CN109357672B - A bidirectional optical carrier microwave resonance system based on circulator structure and method for detecting angular velocity - Google Patents

A bidirectional optical carrier microwave resonance system based on circulator structure and method for detecting angular velocity Download PDF

Info

Publication number
CN109357672B
CN109357672B CN201811290663.6A CN201811290663A CN109357672B CN 109357672 B CN109357672 B CN 109357672B CN 201811290663 A CN201811290663 A CN 201811290663A CN 109357672 B CN109357672 B CN 109357672B
Authority
CN
China
Prior art keywords
optical
cavity length
cavity
circulator
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811290663.6A
Other languages
Chinese (zh)
Other versions
CN109357672A (en
Inventor
宋开臣
于晋龙
叶凌云
王菊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201811290663.6A priority Critical patent/CN109357672B/en
Publication of CN109357672A publication Critical patent/CN109357672A/en
Application granted granted Critical
Publication of CN109357672B publication Critical patent/CN109357672B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/66Ring laser gyrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/66Ring laser gyrometers
    • G01C19/661Ring laser gyrometers details
    • G01C19/665Ring laser gyrometers details control of the cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

本发明公开了一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法。本发明利用再生锁模技术、腔长控制技术和偏振态分离技术在光纤环中产生顺逆双向偏振态垂直的高稳定度的光载微波,用于测量旋转角速度。本发明采用环形器结构,通过双向再生锁模技术实现双向光载微波谐振;基于宽谱光干涉仪的非互易性误差消除技术,实现了互易的双向光载微波谐振系统;采用偏振态分离技术实现光信号的双波长分离,并采用垂直的偏振态在敏感环内相向传输,提高敏感环检测能力;采用腔长控制技术,将一个方向的微波振荡频率锁定到高稳定度标准时间参考源上,稳定了光谐振腔的相对腔长。本发明系统及方法具有实用性强、测量精度高等特点。

Figure 201811290663

The invention discloses a bidirectional optical carrier microwave resonance system based on a circulator structure and a method for detecting angular velocity. The invention utilizes the regenerative mode locking technology, the cavity length control technology and the polarization state separation technology to generate high-stability light-carrying microwaves in the optical fiber ring with the forward and reverse bidirectional polarization states vertical, and is used for measuring the rotation angular velocity. The invention adopts the circulator structure, realizes the bidirectional optical carrier microwave resonance through the bidirectional regeneration mode locking technology; realizes the reciprocal bidirectional optical carrier microwave resonance system based on the non-reciprocal error elimination technology of the broad-spectrum optical interferometer; adopts the polarization state Separation technology realizes dual-wavelength separation of optical signals, and uses vertical polarization states to transmit in opposite directions in the sensitive ring to improve the detection capability of the sensitive ring; the cavity length control technology is used to lock the microwave oscillation frequency in one direction to a high-stability standard time reference On the source, the relative cavity length of the optical resonator is stabilized. The system and method of the invention have the characteristics of strong practicability and high measurement accuracy.

Figure 201811290663

Description

一种基于环形器结构的双向光载微波谐振系统及其检测角速 度的方法A bidirectional optical carrier microwave resonance system based on circulator structure and its detection angular velocity degree method

技术领域technical field

本发明属于高精度光学陀螺技术领域,尤其涉及一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法。The invention belongs to the technical field of high-precision optical gyroscopes, and in particular relates to a bidirectional optical carrier microwave resonance system based on a circulator structure and a method for detecting angular velocity thereof.

背景技术Background technique

在惯性导航领域,通常是采用加速度计检测载体平动速度,用陀螺仪检测载体旋转角速度。高精度陀螺仪主要有机械陀螺和光学陀螺两种类型,在军事、工业、科学等领域广泛应用。其中光学陀螺仪主要包含激光陀螺和光纤陀螺两类。激光陀螺虽然精度高,但存在闭锁效应,维护成本较高;干涉式光纤陀螺存在光功率利用率低,温度误差、寄生噪声等缺陷,检测精度偏低;谐振式光纤陀螺易于微型化,但是对光源要求很高,目前实用性还待提高。虽然相比于机械陀螺,光学陀螺整体的稳定性仍有不足,但其结构紧凑、灵敏度高等特点,使光学陀螺在高精度陀螺的市场上仍占据重要份额。In the field of inertial navigation, an accelerometer is usually used to detect the translational velocity of the carrier, and a gyroscope is used to detect the rotational angular velocity of the carrier. There are mainly two types of high-precision gyroscopes, mechanical gyroscopes and optical gyroscopes, which are widely used in military, industrial, scientific and other fields. Among them, optical gyroscopes mainly include laser gyroscopes and fiber optic gyroscopes. Although the laser gyroscope has high precision, it has a blocking effect and high maintenance costs; the interferometric fiber optic gyroscope has defects such as low optical power utilization, temperature error, and parasitic noise, and the detection accuracy is low; the resonant fiber optic gyroscope is easy to miniaturize, but it is not suitable for The light source requirements are very high, and the practicability needs to be improved at present. Although compared with mechanical gyroscopes, the overall stability of optical gyroscopes is still insufficient, but its compact structure and high sensitivity make optical gyroscopes still occupy an important share in the market of high-precision gyroscopes.

