discloses a bidirectional optical carrier microwave resonance system based on a circulator structure and a method for detecting angular velocity. The invention utilizes the regenerative mode locking technology, the cavity length control technology and the polarization state separation technology to generate high-stability light-carrying microwaves in the optical fiber ring with the forward and reverse bidirectional polarization states vertical, and is used for measuring the rotation angular velocity. The invention adopts the circulator structure, realizes the bidirectional optical carrier microwave resonance through the bidirectional regeneration mode locking technology; realizes the reciprocal bidirectional optical carrier microwave resonance system based on the non-reciprocal error elimination technology of the broad-spectrum optical interferometer; adopts the polarization state Separation technology realizes dual-wavelength separation of optical signals, and uses vertical polarization states to transmit in opposite directions in the sensitive ring to improve the detection capability of the sensitive ring; the cavity length control technology is used to lock the microwave oscillation frequency in one direction to a high-stability standard time reference On the source, the relative cavity length of the optical resonator is stabilized. The system and method of the invention have the characteristics of strong practicability and high measurement accuracy.
Description
技术领域technical field
本发明属于高精度光学陀螺技术领域,尤其涉及一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法。The invention belongs to the technical field of high-precision optical gyroscopes, and in particular relates to a bidirectional optical carrier microwave resonance system based on a circulator structure and a method for detecting angular velocity thereof.
背景技术Background technique
在惯性导航领域,通常是采用加速度计检测载体平动速度,用陀螺仪检测载体旋转角速度。高精度陀螺仪主要有机械陀螺和光学陀螺两种类型,在军事、工业、科学等领域广泛应用。其中光学陀螺仪主要包含激光陀螺和光纤陀螺两类。激光陀螺虽然精度高,但存在闭锁效应,维护成本较高;干涉式光纤陀螺存在光功率利用率低,温度误差、寄生噪声等缺陷,检测精度偏低;谐振式光纤陀螺易于微型化,但是对光源要求很高,目前实用性还待提高。虽然相比于机械陀螺,光学陀螺整体的稳定性仍有不足,但其结构紧凑、灵敏度高等特点,使光学陀螺在高精度陀螺的市场上仍占据重要份额。In the field of inertial navigation, an accelerometer is usually used to detect the translational velocity of the carrier, and a gyroscope is used to detect the rotational angular velocity of the carrier. There are mainly two types of high-precision gyroscopes, mechanical gyroscopes and optical gyroscopes, which are widely used in military, industrial, scientific and other fields. Among them, optical gyroscopes mainly include laser gyroscopes and fiber optic gyroscopes. Although the laser gyroscope has high precision, it has a blocking effect and high maintenance costs; the interferometric fiber optic gyroscope has defects such as low optical power utilization, temperature error, and parasitic noise, and the detection accuracy is low; the resonant fiber optic gyroscope is easy to miniaturize, but it is not suitable for The light source requirements are very high, and the practicability needs to be improved at present. Although compared with mechanical gyroscopes, the overall stability of optical gyroscopes is still insufficient, but its compact structure and high sensitivity make optical gyroscopes still occupy an important share in the market of high-precision gyroscopes.
光学陀螺检测载体旋转角速度的基本原理是萨格纳克效应(Sagnac effect)。萨格纳克效应的基本原理是闭合光路中,由同一光源发出的沿顺时针(CW)和逆时针方向(CCW)传输的两束光由于载体转动而产生不同的光程差,从而产生相位差或频率差。由于产生的相位差或频率差只与载体旋转角速度相关,通过检测光学陀螺产生的相位差或频率差即可实现载体旋转角速度测量。要实现萨格纳克效应检测,首先需要实现同一光源的沿顺时针(CW)和逆时针方向(CCW)传输,由于光电器件的双向传输能力的限制,沿顺时针(CW)和逆时针方向(CCW)的光谐振腔特性无法实现完全相同,因此引入的非互易性误差会降低光载微波陀螺的精度。因此,高精度高可靠的光学陀螺仍然是陀螺研究的重点。The basic principle of the optical gyroscope to detect the rotational angular velocity of the carrier is the Sagnac effect. The basic principle of the Sagnac effect is that in a closed optical path, two beams of light transmitted in a clockwise (CW) and counterclockwise (CCW) direction from the same light source have different optical path differences due to the rotation of the carrier, thereby generating a phase. difference or frequency difference. Since the generated phase difference or frequency difference is only related to the rotational angular velocity of the carrier, the measurement of the rotational angular velocity of the carrier can be realized by detecting the phase difference or frequency difference generated by the optical gyroscope. To realize Sagnac effect detection, it is first necessary to realize the clockwise (CW) and counterclockwise (CCW) transmission of the same light source. Due to the limitation of the bidirectional transmission capability of optoelectronic devices, the clockwise (CW) and counterclockwise directions The characteristics of the optical resonator (CCW) cannot be completely identical, so the introduced non-reciprocal error will reduce the accuracy of the light-borne microwave gyroscope. Therefore, high-precision and high-reliability optical gyroscopes are still the focus of gyroscope research.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有光学陀螺角速度测量方案的不足,提供一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法。The purpose of the present invention is to overcome the shortcomings of the existing optical gyro angular velocity measurement solutions, and to provide a bidirectional optical carrier microwave resonance system based on a circulator structure and a method for detecting the angular velocity.