光学陀螺检测载体旋转角速度的基本原理是萨格纳克效应(Sagnac effect)。萨格纳克效应的基本原理是闭合光路中,由同一光源发出的沿顺时针(CW)和逆时针方向(CCW)传输的两束光由于载体转动而产生不同的光程差,从而产生相位差或频率差。由于产生的相位差或频率差只与载体旋转角速度相关,通过检测光学陀螺产生的相位差或频率差即可实现载体旋转角速度测量。要实现萨格纳克效应检测,首先需要实现同一光源的沿顺时针(CW)和逆时针方向(CCW)传输,由于光电器件的双向传输能力的限制,沿顺时针(CW)和逆时针方向(CCW)的光谐振腔特性无法实现完全相同,因此引入的非互易性误差会降低光载微波陀螺的精度。因此,高精度高可靠的光学陀螺仍然是陀螺研究的重点。The basic principle of the optical gyroscope to detect the rotational angular velocity of the carrier is the Sagnac effect. The basic principle of the Sagnac effect is that in a closed optical path, two beams of light transmitted in a clockwise (CW) and counterclockwise (CCW) direction from the same light source have different optical path differences due to the rotation of the carrier, thereby generating a phase. difference or frequency difference. Since the generated phase difference or frequency difference is only related to the rotational angular velocity of the carrier, the measurement of the rotational angular velocity of the carrier can be realized by detecting the phase difference or frequency difference generated by the optical gyroscope. To realize Sagnac effect detection, it is first necessary to realize the clockwise (CW) and counterclockwise (CCW) transmission of the same light source. Due to the limitation of the bidirectional transmission capability of optoelectronic devices, the clockwise (CW) and counterclockwise directions The characteristics of the optical resonator (CCW) cannot be completely identical, so the introduced non-reciprocal error will reduce the accuracy of the light-borne microwave gyroscope. Therefore, high-precision and high-reliability optical gyroscopes are still the focus of gyroscope research.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于克服现有光学陀螺角速度测量方案的不足,提供一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法。The purpose of the present invention is to overcome the shortcomings of the existing optical gyro angular velocity measurement solutions, and to provide a bidirectional optical carrier microwave resonance system based on a circulator structure and a method for detecting the angular velocity.

为实现上述目的,本发明采用以下设计方案:一种基于环形器结构的双向光载微波谐振系统,该系统包括宽谱光源、50:50耦合器、第一波分复用器、第二波分复用器、低速光电转换器、干涉仪控制器、腔长补偿调节器、第一光放大器、第一光电强度调制器、第一光环形器、第一光耦合器、窄带双向光滤波器、第二光耦合器、第二光放大器、第二光电强度调制器、第二光环形器、第一再生腔腔长调节器、第一高速光电探测器、第一微波滤波放大单元、第一微波功分器、第二再生腔腔长调节器、第二高速光电探测器、第二微波滤波放大单元、敏感环干涉仪结构、第二微波功分器、第三微波功分器和差频检测单元;In order to achieve the above object, the present invention adopts the following design scheme: a bidirectional optical carrier microwave resonance system based on a circulator structure, the system includes a broad-spectrum light source, a 50:50 coupler, a first wavelength division multiplexer, a second wave Demultiplexer, low-speed photoelectric converter, interferometer controller, cavity length compensation regulator, first optical amplifier, first photoelectric intensity modulator, first optical circulator, first optical coupler, narrow-band bidirectional optical filter , the second optical coupler, the second optical amplifier, the second photoelectric intensity modulator, the second optical circulator, the first regenerative cavity cavity length regulator, the first high-speed photodetector, the first microwave filtering and amplifying unit, the first Microwave power divider, second regenerative cavity cavity length regulator, second high-speed photodetector, second microwave filter and amplifying unit, sensitive ring interferometer structure, second microwave power divider, third microwave power divider and difference frequency detection unit;

所述第一光放大器、第一光电强度调制器、腔长补偿调节器、第一光环形器、第二波分复用器、第一光耦合器、窄带双向光滤波器、敏感环干涉仪结构、第二光耦合器、第一波分复用器和第二光环形器依次连接构成顺时针方向环形谐振腔;顺时针方向谐振光依次经过第一光耦合器、第二再生腔腔长调节器、第二高速光电探测器、第二微波滤波放大单元和第三微波功分器反馈调制第一光电强度调制器,构成顺时针方向再生锁模结构;顺时针方向再生锁模结构产生的电信号通过第三微波功分器输入差频检测单元;The first optical amplifier, the first photoelectric intensity modulator, the cavity length compensation regulator, the first optical circulator, the second wavelength division multiplexer, the first optical coupler, the narrow-band bidirectional optical filter, and the sensitive ring interferometer The structure, the second optical coupler, the first wavelength division multiplexer and the second optical circulator are connected in sequence to form a clockwise ring resonant cavity; the clockwise resonant light passes through the first optical coupler and the second regenerating cavity in sequence. The regulator, the second high-speed photodetector, the second microwave filtering and amplifying unit, and the third microwave power divider feedback modulate the first photoelectric intensity modulator to form a clockwise regenerative mode-locking structure; The electrical signal is input to the difference frequency detection unit through the third microwave power divider;

所述第二光放大器、第二光电强度调制器、第二光环形器、第一波分复用器、第二光耦合器、敏感环干涉仪结构、窄带双向光滤波器、第一光耦合器第二波分复用器和第一光环形器依次连接构成逆时针方向环形谐振腔;逆时针方向谐振光依次经过第二光耦合器、第一再生腔腔长调节器、第一高速光电探测器、第一微波滤波放大单元、第一微波功分器和第二微波功分器反馈调制第二光电强度调制器,构成逆时针方向再生锁模结构;逆时针方向再生锁模结构产生的电信号通过第二微波功分器输入差频检测单元;The second optical amplifier, the second photoelectric intensity modulator, the second optical circulator, the first wavelength division multiplexer, the second optical coupler, the sensitive ring interferometer structure, the narrow-band bidirectional optical filter, the first optical coupling The second wavelength division multiplexer and the first optical circulator are connected in turn to form a counterclockwise ring resonator; the counterclockwise resonant light passes through the second optical coupler, the first regenerating cavity cavity length regulator, the first high-speed optoelectronic The detector, the first microwave filtering and amplifying unit, the first microwave power divider and the second microwave power divider feedback modulate the second photoelectric intensity modulator to form a counterclockwise regenerative mode-locking structure; The electrical signal is input to the difference frequency detection unit through the second microwave power divider;