为实现上述目的,本发明采用以下设计方案:一种基于环形器结构的双向光载微波谐振系统,该系统包括宽谱光源、50:50耦合器、第一波分复用器、第二波分复用器、低速光电转换器、干涉仪控制器、腔长补偿调节器、第一光放大器、第一光电强度调制器、第一光环形器、第一光耦合器、窄带双向光滤波器、第二光耦合器、第二光放大器、第二光电强度调制器、第二光环形器、第一再生腔腔长调节器、第一高速光电探测器、第一微波滤波放大单元、第一微波功分器、第二再生腔腔长调节器、第二高速光电探测器、第二微波滤波放大单元、敏感环干涉仪结构、第二微波功分器、第三微波功分器和差频检测单元;In order to achieve the above object, the present invention adopts the following design scheme: a bidirectional optical carrier microwave resonance system based on a circulator structure, the system includes a broad-spectrum light source, a 50:50 coupler, a first wavelength division multiplexer, a second wave Demultiplexer, low-speed photoelectric converter, interferometer controller, cavity length compensation regulator, first optical amplifier, first photoelectric intensity modulator, first optical circulator, first optical coupler, narrow-band bidirectional optical filter , the second optical coupler, the second optical amplifier, the second photoelectric intensity modulator, the second optical circulator, the first regenerative cavity cavity length regulator, the first high-speed photodetector, the first microwave filtering and amplifying unit, the first Microwave power divider, second regenerative cavity cavity length regulator, second high-speed photodetector, second microwave filter and amplifying unit, sensitive ring interferometer structure, second microwave power divider, third microwave power divider and difference frequency detection unit;
所述第一光放大器、第一光电强度调制器、腔长补偿调节器、第一光环形器、第二波分复用器、第一光耦合器、窄带双向光滤波器、敏感环干涉仪结构、第二光耦合器、第一波分复用器和第二光环形器依次连接构成顺时针方向环形谐振腔;顺时针方向谐振光依次经过第一光耦合器、第二再生腔腔长调节器、第二高速光电探测器、第二微波滤波放大单元和第三微波功分器反馈调制第一光电强度调制器,构成顺时针方向再生锁模结构;顺时针方向再生锁模结构产生的电信号通过第三微波功分器输入差频检测单元;The first optical amplifier, the first photoelectric intensity modulator, the cavity length compensation regulator, the first optical circulator, the second wavelength division multiplexer, the first optical coupler, the narrow-band bidirectional optical filter, and the sensitive ring interferometer The structure, the second optical coupler, the first wavelength division multiplexer and the second optical circulator are connected in sequence to form a clockwise ring resonant cavity; the clockwise resonant light passes through the first optical coupler and the second regenerating cavity in sequence. The regulator, the second high-speed photodetector, the second microwave filtering and amplifying unit, and the third microwave power divider feedback modulate the first photoelectric intensity modulator to form a clockwise regenerative mode-locking structure; The electrical signal is input to the difference frequency detection unit through the third microwave power divider;
所述第二光放大器、第二光电强度调制器、第二光环形器、第一波分复用器、第二光耦合器、敏感环干涉仪结构、窄带双向光滤波器、第一光耦合器第二波分复用器和第一光环形器依次连接构成逆时针方向环形谐振腔;逆时针方向谐振光依次经过第二光耦合器、第一再生腔腔长调节器、第一高速光电探测器、第一微波滤波放大单元、第一微波功分器和第二微波功分器反馈调制第二光电强度调制器,构成逆时针方向再生锁模结构;逆时针方向再生锁模结构产生的电信号通过第二微波功分器输入差频检测单元;The second optical amplifier, the second photoelectric intensity modulator, the second optical circulator, the first wavelength division multiplexer, the second optical coupler, the sensitive ring interferometer structure, the narrow-band bidirectional optical filter, the first optical coupling The second wavelength division multiplexer and the first optical circulator are connected in turn to form a counterclockwise ring resonator; the counterclockwise resonant light passes through the second optical coupler, the first regenerating cavity cavity length regulator, the first high-speed optoelectronic The detector, the first microwave filtering and amplifying unit, the first microwave power divider and the second microwave power divider feedback modulate the second photoelectric intensity modulator to form a counterclockwise regenerative mode-locking structure; The electrical signal is input to the difference frequency detection unit through the second microwave power divider;
所述宽谱光源、50:50耦合器、第一波分复用器、第二波分复用器、低速光电转换器、干涉仪控制器和腔长补偿调节器组成顺逆时针双环路的互易性误差补偿宽谱光干涉仪;所述宽谱光源发出的光经50:50耦合器分为两臂,第一臂依次通过第二波分复用器、第一光环形器、第二光放大器、第二光电强度调制器、第二光环形器、第一波分复用器、50:50耦合器进入低速光电转换器;第二臂依次通过第一波分复用器、第二光环形器、第一光放大器、第一光电强度调制器、腔长补偿调节器、第一光环形器、第二波分复用器、50:50耦合器进入低速光电转换器;所述低速光电转换器的检测信号经过干涉仪控制器,输出控制腔长补偿调节器,实现宽谱光干涉仪的两臂光程相同,消除两臂上非双向器件引起的非互易误差;所述宽谱光源发出的光与顺时针谐振光和逆时针谐振光均不干涉;The broadband light source, the 50:50 coupler, the first wavelength division multiplexer, the second wavelength division multiplexer, the low-speed photoelectric converter, the interferometer controller and the cavity length compensation regulator form a clockwise and counterclockwise double loop. Reciprocity error compensation broad-spectrum optical interferometer; the light emitted by the broad-spectrum light source is divided into two arms by a 50:50 coupler, and the first arm passes through the second wavelength division multiplexer, the first optical circulator, the first The second optical amplifier, the second photoelectric intensity modulator, the second optical circulator, the first wavelength division multiplexer, and the 50:50 coupler enter the low-speed photoelectric converter; the second arm passes through the first wavelength division multiplexer, the second Two optical circulators, a first optical amplifier, a first photoelectric intensity modulator, a cavity length compensation regulator, a first optical circulator, a second wavelength division multiplexer, and a 50:50 coupler enter the low-speed photoelectric converter; the The detection signal of the low-speed photoelectric converter passes through the interferometer controller, and the output controls the cavity length compensation regulator, so that the optical paths of the two arms of the broad-spectrum optical interferometer are the same, and the non-reciprocal error caused by the non-bidirectional devices on the two arms is eliminated; The light emitted by the broad-spectrum light source does not interfere with the clockwise resonant light and the counterclockwise resonant light;
所述敏感环干涉仪结构包括第一正交偏振态调节单元、偏振分束器、光纤敏感环和第二正交偏振态调节单元;The sensitive ring interferometer structure includes a first orthogonal polarization state adjustment unit, a polarization beam splitter, an optical fiber sensitive ring and a second orthogonal polarization state adjustment unit;
顺时针方向谐振光经过第一正交偏振态调节单元将窄带双向光滤波器的双峰值光谱信号调节为偏振态垂直的两路信号,经过偏振分束器进入光纤敏感环,依次经过偏振分束器、第二正交偏振态调节单元将偏振态调回初始状态;The clockwise resonant light passes through the first orthogonal polarization state adjustment unit to adjust the double-peak spectral signal of the narrow-band bidirectional optical filter into two-way signals with vertical polarization states, enters the fiber sensitive ring through the polarization beam splitter, and passes through the polarization beam splitter in turn. The device and the second orthogonal polarization state adjustment unit adjust the polarization state back to the initial state;
逆时针方向谐振光经过第二正交偏振态调节单元将窄带双向光滤波器的双峰值光谱信号调节为偏振态垂直的两路信号,经过偏振分束器进入光纤敏感环,依次经过偏振分束器、第一正交偏振态调节单元将偏振态调回初始状态。The counterclockwise resonant light passes through the second orthogonal polarization state adjustment unit to adjust the double-peak spectral signal of the narrow-band bidirectional optical filter into two-way signals with vertical polarization states, enters the optical fiber sensitive ring through the polarization beam splitter, and then passes through the polarization beam splitter in turn. The first orthogonal polarization state adjusting unit adjusts the polarization state back to the initial state.