所述宽谱光源、50:50耦合器、第一波分复用器、第二波分复用器、低速光电转换器、干涉仪控制器和腔长补偿调节器组成顺逆时针双环路的互易性误差补偿宽谱光干涉仪;所述宽谱光源发出的光经50:50耦合器分为两臂,第一臂依次通过第二波分复用器、第一光环形器、第二光放大器、第二光电强度调制器、第二光环形器、第一波分复用器、50:50耦合器进入低速光电转换器;第二臂依次通过第一波分复用器、第二光环形器、第一光放大器、第一光电强度调制器、腔长补偿调节器、第一光环形器、第二波分复用器、50:50耦合器进入低速光电转换器;所述低速光电转换器的检测信号经过干涉仪控制器,输出控制腔长补偿调节器,实现宽谱光干涉仪的两臂光程相同,消除两臂上非双向器件引起的非互易误差;所述宽谱光源发出的光与顺时针谐振光和逆时针谐振光均不干涉;The broadband light source, the 50:50 coupler, the first wavelength division multiplexer, the second wavelength division multiplexer, the low-speed photoelectric converter, the interferometer controller and the cavity length compensation regulator form a clockwise and counterclockwise double loop. Reciprocity error compensation broad-spectrum optical interferometer; the light emitted by the broad-spectrum light source is divided into two arms by a 50:50 coupler, and the first arm passes through the second wavelength division multiplexer, the first optical circulator, the first The second optical amplifier, the second photoelectric intensity modulator, the second optical circulator, the first wavelength division multiplexer, and the 50:50 coupler enter the low-speed photoelectric converter; the second arm passes through the first wavelength division multiplexer, the second Two optical circulators, a first optical amplifier, a first photoelectric intensity modulator, a cavity length compensation regulator, a first optical circulator, a second wavelength division multiplexer, and a 50:50 coupler enter the low-speed photoelectric converter; the The detection signal of the low-speed photoelectric converter passes through the interferometer controller, and the output controls the cavity length compensation regulator, so that the optical paths of the two arms of the broad-spectrum optical interferometer are the same, and the non-reciprocal error caused by the non-bidirectional devices on the two arms is eliminated; The light emitted by the broad-spectrum light source does not interfere with the clockwise resonant light and the counterclockwise resonant light;

所述敏感环干涉仪结构包括第一正交偏振态调节单元、偏振分束器、光纤敏感环和第二正交偏振态调节单元;The sensitive ring interferometer structure includes a first orthogonal polarization state adjustment unit, a polarization beam splitter, an optical fiber sensitive ring and a second orthogonal polarization state adjustment unit;

顺时针方向谐振光经过第一正交偏振态调节单元将窄带双向光滤波器的双峰值光谱信号调节为偏振态垂直的两路信号,经过偏振分束器进入光纤敏感环,依次经过偏振分束器、第二正交偏振态调节单元将偏振态调回初始状态;The clockwise resonant light passes through the first orthogonal polarization state adjustment unit to adjust the double-peak spectral signal of the narrow-band bidirectional optical filter into two-way signals with vertical polarization states, enters the fiber sensitive ring through the polarization beam splitter, and passes through the polarization beam splitter in turn. The device and the second orthogonal polarization state adjustment unit adjust the polarization state back to the initial state;

逆时针方向谐振光经过第二正交偏振态调节单元将窄带双向光滤波器的双峰值光谱信号调节为偏振态垂直的两路信号,经过偏振分束器进入光纤敏感环,依次经过偏振分束器、第一正交偏振态调节单元将偏振态调回初始状态。The counterclockwise resonant light passes through the second orthogonal polarization state adjustment unit to adjust the double-peak spectral signal of the narrow-band bidirectional optical filter into two-way signals with vertical polarization states, enters the optical fiber sensitive ring through the polarization beam splitter, and then passes through the polarization beam splitter in turn. The first orthogonal polarization state adjusting unit adjusts the polarization state back to the initial state.

进一步地,所述基于环形器结构的双向光载微波谐振系统,采用顺时针方向再生锁模结构和逆时针方向再生锁模结构产生的微波信号输入差频检测单元进行角速度检测。Further, in the bidirectional optical carrier microwave resonance system based on the circulator structure, the microwave signal generated by the clockwise regenerative mode locking structure and the counterclockwise regenerative mode locking structure is input to the difference frequency detection unit for angular velocity detection.

进一步地,所述窄带双向光滤波器将系统工作时的谐振光载微波信号变为双峰值光谱信号,谱峰对应波长分别为λ1和λ2,λ1和λ2的频率差为调制信号fm,实现双向双频谐振。Further, the narrow-band bidirectional optical filter changes the resonant optical carrier microwave signal during system operation into a double-peak spectral signal, the corresponding wavelengths of the spectral peaks are λ 1 and λ 2 respectively, and the frequency difference between λ 1 and λ 2 is the modulation signal. f m , to achieve bidirectional dual-frequency resonance.

进一步地,所述敏感环干涉仪结构中,所述第一正交偏振态调节单元和第二正交偏振态调节单元均由若干偏振分束器和偏振态控制器实现。Further, in the sensitive ring interferometer structure, the first orthogonal polarization state adjustment unit and the second orthogonal polarization state adjustment unit are both realized by a plurality of polarization beam splitters and polarization state controllers.