进一步地,所述基于环形器结构的双向光载微波谐振系统,采用顺时针方向再生锁模结构和逆时针方向再生锁模结构产生的微波信号输入差频检测单元进行角速度检测。Further, in the bidirectional optical carrier microwave resonance system based on the circulator structure, the microwave signal generated by the clockwise regenerative mode locking structure and the counterclockwise regenerative mode locking structure is input to the difference frequency detection unit for angular velocity detection.
进一步地,所述窄带双向光滤波器将系统工作时的谐振光载微波信号变为双峰值光谱信号,谱峰对应波长分别为λ1和λ2,λ1和λ2的频率差为调制信号fm,实现双向双频谐振。Further, the narrow-band bidirectional optical filter changes the resonant optical carrier microwave signal during system operation into a double-peak spectral signal, the corresponding wavelengths of the spectral peaks are λ 1 and λ 2 respectively, and the frequency difference between λ 1 and λ 2 is the modulation signal. f m , to achieve bidirectional dual-frequency resonance.
进一步地,所述敏感环干涉仪结构中,所述第一正交偏振态调节单元和第二正交偏振态调节单元均由若干偏振分束器和偏振态控制器实现。Further, in the sensitive ring interferometer structure, the first orthogonal polarization state adjustment unit and the second orthogonal polarization state adjustment unit are both realized by a plurality of polarization beam splitters and polarization state controllers.
进一步地,所述敏感环干涉仪结构中,偏振态垂直的两路信号在敏感环内相向传输时的光速不同,增加敏感环SAGNAC效应检测增益。Further, in the structure of the sensitive ring interferometer, the speed of light is different when the two signals with vertical polarization states are transmitted in the opposite direction in the sensitive ring, which increases the detection gain of the SAGNAC effect of the sensitive ring.
进一步地,所述第一再生腔腔长调节器和第二再生腔腔长调节器作为光程调节单元,采用光纤拉伸器、可调光延时线或空间光位移台;所述腔长补偿调节器作为宽谱干涉仪臂长调节单元,采用光纤拉伸器、可调光延时线或空间光位移台。Further, the cavity length regulator of the first regeneration cavity and the cavity length regulator of the second regeneration cavity are used as optical path adjustment units, using optical fiber stretchers, adjustable optical delay lines or spatial optical displacement stages; The compensation adjuster is used as the arm length adjustment unit of the broad-spectrum interferometer, and adopts the fiber stretcher, the adjustable light delay line or the spatial light stage.
进一步地,该系统还包括腔长控制系统,所述腔长控制系统包括腔长调节器、腔长控制单元和外部时钟参考源,所述腔长调节器设置在双向环形谐振腔内,所述第一微波功分器输入腔长控制单元,所述外部时钟参考源输入腔长控制单元,所述腔长控制单元连接腔长调节器,实现谐振腔腔长稳定。Further, the system also includes a cavity length control system, the cavity length control system includes a cavity length regulator, a cavity length control unit and an external clock reference source, the cavity length regulator is arranged in a bidirectional ring resonant cavity, the The first microwave power divider is input to the cavity length control unit, the external clock reference source is input to the cavity length control unit, and the cavity length control unit is connected to the cavity length regulator to realize the stability of the cavity length of the resonant cavity.
进一步地,所述腔长调节器包括第一级腔长调节器和第二级腔长调节器,所述第一级腔长调节器的调节范围大于第二级腔长调节器,所述第一级腔长调节器用于慢速调节腔长,所述第二级腔长调节器用于快速调节腔长,所述第一级腔长调节器和第二级腔长调节器作为光程调节单元,采用光纤拉伸器、可调光延时线或空间光位移台。Further, the cavity length regulator includes a first stage cavity length regulator and a second stage cavity length regulator, the adjustment range of the first stage cavity length regulator is larger than that of the second stage cavity length regulator, and the first stage cavity length regulator has a larger adjustment range. The first-stage cavity length adjuster is used to adjust the cavity length at a slow speed, the second-stage cavity length adjuster is used to quickly adjust the cavity length, and the first-stage cavity length adjuster and the second-stage cavity length adjuster are used as optical path adjustment units , using a fiber stretcher, a dimmable delay line or a spatial optical stage.