进一步地,所述敏感环干涉仪结构中,偏振态垂直的两路信号在敏感环内相向传输时的光速不同,增加敏感环SAGNAC效应检测增益。Further, in the structure of the sensitive ring interferometer, the speed of light is different when the two signals with vertical polarization states are transmitted in the opposite direction in the sensitive ring, which increases the detection gain of the SAGNAC effect of the sensitive ring.

进一步地,所述第一再生腔腔长调节器和第二再生腔腔长调节器作为光程调节单元,采用光纤拉伸器、可调光延时线或空间光位移台;所述腔长补偿调节器作为宽谱干涉仪臂长调节单元,采用光纤拉伸器、可调光延时线或空间光位移台。Further, the cavity length regulator of the first regeneration cavity and the cavity length regulator of the second regeneration cavity are used as optical path adjustment units, using optical fiber stretchers, adjustable optical delay lines or spatial optical displacement stages; The compensation adjuster is used as the arm length adjustment unit of the broad-spectrum interferometer, and adopts the fiber stretcher, the adjustable light delay line or the spatial light stage.

进一步地,该系统还包括腔长控制系统,所述腔长控制系统包括腔长调节器、腔长控制单元和外部时钟参考源,所述腔长调节器设置在双向环形谐振腔内,所述第一微波功分器输入腔长控制单元,所述外部时钟参考源输入腔长控制单元,所述腔长控制单元连接腔长调节器,实现谐振腔腔长稳定。Further, the system also includes a cavity length control system, the cavity length control system includes a cavity length regulator, a cavity length control unit and an external clock reference source, the cavity length regulator is arranged in a bidirectional ring resonant cavity, the The first microwave power divider is input to the cavity length control unit, the external clock reference source is input to the cavity length control unit, and the cavity length control unit is connected to the cavity length regulator to realize the stability of the cavity length of the resonant cavity.

进一步地,所述腔长调节器包括第一级腔长调节器和第二级腔长调节器,所述第一级腔长调节器的调节范围大于第二级腔长调节器,所述第一级腔长调节器用于慢速调节腔长,所述第二级腔长调节器用于快速调节腔长,所述第一级腔长调节器和第二级腔长调节器作为光程调节单元,采用光纤拉伸器、可调光延时线或空间光位移台。Further, the cavity length regulator includes a first stage cavity length regulator and a second stage cavity length regulator, the adjustment range of the first stage cavity length regulator is larger than that of the second stage cavity length regulator, and the first stage cavity length regulator has a larger adjustment range. The first-stage cavity length adjuster is used to adjust the cavity length at a slow speed, the second-stage cavity length adjuster is used to quickly adjust the cavity length, and the first-stage cavity length adjuster and the second-stage cavity length adjuster are used as optical path adjustment units , using a fiber stretcher, a dimmable delay line or a spatial optical stage.

一种利用基于环形器结构的双向光载微波谐振系统进行角速度检测的方法,该方法包括以下步骤:A method for angular velocity detection using a bidirectional optical carrier microwave resonance system based on a circulator structure, the method comprising the following steps:

步骤1:顺时针方向的工作光经过顺时针方向环形谐振腔和顺时针方向再生锁模结构,通过第三微波功分器实现稳定的f1频率输出;Step 1: The clockwise working light passes through the clockwise ring resonator and the clockwise regenerative mode-locking structure, and the third microwave power divider achieves a stable f1 frequency output;

逆时针方向的工作光经过逆时针方向环形谐振腔和逆时针方向再生锁模结构,通过第二微波功分器实现稳定的f2频率输出;The counterclockwise working light passes through the counterclockwise ring resonator and the counterclockwise regenerative mode-locking structure, and the second microwave power divider achieves a stable f2 frequency output;

步骤2:顺时针方向的工作光和逆时针方向的工作光在敏感环干涉仪结构中产生相反的 sagnac效应,差频检测单元检测步骤1获得的频率f1和频率f2的频率差即拍频,记为Δf;Step 2: The clockwise working light and the counterclockwise working light produce opposite sagnac effects in the structure of the sensitive ring interferometer. The difference frequency detection unit detects the frequency difference between the frequency f1 and the frequency f2 obtained in step 1, that is, the beat frequency, Denoted as Δf;

步骤3:通过以下公式,即可获得旋转角速度Ωr Step 3: By the following formula, the rotational angular velocity Ω r can be obtained

Figure BDA0001849961300000031
Figure BDA0001849961300000031

其中,S为敏感环干涉仪结构中光纤敏感环包围的面积,λ为频率f1或频率f2对应的波长,L为光纤敏感环的总光纤长度;G1为顺时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益;G2为逆时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益。Among them, S is the area surrounded by the optical fiber sensitive ring in the sensitive ring interferometer structure, λ is the wavelength corresponding to frequency f1 or frequency f2, L is the total fiber length of the optical fiber sensitive ring; G 1 is the clockwise working light entering the optical fiber sensitive ring , the gain due to the sensitive sagnac effect of two paths with vertical polarization states; G 2 is the gain generated by the two paths of sensitive sagnac effect with the polarization state perpendicular to the light entering the optical fiber sensitive ring in the counterclockwise direction.

进一步地,当基于环形器结构的双向光载微波谐振系统具有腔长控制系统时,经过第一微波功分器分配的逆时针方向微波频率f1与外部时钟参考源进行鉴频鉴相,输出信号经过腔长控制单元用于控制腔长调节器,实现逆时针方向谐振腔长锁定;此时,顺时针方向谐振腔长变化量是腔长锁定前的顺时针方向谐振腔长变化量和腔长锁定前的逆时针方向谐振腔长变化量的总和。Further, when the bidirectional optical carrier microwave resonance system based on the circulator structure has a cavity length control system, the counterclockwise microwave frequency f1 distributed by the first microwave power divider and the external clock reference source are subjected to frequency and phase discrimination, and the output signal is obtained. The cavity length control unit is used to control the cavity length regulator to achieve counterclockwise cavity length locking; at this time, the clockwise cavity length change is the clockwise cavity length change and the cavity length before cavity length locking. The sum of the counterclockwise cavity length changes before locking.

本发明的有益效果为:本发明结合双向再生锁模技术和传统谐振光学陀螺技术,构建了基于萨格纳克效应(Sagnac effect)原理的双向光载微波谐振系统。该系统通过双向光电振荡获得高度稳定的微波振荡代替传统的光波振荡,并用于旋转角速度的测量;该系统利用宽谱光干涉仪补偿顺逆时针双向的非互易性误差,实现光载微波谐振系统的双向结构互易性;利用敏感环干涉仪结构,调节敏感环内双向传输的信号光偏振态垂直;本发明的优势是微波信号的差频检测的精度可以远远高于光学差频检测,前者可以通过放大倍频等多种方法检测频率差,提高信噪比,使得微波振荡信号的频率稳定度可以达到10-13;将其中一个方向振荡频率锁定到稳定度更高的标准时间参考源上,比如原子钟,可稳定光电振荡器的相对腔长,消除了光纤环形腔的温度漂移和光学寄生噪声,进一步提高频率稳定性。本发明极大地提高了由萨格纳克效应引起的双向振荡差频信号的信噪比。本发明提供的系统及方法具有实用性强、测量精度高等特点,可以满足高精度光学陀螺应用的要求。The beneficial effects of the invention are as follows: the invention combines the bidirectional regeneration mode locking technology and the traditional resonant optical gyroscope technology to construct a bidirectional optical carrier microwave resonance system based on the Sagnac effect principle. The system obtains highly stable microwave oscillation by bidirectional photoelectric oscillation instead of traditional light wave oscillation, and is used for the measurement of rotational angular velocity; the system uses a broad-spectrum optical interferometer to compensate for the non-reciprocal error of clockwise and counterclockwise bidirectional, and realizes microwave resonance on light carrier The bidirectional structure of the system is reciprocal; the sensitive ring interferometer structure is used to adjust the polarization state of the signal light transmitted bidirectionally in the sensitive ring; , the former can detect the frequency difference by amplifying the frequency multiplication and other methods, improve the signal-to-noise ratio, so that the frequency stability of the microwave oscillation signal can reach 10 -13 ; lock the oscillation frequency in one direction to a standard time reference with higher stability On the source, such as an atomic clock, the relative cavity length of the photoelectric oscillator can be stabilized, the temperature drift and optical spurious noise of the fiber ring cavity are eliminated, and the frequency stability is further improved. The invention greatly improves the signal-to-noise ratio of the bidirectional oscillation beat frequency signal caused by the Sagnac effect. The system and method provided by the invention have the characteristics of strong practicability and high measurement accuracy, and can meet the application requirements of high-precision optical gyroscopes.

附图说明Description of drawings

图1是本发明一个实施例的基于环形器结构的双向光载微波谐振系统的组成框图;1 is a block diagram of a bidirectional optical carrier microwave resonance system based on a circulator structure according to an embodiment of the present invention;

图2是本发明另一个实施例的基于环形器结构的双向光载微波谐振系统的组成框图;2 is a block diagram of a bidirectional optical carrier microwave resonance system based on a circulator structure according to another embodiment of the present invention;

图3是敏感环干涉仪结构的组成框图;Fig. 3 is the composition block diagram of the structure of the sensitive ring interferometer;

图中,宽谱光源1、50:50耦合器2、第一波分复用器3、第二波分复用器4、低速光电转换器5、干涉仪控制器6、腔长补偿调节器7、第一光放大器9、第一光电强度调制器10、第一光环形器11、第一光耦合器12、窄带双向光滤波器13、、第一级腔长调节器14、第二级腔长调节器15、第二光耦合器16、第二光放大器17、第二光电强度调制器18、第二光环形器 19、第一再生腔腔长调节器20、第一高速光电探测器21、第一微波滤波放大单元22、第一微波功分器24、第二再生腔腔长调节器25、第二高速光电探测器26、第二微波滤波放大单元27、敏感环干涉仪结构29、腔长控制单元30、第一正交偏振态调节单元37、偏振分束器 38、光纤敏感环39、第二正交偏振态调节单元40、外部时钟参考源45、第二微波功分器46、第三微波功分器47和差频检测单元48;图中实线部分表示光路连接,是光通路;点划线表示微波电路连接,是电通路。In the figure, broadband light source 1, 50:50 coupler 2, first wavelength division multiplexer 3, second wavelength division multiplexer 4, low-speed photoelectric converter 5, interferometer controller 6, cavity length compensation regulator 7. The first optical amplifier 9, the first photoelectric intensity modulator 10, the first optical circulator 11, the first optical coupler 12, the narrow-band bidirectional optical filter 13, the first-stage cavity length regulator 14, the second-stage Cavity length adjuster 15, second optical coupler 16, second optical amplifier 17, second photoelectric intensity modulator 18, second optical circulator 19, first regenerative cavity cavity length adjuster 20, first high-speed photodetector 21. The first microwave filtering and amplifying unit 22, the first microwave power divider 24, the second regenerating cavity length regulator 25, the second high-speed photodetector 26, the second microwave filtering and amplifying unit 27, the sensitive ring interferometer structure 29 , cavity length control unit 30, first orthogonal polarization state adjustment unit 37, polarization beam splitter 38, fiber sensitive ring 39, second orthogonal polarization state adjustment unit 40, external clock reference source 45, second microwave power divider 46. The third microwave power divider 47 and the difference frequency detection unit 48; the solid line in the figure represents the optical path connection, which is an optical path; the dotted line represents the microwave circuit connection, which is an electrical path.