一种利用基于环形器结构的双向光载微波谐振系统进行角速度检测的方法,该方法包括以下步骤:A method for angular velocity detection using a bidirectional optical carrier microwave resonance system based on a circulator structure, the method comprising the following steps:
步骤1:顺时针方向的工作光经过顺时针方向环形谐振腔和顺时针方向再生锁模结构,通过第三微波功分器实现稳定的f1频率输出;Step 1: The clockwise working light passes through the clockwise ring resonator and the clockwise regenerative mode-locking structure, and the third microwave power divider achieves a stable f1 frequency output;
逆时针方向的工作光经过逆时针方向环形谐振腔和逆时针方向再生锁模结构,通过第二微波功分器实现稳定的f2频率输出;The counterclockwise working light passes through the counterclockwise ring resonator and the counterclockwise regenerative mode-locking structure, and the second microwave power divider achieves a stable f2 frequency output;
步骤2:顺时针方向的工作光和逆时针方向的工作光在敏感环干涉仪结构中产生相反的 sagnac效应,差频检测单元检测步骤1获得的频率f1和频率f2的频率差即拍频,记为Δf;Step 2: The clockwise working light and the counterclockwise working light produce opposite sagnac effects in the structure of the sensitive ring interferometer. The difference frequency detection unit detects the frequency difference between the frequency f1 and the frequency f2 obtained in
步骤3:通过以下公式,即可获得旋转角速度Ωr Step 3: By the following formula, the rotational angular velocity Ω r can be obtained
其中,S为敏感环干涉仪结构中光纤敏感环包围的面积,λ为频率f1或频率f2对应的波长,L为光纤敏感环的总光纤长度;G1为顺时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益;G2为逆时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益。Among them, S is the area surrounded by the optical fiber sensitive ring in the sensitive ring interferometer structure, λ is the wavelength corresponding to frequency f1 or frequency f2, L is the total fiber length of the optical fiber sensitive ring; G 1 is the clockwise working light entering the optical fiber sensitive ring , the gain due to the sensitive sagnac effect of two paths with vertical polarization states; G 2 is the gain generated by the two paths of sensitive sagnac effect with the polarization state perpendicular to the light entering the optical fiber sensitive ring in the counterclockwise direction.
进一步地,当基于环形器结构的双向光载微波谐振系统具有腔长控制系统时,经过第一微波功分器分配的逆时针方向微波频率f1与外部时钟参考源进行鉴频鉴相,输出信号经过腔长控制单元用于控制腔长调节器,实现逆时针方向谐振腔长锁定;此时,顺时针方向谐振腔长变化量是腔长锁定前的顺时针方向谐振腔长变化量和腔长锁定前的逆时针方向谐振腔长变化量的总和。Further, when the bidirectional optical carrier microwave resonance system based on the circulator structure has a cavity length control system, the counterclockwise microwave frequency f1 distributed by the first microwave power divider and the external clock reference source are subjected to frequency and phase discrimination, and the output signal is obtained. The cavity length control unit is used to control the cavity length regulator to achieve counterclockwise cavity length locking; at this time, the clockwise cavity length change is the clockwise cavity length change and the cavity length before cavity length locking. The sum of the counterclockwise cavity length changes before locking.
本发明的有益效果为:本发明结合双向再生锁模技术和传统谐振光学陀螺技术,构建了基于萨格纳克效应(Sagnac effect)原理的双向光载微波谐振系统。该系统通过双向光电振荡获得高度稳定的微波振荡代替传统的光波振荡,并用于旋转角速度的测量;该系统利用宽谱光干涉仪补偿顺逆时针双向的非互易性误差,实现光载微波谐振系统的双向结构互易性;利用敏感环干涉仪结构,调节敏感环内双向传输的信号光偏振态垂直;本发明的优势是微波信号的差频检测的精度可以远远高于光学差频检测,前者可以通过放大倍频等多种方法检测频率差,提高信噪比,使得微波振荡信号的频率稳定度可以达到10-13;将其中一个方向振荡频率锁定到稳定度更高的标准时间参考源上,比如原子钟,可稳定光电振荡器的相对腔长,消除了光纤环形腔的温度漂移和光学寄生噪声,进一步提高频率稳定性。本发明极大地提高了由萨格纳克效应引起的双向振荡差频信号的信噪比。本发明提供的系统及方法具有实用性强、测量精度高等特点,可以满足高精度光学陀螺应用的要求。The beneficial effects of the invention are as follows: the invention combines the bidirectional regeneration mode locking technology and the traditional resonant optical gyroscope technology to construct a bidirectional optical carrier microwave resonance system based on the Sagnac effect principle. The system obtains highly stable microwave oscillation by bidirectional photoelectric oscillation instead of traditional light wave oscillation, and is used for the measurement of rotational angular velocity; the system uses a broad-spectrum optical interferometer to compensate for the non-reciprocal error of clockwise and counterclockwise bidirectional, and realizes microwave resonance on light carrier The bidirectional structure of the system is reciprocal; the sensitive ring interferometer structure is used to adjust the polarization state of the signal light transmitted bidirectionally in the sensitive ring; , the former can detect the frequency difference by amplifying the frequency multiplication and other methods, improve the signal-to-noise ratio, so that the frequency stability of the microwave oscillation signal can reach 10 -13 ; lock the oscillation frequency in one direction to a standard time reference with higher stability On the source, such as an atomic clock, the relative cavity length of the photoelectric oscillator can be stabilized, the temperature drift and optical spurious noise of the fiber ring cavity are eliminated, and the frequency stability is further improved. The invention greatly improves the signal-to-noise ratio of the bidirectional oscillation beat frequency signal caused by the Sagnac effect. The system and method provided by the invention have the characteristics of strong practicability and high measurement accuracy, and can meet the application requirements of high-precision optical gyroscopes.