具体实施方式Detailed ways

下面结合附图和具体实施例对本发明作进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.

实施例1Example 1

如图1所示,本实施例提供的一种基于环形器结构的双向光载微波谐振系统,该系统包括宽谱光源、50:50耦合器、第一波分复用器3、第二波分复用器4、低速光电转换器5、干涉仪控制器6、腔长补偿调节器7、第一光放大器9、第一光电强度调制器10、第一光环形器11、第一光耦合器12、窄带双向光滤波器13、第二光耦合器16、第二光放大器17、第二光电强度调制器18、第二光环形器19、第一再生腔腔长调节器20、第一高速光电探测器21、第一微波滤波放大单元22、第一微波功分器24、第二再生腔腔长调节器25、第二高速光电探测器26、第二微波滤波放大单元27、敏感环干涉仪结构29、第二微波功分器46、第三微波功分器47和差频检测单元48;As shown in FIG. 1, this embodiment provides a bidirectional optical carrier microwave resonance system based on a circulator structure, which includes a broad-spectrum light source, a 50:50 coupler, a first wavelength division multiplexer 3, a second wavelength Demultiplexer 4, low-speed photoelectric converter 5, interferometer controller 6, cavity length compensation regulator 7, first optical amplifier 9, first photoelectric intensity modulator 10, first optical circulator 11, first optical coupling 12, narrow-band bidirectional optical filter 13, second optical coupler 16, second optical amplifier 17, second photoelectric intensity modulator 18, second optical circulator 19, first regeneration cavity cavity length regulator 20, first High-speed photodetector 21, first microwave filter amplifying unit 22, first microwave power divider 24, second regeneration cavity cavity length regulator 25, second high-speed photodetector 26, second microwave filter and amplifying unit 27, sensitive ring The interferometer structure 29, the second microwave power divider 46, the third microwave power divider 47 and the difference frequency detection unit 48;

所述第一光放大器9、第一光电强度调制器10、腔长补偿调节器7、第一光环形器11、第二波分复用器4、第一光耦合器12、窄带双向光滤波器13、敏感环干涉仪结构29、第二光耦合器16、第一波分复用器3和第二光环形器19依次连接构成顺时针方向环形谐振腔;顺时针方向谐振光依次经过第一光耦合器12、第二再生腔腔长调节器25、第二高速光电探测器 26、第二微波滤波放大单元27和第三微波功分器47反馈调制第一光电强度调制器10,构成顺时针方向再生锁模结构;顺时针方向再生锁模结构产生的电信号通过第三微波功分器47输入差频检测单元48;所述第二再生腔腔长调节器25作为光程调节单元,可以采用光纤拉伸器、可调光延时线或空间光位移台等器件。The first optical amplifier 9, the first photoelectric intensity modulator 10, the cavity length compensation regulator 7, the first optical circulator 11, the second wavelength division multiplexer 4, the first optical coupler 12, the narrow-band bidirectional optical filter The device 13, the sensitive ring interferometer structure 29, the second optical coupler 16, the first wavelength division multiplexer 3 and the second optical circulator 19 are connected in sequence to form a clockwise ring resonator; the clockwise resonant light passes through the An optical coupler 12, a second regenerative cavity cavity length regulator 25, a second high-speed photodetector 26, a second microwave filter amplifying unit 27 and a third microwave power divider 47 feedback modulate the first photoelectric intensity modulator 10, forming a Clockwise regeneration of the mode-locked structure; the electrical signal generated by the clockwise regeneration of the mode-locked structure is input to the difference frequency detection unit 48 through the third microwave power divider 47; the second regeneration cavity cavity length adjuster 25 is used as an optical path adjustment unit , devices such as fiber stretchers, adjustable optical delay lines or spatial optical displacement stages can be used.

所述第二光放大器17、第二光电强度调制器18、第二光环形器19、第一波分复用器3、第二光耦合器16、敏感环干涉仪结构29、窄带双向光滤波器13、第一光耦合器12第二波分复用器4和第一光环形器11依次连接构成逆时针方向环形谐振腔;逆时针方向谐振光依次经过第二光耦合器16、第一再生腔腔长调节器20、第一高速光电探测器21、第一微波滤波放大单元22、第一微波功分器24和第二微波功分器46反馈调制第二光电强度调制器18,构成逆时针方向再生锁模结构;逆时针方向再生锁模结构产生的电信号通过第二微波功分器46输入差频检测单元48;所述第一再生腔腔长调节器20作为光程调节单元,可以采用光纤拉伸器、可调光延时线或空间光位移台等器件。The second optical amplifier 17, the second photoelectric intensity modulator 18, the second optical circulator 19, the first wavelength division multiplexer 3, the second optical coupler 16, the sensitive ring interferometer structure 29, the narrow-band bidirectional optical filter The optical coupler 13, the first optical coupler 12, the second wavelength division multiplexer 4, and the first optical circulator 11 are sequentially connected to form a counterclockwise ring resonator; the counterclockwise resonant light passes through the second optical coupler 16, the first optical circulator The regenerative cavity cavity length regulator 20, the first high-speed photodetector 21, the first microwave filtering and amplifying unit 22, the first microwave power divider 24 and the second microwave power divider 46 feedback modulate the second photoelectric intensity modulator 18 to form The mode-locked structure is regenerated in the counterclockwise direction; the electrical signal generated by the regenerated mode-locked structure in the counterclockwise direction is input to the difference frequency detection unit 48 through the second microwave power divider 46 ; the first regeneration cavity cavity length adjuster 20 is used as an optical path adjustment unit , devices such as fiber stretchers, adjustable optical delay lines or spatial optical displacement stages can be used.

所述宽谱光源1、50:50耦合器2、第一波分复用器3、第二波分复用器4、低速光电转换器5、干涉仪控制器6和腔长补偿调节器7组成顺逆时针双环路的互易性误差补偿宽谱光干涉仪;所述宽谱光源1发出的光经50:50耦合器2分为两臂,第一臂依次通过第二波分复用器4、第一光环形器11、第二光放大器17、第二光电强度调制器18、第二光环形器19、第一波分复用器3、50:50耦合器2进入低速光电转换器5;第二臂依次通过第一波分复用器3、第二光环形器19、第一光放大器9、第一光电强度调制器10、腔长补偿调节器7、第一光环形器11、第二波分复用器4、50:50耦合器2进入低速光电转换器5;所述低速光电转换器5 的检测信号经过干涉仪控制器6,输出控制腔长补偿调节器7,实现宽谱光干涉仪的两臂光程相同,消除两臂上非双向器件引起的非互易误差;所述宽谱光源1发出的光与顺时针谐振光和逆时针谐振光均不干涉;所述腔长补偿调节器7作为宽谱干涉仪臂长调节单元,可以采用光纤拉伸器、可调光延时线或空间光位移台等器件。The broadband light source 1, the 50:50 coupler 2, the first wavelength division multiplexer 3, the second wavelength division multiplexer 4, the low-speed photoelectric converter 5, the interferometer controller 6 and the cavity length compensation regulator 7 A broad-spectrum optical interferometer with reciprocity error compensation composed of clockwise and counterclockwise double loops; the light emitted by the broad-spectrum light source 1 is divided into two arms by a 50:50 coupler 2, and the first arm passes through the second wavelength division multiplexing in turn 4, the first optical circulator 11, the second optical amplifier 17, the second photoelectric intensity modulator 18, the second optical circulator 19, the first wavelength division multiplexer 3, and the 50:50 coupler 2 into the low-speed photoelectric conversion The second arm passes through the first wavelength division multiplexer 3, the second optical circulator 19, the first optical amplifier 9, the first photoelectric intensity modulator 10, the cavity length compensation regulator 7, and the first optical circulator in sequence 11. The second wavelength division multiplexer 4 and the 50:50 coupler 2 enter the low-speed photoelectric converter 5; the detection signal of the low-speed photoelectric converter 5 passes through the interferometer controller 6 and outputs the control cavity length compensation regulator 7, The two arms of the broad-spectrum light interferometer have the same optical path, and the non-reciprocal error caused by the non-bidirectional devices on the two arms is eliminated; the light emitted by the broad-spectrum light source 1 does not interfere with the clockwise resonant light and the counterclockwise resonant light; The cavity length compensation adjuster 7 is used as an arm length adjustment unit of a broad-spectrum interferometer, and can use devices such as a fiber stretcher, a tunable light delay line, or a spatial optical displacement stage.

所述敏感环干涉仪结构29包括第一正交偏振态调节单元37、偏振分束器38、光纤敏感环39和第二正交偏振态调节单元40;The sensitive ring interferometer structure 29 includes a first orthogonal polarization state adjustment unit 37, a polarization beam splitter 38, an optical fiber sensitive ring 39 and a second orthogonal polarization state adjustment unit 40;

顺时针方向谐振光经过第一正交偏振态调节单元37将窄带双向光滤波器13的双峰值光谱信号分离为中心波长分别为λ1和λ2,偏振态垂直的两路光信号,经过偏振分束器38分为λ1和λ2两路进入光纤敏感环39敏感角速度,而后经过偏振分束器38合束,经过第二正交偏振态调节单元40后实现敏感环干涉仪结构29的输出信号与输入信号偏振态一致;The clockwise resonant light passes through the first orthogonal polarization state adjustment unit 37 to separate the double-peak spectral signal of the narrow-band bidirectional optical filter 13 into two optical signals whose center wavelengths are λ 1 and λ 2 respectively, and the polarization states are vertical. The beam splitter 38 is divided into λ 1 and λ 2 into the optical fiber sensitive ring 39 to sense the angular velocity, and then passes through the polarization beam splitter 38 to combine the beams. After the second orthogonal polarization state adjustment unit 40, the sensitive ring interferometer structure 29 is realized. The output signal is consistent with the polarization state of the input signal;

逆时针方向谐振光经过第二正交偏振态调节单元40将窄带双向光滤波器13的双峰值光谱信号分离为中心波长分别为λ1和λ2,偏振态垂直的两路光信号,经过偏振分束器38分为λ1和λ2两路进入光纤敏感环39敏感角速度,而后经过偏振分束器38合束,经过第一正交偏振态调节单元37后实现敏感环干涉仪结构29的输出信号与输入信号偏振态一致。The counterclockwise resonant light passes through the second orthogonal polarization state adjustment unit 40 to separate the double-peak spectral signal of the narrow-band bidirectional optical filter 13 into two optical signals whose center wavelengths are λ 1 and λ 2 respectively, and the polarization states are vertical. The beam splitter 38 is divided into λ 1 and λ 2 into the optical fiber sensitive ring 39 to sense the angular velocity, and then passes through the polarization beam splitter 38 to combine the beams, and after the first orthogonal polarization state adjustment unit 37, the sensitive ring interferometer structure 29 is realized. The output signal has the same polarization state as the input signal.