附图说明Description of drawings
图1是本发明一个实施例的基于环形器结构的双向光载微波谐振系统的组成框图;1 is a block diagram of a bidirectional optical carrier microwave resonance system based on a circulator structure according to an embodiment of the present invention;
图2是本发明另一个实施例的基于环形器结构的双向光载微波谐振系统的组成框图;2 is a block diagram of a bidirectional optical carrier microwave resonance system based on a circulator structure according to another embodiment of the present invention;
图3是敏感环干涉仪结构的组成框图;Fig. 3 is the composition block diagram of the structure of the sensitive ring interferometer;
图中,宽谱光源1、50:50耦合器2、第一波分复用器3、第二波分复用器4、低速光电转换器5、干涉仪控制器6、腔长补偿调节器7、第一光放大器9、第一光电强度调制器10、第一光环形器11、第一光耦合器12、窄带双向光滤波器13、、第一级腔长调节器14、第二级腔长调节器15、第二光耦合器16、第二光放大器17、第二光电强度调制器18、第二光环形器 19、第一再生腔腔长调节器20、第一高速光电探测器21、第一微波滤波放大单元22、第一微波功分器24、第二再生腔腔长调节器25、第二高速光电探测器26、第二微波滤波放大单元27、敏感环干涉仪结构29、腔长控制单元30、第一正交偏振态调节单元37、偏振分束器 38、光纤敏感环39、第二正交偏振态调节单元40、外部时钟参考源45、第二微波功分器46、第三微波功分器47和差频检测单元48;图中实线部分表示光路连接,是光通路;点划线表示微波电路连接,是电通路。In the figure,
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
实施例1Example 1
如图1所示,本实施例提供的一种基于环形器结构的双向光载微波谐振系统,该系统包括宽谱光源、50:50耦合器、第一波分复用器3、第二波分复用器4、低速光电转换器5、干涉仪控制器6、腔长补偿调节器7、第一光放大器9、第一光电强度调制器10、第一光环形器11、第一光耦合器12、窄带双向光滤波器13、第二光耦合器16、第二光放大器17、第二光电强度调制器18、第二光环形器19、第一再生腔腔长调节器20、第一高速光电探测器21、第一微波滤波放大单元22、第一微波功分器24、第二再生腔腔长调节器25、第二高速光电探测器26、第二微波滤波放大单元27、敏感环干涉仪结构29、第二微波功分器46、第三微波功分器47和差频检测单元48;As shown in FIG. 1, this embodiment provides a bidirectional optical carrier microwave resonance system based on a circulator structure, which includes a broad-spectrum light source, a 50:50 coupler, a first
所述第一光放大器9、第一光电强度调制器10、腔长补偿调节器7、第一光环形器11、第二波分复用器4、第一光耦合器12、窄带双向光滤波器13、敏感环干涉仪结构29、第二光耦合器16、第一波分复用器3和第二光环形器19依次连接构成顺时针方向环形谐振腔;顺时针方向谐振光依次经过第一光耦合器12、第二再生腔腔长调节器25、第二高速光电探测器 26、第二微波滤波放大单元27和第三微波功分器47反馈调制第一光电强度调制器10,构成顺时针方向再生锁模结构;顺时针方向再生锁模结构产生的电信号通过第三微波功分器47输入差频检测单元48;所述第二再生腔腔长调节器25作为光程调节单元,可以采用光纤拉伸器、可调光延时线或空间光位移台等器件。The first
所述第二光放大器17、第二光电强度调制器18、第二光环形器19、第一波分复用器3、第二光耦合器16、敏感环干涉仪结构29、窄带双向光滤波器13、第一光耦合器12第二波分复用器4和第一光环形器11依次连接构成逆时针方向环形谐振腔;逆时针方向谐振光依次经过第二光耦合器16、第一再生腔腔长调节器20、第一高速光电探测器21、第一微波滤波放大单元22、第一微波功分器24和第二微波功分器46反馈调制第二光电强度调制器18,构成逆时针方向再生锁模结构;逆时针方向再生锁模结构产生的电信号通过第二微波功分器46输入差频检测单元48;所述第一再生腔腔长调节器20作为光程调节单元,可以采用光纤拉伸器、可调光延时线或空间光位移台等器件。The second
所述宽谱光源1、50:50耦合器2、第一波分复用器3、第二波分复用器4、低速光电转换器5、干涉仪控制器6和腔长补偿调节器7组成顺逆时针双环路的互易性误差补偿宽谱光干涉仪;所述宽谱光源1发出的光经50:50耦合器2分为两臂,第一臂依次通过第二波分复用器4、第一光环形器11、第二光放大器17、第二光电强度调制器18、第二光环形器19、第一波分复用器3、50:50耦合器2进入低速光电转换器5;第二臂依次通过第一波分复用器3、第二光环形器19、第一光放大器9、第一光电强度调制器10、腔长补偿调节器7、第一光环形器11、第二波分复用器4、50:50耦合器2进入低速光电转换器5;所述低速光电转换器5 的检测信号经过干涉仪控制器6,输出控制腔长补偿调节器7,实现宽谱光干涉仪的两臂光程相同,消除两臂上非双向器件引起的非互易误差;所述宽谱光源1发出的光与顺时针谐振光和逆时针谐振光均不干涉;所述腔长补偿调节器7作为宽谱干涉仪臂长调节单元,可以采用光纤拉伸器、可调光延时线或空间光位移台等器件。The
所述敏感环干涉仪结构29包括第一正交偏振态调节单元37、偏振分束器38、光纤敏感环39和第二正交偏振态调节单元40;The sensitive
顺时针方向谐振光经过第一正交偏振态调节单元37将窄带双向光滤波器13的双峰值光谱信号分离为中心波长分别为λ1和λ2,偏振态垂直的两路光信号,经过偏振分束器38分为λ1和λ2两路进入光纤敏感环39敏感角速度,而后经过偏振分束器38合束,经过第二正交偏振态调节单元40后实现敏感环干涉仪结构29的输出信号与输入信号偏振态一致;The clockwise resonant light passes through the first orthogonal polarization
逆时针方向谐振光经过第二正交偏振态调节单元40将窄带双向光滤波器13的双峰值光谱信号分离为中心波长分别为λ1和λ2,偏振态垂直的两路光信号,经过偏振分束器38分为λ1和λ2两路进入光纤敏感环39敏感角速度,而后经过偏振分束器38合束,经过第一正交偏振态调节单元37后实现敏感环干涉仪结构29的输出信号与输入信号偏振态一致。The counterclockwise resonant light passes through the second orthogonal polarization
所述基于环形器结构的双向光载微波谐振系统,采用顺时针方向再生锁模结构和逆时针方向再生锁模结构产生的微波信号输入微波频率差检测单元48进行角速度检测。The bidirectional optical carrier microwave resonance system based on the circulator structure adopts the clockwise regenerative mode-locking structure and the counterclockwise regenerative mode-locking structure to generate the microwave signal input to the microwave frequency
所述窄带双向光滤波器13将系统工作时的谐振光载微波信号变为双峰值光谱信号,谱峰对应波长分别为λ1和λ2,λ1和λ2的频率差为调制信号fm,实现双向双频谐振。The narrow-band bidirectional
所述敏感环干涉仪结构中,所述第一正交偏振态调节单元37和第二正交偏振态调节单元 40均可以由若干偏振分束器和偏振态控制器实现。In the sensitive ring interferometer structure, both the first orthogonal polarization
所述敏感环干涉仪结构中,偏振态垂直的两路光信号在敏感环内相向传输时的光速不同,增加敏感环SAGNAC效应检测增益。In the structure of the sensitive ring interferometer, when the two optical signals with vertical polarization states are transmitted in opposite directions in the sensitive ring, the speed of light is different, and the detection gain of the SAGNAC effect of the sensitive ring is increased.
逆时针方向进入敏感环内传输的λ1波长信号与顺时针方向进入敏感环内传输的λ2波长信号传输路径相同、偏振态垂直;逆时针方向进入敏感环内传输的λ2波长信号与顺时针方向进入敏感环内传输的λ1波长信号传输路径相同、偏振态垂直;实现了顺、逆时针的工作光信号的波长和偏振态分离;The λ 1 wavelength signal that enters the sensitive ring in the counterclockwise direction has the same transmission path as the λ 2 wavelength signal that enters the sensitive ring and transmits in the clockwise direction, and the polarization state is vertical ; The transmission path of the λ 1 wavelength signal transmitted in the sensitive ring in the clockwise direction is the same, and the polarization state is vertical; the wavelength and polarization state of the clockwise and counterclockwise working optical signals are separated;
顺时针和逆时针方向谐振腔因sagnac效应产生的光程差(相位差)符号相反,导致顺时针和逆时针方向的光程差为两倍的单方向sagnac效应产生的光程差。The sign of the optical path difference (phase difference) due to the sagnac effect is opposite in the clockwise and counterclockwise resonators, resulting in twice the optical path difference due to the unidirectional sagnac effect in the clockwise and counterclockwise directions.
利用基于环形器结构的双向光载微波谐振系统进行角速度检测的方法,包括以下步骤:A method for angular velocity detection using a bidirectional optical carrier microwave resonance system based on a circulator structure includes the following steps:
步骤1:带隔离器的宽谱光源1的输出光经过50:50耦合器2进行功率均分后,分为两路,第一路注入第一波分复用器3,而后沿顺时针方向依次经过第二光环形器19、第一光放大器 9、第一光电强度调制器10、腔长补偿调节器7和第一光环形器11,最后经由第二波分复用器4输出;第二路注入第二波分复用器4,而后沿逆时针方向依次经过第一光环形器11、第二光放大器17,第二光电强度调制器18和第二光环形器19,最后经由第一波分复用器3输出;经过第一波分复用器3和第二波分复用器4的两路输出信号经过同一个50:50耦合器2 耦合返回,干涉叠加信号经过低速光电转换器5进行光电转换,经由干涉仪控制器6反馈调节腔长补偿调节器7,保持干涉仪两臂等长;Step 1: The output light of the
步骤2:第一光放大器9的输出光通过第一光电强度调制器10和第一光环形器11沿顺时针方向进入公共腔,在公共腔内先经过第二波分复用器4,在第一光耦合器12分为两路,一路继续经过窄带双向光滤波器13、敏感环干涉仪结构29、第二光耦合器16、第一波分复用器3和第二光环形器19后重新进入第一光放大器9形成光谐振腔;另一路先经过第二再生腔腔长调节器25,然后通过第二高速光电探测器26进行光电转换,之后送入第二微波滤波放大单元27进行微波滤波和放大,经第三微波功分器47分为两路,一路注入第一光电强度调制器10进行微波调制,形成再生锁模回路,一路作为顺时针方向的谐振微波输出f1;其中调节第二高速光电探测器26前的第二再生腔腔长调节器25可改变再生锁模回路注入第一光电强度调制器10的微波相位,实现稳定的f1频率输出;Step 2: The output light of the first
步骤3:逆时针方向的再生锁模原理与顺时针方向相似,第二光放大器17的输出光经过第二光电强度调制器18和第二光环形器19沿逆时针方向进入公共腔,在公共腔内经过第二光耦合器16分为两路,一路继续经过敏感环干涉仪结构29、窄带双向光滤波器13、第一光耦合器12、第二波分复用器4、第一光环形器11后重新进入第二光放大器17,形成光谐振腔;另一路先经过第一再生腔腔长调节器20,然后通过第一高速光电探测器21进行光电转换,之后送入第一微波滤波放大单元22进行微波滤波和放大,经第一微波功分器24、第二微波功分器46后分为两路,一路注入第二光电强度调制器18进行微波调制,形成再生锁模回路,一路作为逆时针方向的谐振微波输出f2;其中调节第一高速光电探测器21前的第一再生腔腔长调节器20可改变再生锁模回路注入第二光电强度调制器18的微波相位,实现稳定的f2频率输出;Step 3: The principle of regenerative mode locking in the counterclockwise direction is similar to that in the clockwise direction. The output light of the second
步骤4:顺时针方向的工作光和逆时针方向的工作光在敏感环干涉仪结构29中产生相反的sagnac效应,差频检测单元48检测步骤1获得的频率f1和频率f2的频率差即拍频,记为Δf;Step 4: The clockwise working light and the counterclockwise working light produce opposite sagnac effects in the sensitive
步骤5:通过以下公式,即可获得旋转角速度Ωr Step 5: The rotational angular velocity Ω r can be obtained by the following formula
其中,S为敏感环干涉仪结构中光纤敏感环包围的面积,λ为频率f1或频率f2对应的波长,L为光纤敏感环的总光纤长度;G1为顺时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益;G2为逆时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益。Among them, S is the area surrounded by the optical fiber sensitive ring in the sensitive ring interferometer structure, λ is the wavelength corresponding to frequency f1 or frequency f2, L is the total fiber length of the optical fiber sensitive ring; G 1 is the clockwise working light entering the optical fiber sensitive ring , the gain due to the sensitive sagnac effect of two paths with vertical polarization states; G 2 is the gain generated by the two paths of sensitive sagnac effect with the polarization state perpendicular to the light entering the optical fiber sensitive ring in the counterclockwise direction.