所述基于环形器结构的双向光载微波谐振系统,采用顺时针方向再生锁模结构和逆时针方向再生锁模结构产生的微波信号输入微波频率差检测单元48进行角速度检测。The bidirectional optical carrier microwave resonance system based on the circulator structure adopts the clockwise regenerative mode-locking structure and the counterclockwise regenerative mode-locking structure to generate the microwave signal input to the microwave frequency difference detection unit 48 for angular velocity detection.

所述窄带双向光滤波器13将系统工作时的谐振光载微波信号变为双峰值光谱信号,谱峰对应波长分别为λ1和λ2,λ1和λ2的频率差为调制信号fm,实现双向双频谐振。The narrow-band bidirectional optical filter 13 converts the resonant optical carrier microwave signal during system operation into a double-peak spectral signal, the corresponding wavelengths of the spectral peaks are λ 1 and λ 2 respectively, and the frequency difference between λ 1 and λ 2 is the modulation signal f m . , to achieve two-way dual-frequency resonance.

所述敏感环干涉仪结构中,所述第一正交偏振态调节单元37和第二正交偏振态调节单元 40均可以由若干偏振分束器和偏振态控制器实现。In the sensitive ring interferometer structure, both the first orthogonal polarization state adjustment unit 37 and the second orthogonal polarization state adjustment unit 40 can be implemented by several polarization beam splitters and polarization state controllers.

所述敏感环干涉仪结构中,偏振态垂直的两路光信号在敏感环内相向传输时的光速不同,增加敏感环SAGNAC效应检测增益。In the structure of the sensitive ring interferometer, when the two optical signals with vertical polarization states are transmitted in opposite directions in the sensitive ring, the speed of light is different, and the detection gain of the SAGNAC effect of the sensitive ring is increased.

逆时针方向进入敏感环内传输的λ1波长信号与顺时针方向进入敏感环内传输的λ2波长信号传输路径相同、偏振态垂直;逆时针方向进入敏感环内传输的λ2波长信号与顺时针方向进入敏感环内传输的λ1波长信号传输路径相同、偏振态垂直;实现了顺、逆时针的工作光信号的波长和偏振态分离;The λ 1 wavelength signal that enters the sensitive ring in the counterclockwise direction has the same transmission path as the λ 2 wavelength signal that enters the sensitive ring and transmits in the clockwise direction, and the polarization state is vertical ; The transmission path of the λ 1 wavelength signal transmitted in the sensitive ring in the clockwise direction is the same, and the polarization state is vertical; the wavelength and polarization state of the clockwise and counterclockwise working optical signals are separated;

顺时针和逆时针方向谐振腔因sagnac效应产生的光程差(相位差)符号相反,导致顺时针和逆时针方向的光程差为两倍的单方向sagnac效应产生的光程差。The sign of the optical path difference (phase difference) due to the sagnac effect is opposite in the clockwise and counterclockwise resonators, resulting in twice the optical path difference due to the unidirectional sagnac effect in the clockwise and counterclockwise directions.

利用基于环形器结构的双向光载微波谐振系统进行角速度检测的方法,包括以下步骤:A method for angular velocity detection using a bidirectional optical carrier microwave resonance system based on a circulator structure includes the following steps:

步骤1:带隔离器的宽谱光源1的输出光经过50:50耦合器2进行功率均分后,分为两路,第一路注入第一波分复用器3,而后沿顺时针方向依次经过第二光环形器19、第一光放大器 9、第一光电强度调制器10、腔长补偿调节器7和第一光环形器11,最后经由第二波分复用器4输出;第二路注入第二波分复用器4,而后沿逆时针方向依次经过第一光环形器11、第二光放大器17,第二光电强度调制器18和第二光环形器19,最后经由第一波分复用器3输出;经过第一波分复用器3和第二波分复用器4的两路输出信号经过同一个50:50耦合器2 耦合返回,干涉叠加信号经过低速光电转换器5进行光电转换,经由干涉仪控制器6反馈调节腔长补偿调节器7,保持干涉仪两臂等长;Step 1: The output light of the broadband light source 1 with the isolator is divided into two channels after the power is equally divided by the 50:50 coupler 2. The first channel is injected into the first wavelength division multiplexer 3, and then clockwise Pass through the second optical circulator 19, the first optical amplifier 9, the first photoelectric intensity modulator 10, the cavity length compensation adjuster 7 and the first optical circulator 11 in sequence, and finally output through the second wavelength division multiplexer 4; The two channels are injected into the second wavelength division multiplexer 4, and then pass through the first optical circulator 11, the second optical amplifier 17, the second optical intensity modulator 18 and the second optical circulator 19 in the counterclockwise direction, and finally pass through the first optical circulator 11, the second optical amplifier 17, the second optical intensity modulator 18 and the second optical circulator 19. A wavelength division multiplexer 3 outputs; the two output signals passing through the first wavelength division multiplexer 3 and the second wavelength division multiplexer 4 are coupled back through the same 50:50 coupler 2, and the interference superposition signal passes through the low-speed photoelectric The converter 5 performs photoelectric conversion, and feedback adjusts the cavity length compensation regulator 7 via the interferometer controller 6 to keep the two arms of the interferometer equal in length;

步骤2:第一光放大器9的输出光通过第一光电强度调制器10和第一光环形器11沿顺时针方向进入公共腔,在公共腔内先经过第二波分复用器4,在第一光耦合器12分为两路,一路继续经过窄带双向光滤波器13、敏感环干涉仪结构29、第二光耦合器