实施例2Example 2
如图2所示,本实施例提供的一种基于环形器结构的双向光载微波谐振系统,在实施例 1的基础上,还包括腔长控制系统,所述腔长控制系统包括腔长调节器、腔长控制单元30和外部时钟参考源45。As shown in FIG. 2 , a bidirectional optical carrier microwave resonance system based on a circulator structure provided in this embodiment, on the basis of
所述腔长调节器设置在双向环形谐振腔内,所述第一微波功分器24输入腔长控制单元 30,所述外部时钟参考源45输入腔长控制单元30,所述腔长控制单元30连接腔长调节器,实现谐振腔腔长稳定。The cavity length regulator is arranged in a bidirectional ring resonant cavity, the first
进一步地,所述腔长调节器包括第一级腔长调节器14和第二级腔长调节器15,所述第一级腔长调节器14的调节范围大于第二级腔长调节器15,所述第一级腔长调节器14用于慢速调节腔长,所述第二级腔长调节器15用于快速调节腔长,所述第一级腔长调节器14和第二级腔长调节器15作为光程调节单元,采用光纤拉伸器、可调光延时线或空间光位移台。Further, the cavity length regulator includes a first stage
经过第一微波功分器24分配的逆时针方向微波频率f1与外部时钟参考源45进行鉴频鉴相,输出信号经过腔长控制单元30用于控制腔长调节器,实现逆时针方向谐振腔长锁定;此时,顺时针方向谐振腔长变化量是腔长锁定前的顺时针方向谐振腔长变化量和腔长锁定前的逆时针方向谐振腔长变化量的总和。The counterclockwise microwave frequency f1 distributed by the first
本技术领域的人员根据本发明所提供的文字描述、附图以及权利要求书能够很容易在不脱离权利要求书所限定的本发明的思想和范围条件下,可以做出多种变化和改动。凡是依据本发明的技术思想和实质对上述实施例进行的任何修改、等同变化,均属于本发明的权利要求所限定的保护范围之内。Those skilled in the art can easily make various changes and modifications according to the written description, drawings and claims provided by the present invention without departing from the spirit and scope of the present invention defined by the claims. Any modifications and equivalent changes made to the above embodiments according to the technical idea and essence of the present invention fall within the protection scope defined by the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811290663.6A CN109357672B (en) | 2018-10-31 | 2018-10-31 | A bidirectional optical carrier microwave resonance system based on circulator structure and method for detecting angular velocity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811290663.6A CN109357672B (en) | 2018-10-31 | 2018-10-31 | A bidirectional optical carrier microwave resonance system based on circulator structure and method for detecting angular velocity |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109357672A CN109357672A (en) | 2019-02-19 |
CN109357672B true CN109357672B (en) | 2020-11-27 |
Family
ID=65343590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811290663.6A Active CN109357672B (en) | 2018-10-31 | 2018-10-31 | A bidirectional optical carrier microwave resonance system based on circulator structure and method for detecting angular velocity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109357672B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111504176B (en) * | 2020-04-30 | 2021-03-30 | 浙江大学 | Large optical path closed-loop measurement system based on two-stage actuator structure |
CN111721277B (en) * | 2020-05-18 | 2025-01-07 | 浙江贯道精密科技有限公司 | High-precision fiber optic gyroscope with stable scale factor |
CN111917476A (en) * | 2020-07-24 | 2020-11-10 | 天津大学 | Linear radio over fiber communication system based on photoelectric oscillator |
CN112104415B (en) * | 2020-08-27 | 2024-10-25 | 国网江西省电力有限公司信息通信分公司 | System for detecting Rayleigh scattering signal intensity by adopting EDFA (electronic data transfer function) amplifying device |
CN112113556B (en) * | 2020-08-28 | 2022-06-24 | 哈尔滨工程大学 | A high-sensitivity resonant micro-optical gyroscope based on self-injection frequency locking and its detection method |
CN114552340B (en) * | 2020-11-24 | 2023-09-05 | 中国科学院半导体研究所 | Tunable broadband random photoelectric oscillator |
CN115268161B (en) * | 2021-04-30 | 2023-05-09 | 华中科技大学 | A system and method for achieving phase regeneration with low power consumption |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1382958A (en) * | 2002-06-20 | 2002-12-04 | 北京大学 | Beat frequency detection method for travelling-wave annular resonance cavity of non-mechanical gyro |
WO2007067823A3 (en) * | 2005-12-09 | 2007-07-26 | Massachusetts Inst Technology | A balanced optical-radiofrequency phase detector |
CN103267521A (en) * | 2013-05-10 | 2013-08-28 | 浙江大学 | Method for detecting angular velocity through adopting one-loop two-way bidirectional resonant optical microwaves |
CN103267522A (en) * | 2013-05-10 | 2013-08-28 | 浙江大学 | Bidirectional locking frequency switching method for eliminating nonreciprocal error of optical microwave gyroscope |
CN103278150A (en) * | 2013-05-10 | 2013-09-04 | 浙江大学 | Optical carrier microwave gyroscopic method for detecting angular velocity |
CN103471579A (en) * | 2013-09-29 | 2013-12-25 | 浙江大学 | Angular velocity detection method adopting two-way full reciprocity coupling optoelectronic oscillator |
CN107084713A (en) * | 2017-05-26 | 2017-08-22 | 北京交通大学 | Method and device for measuring angular velocity based on photoelectric oscillator |
CN108344408A (en) * | 2017-12-19 | 2018-07-31 | 北京交通大学 | Angular velocity measurement device based on tunable optical electrical oscillator |
CN108614126A (en) * | 2018-05-30 | 2018-10-02 | 北京交通大学 | Angular velocity measurement device and method based on wideband adjustable optical-electronic oscillator |
-
2018
- 2018-10-31 CN CN201811290663.6A patent/CN109357672B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1382958A (en) * | 2002-06-20 | 2002-12-04 | 北京大学 | Beat frequency detection method for travelling-wave annular resonance cavity of non-mechanical gyro |
WO2007067823A3 (en) * | 2005-12-09 | 2007-07-26 | Massachusetts Inst Technology | A balanced optical-radiofrequency phase detector |
CN103267521A (en) * | 2013-05-10 | 2013-08-28 | 浙江大学 | Method for detecting angular velocity through adopting one-loop two-way bidirectional resonant optical microwaves |
CN103267522A (en) * | 2013-05-10 | 2013-08-28 | 浙江大学 | Bidirectional locking frequency switching method for eliminating nonreciprocal error of optical microwave gyroscope |
CN103278150A (en) * | 2013-05-10 | 2013-09-04 | 浙江大学 | Optical carrier microwave gyroscopic method for detecting angular velocity |
CN103471579A (en) * | 2013-09-29 | 2013-12-25 | 浙江大学 | Angular velocity detection method adopting two-way full reciprocity coupling optoelectronic oscillator |
CN107084713A (en) * | 2017-05-26 | 2017-08-22 | 北京交通大学 | Method and device for measuring angular velocity based on photoelectric oscillator |
CN108344408A (en) * | 2017-12-19 | 2018-07-31 | 北京交通大学 | Angular velocity measurement device based on tunable optical electrical oscillator |
CN108614126A (en) * | 2018-05-30 | 2018-10-02 | 北京交通大学 | Angular velocity measurement device and method based on wideband adjustable optical-electronic oscillator |
Also Published As
Publication number | Publication date |
---|---|
CN109357672A (en) | 2019-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109357672B (en) | A bidirectional optical carrier microwave resonance system based on circulator structure and method for detecting angular velocity | |
CN103471579B (en) | A kind of angular velocity detection method adopting two-way full reciprocity coupling light electrical oscillator | |
US11874113B2 (en) | Bidirectional optical-carrying microwave resonance system based on circulator structure and method for detecting angular velocity by said system | |
US8009296B2 (en) | Light-phase-noise error reducer | |
CN103278150B (en) | A kind of light of detection angle speed carries microwave gyroscope method | |
CN105091776B (en) | The optical-fiber laser static strain beat frequency demodulating system modulated based on single-side belt frequency sweep | |
CN115112111B (en) | Single-beam wide-spectrum light source secondary filtering resonant fiber optic gyroscope and closed-loop control method | |
CN107084713B (en) | Method and device for measuring angular velocity based on photoelectric oscillator | |
CN108344408B (en) | Angular velocity measuring device based on tunable optoelectronic oscillator | |
CN110672137B (en) | An Interferometric Fiber Optic Vibration Sensing System Based on Wavelength Division Multiplexing and Microwave Photonic Technology | |
CN108332735B (en) | Resonance type fiber-optic gyroscope coherent demodulation system and method based on external beam interference | |
EP3514491A1 (en) | Apparatus and method for diminished bias error due to polarization mismatch | |
CN103267522B (en) | The two-way frequency locking switching method of microwave gyroscope irreplaceable error is carried for eliminating light | |
CN110470292A (en) | A kind of self seeding frequency locking resonance type optical gyroscope and its working method | |
CN112857355B (en) | Passive laser gyroscope and angular velocity determination method based on polarization selective locking | |
US11378401B2 (en) | Polarization-maintaining fully-reciprocal bi-directional optical carrier microwave resonance system and angular velocity measurement method thereof | |
CN103267521B (en) | Monocycle two-way two-way resonance light is adopted to carry the method for microwave detection angle speed | |
CN109323690B (en) | A polarization-maintaining fully reciprocal bidirectional optical carrier microwave resonant system and method for detecting angular velocity | |
CN112066969B (en) | Dual-light source self-injection locked resonant micro-optical electromechanical gyroscope based on optical phase-locked loop | |
Ye et al. | High-sensitivity angular velocity measurement based on bidirectional coupled optoelectronic oscillator | |
CN115451934A (en) | A Singularity Enhanced Brillouin Micro-Optical Gyroscope Based on Self-injection Frequency Locking | |
CN114935306A (en) | High-stability interference device based on phase locking between multi-core optical fiber cores | |
CN109270029B (en) | Universal NICE-OHMS system for detecting sub-Doppler spectrum | |
CN111721277A (en) | High Precision Fiber Optic Gyroscope with Stable Scale Factor | |
CN113532413B (en) | A Light Source Relative Intensity Noise Suppression Device Based on F-P Cavity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |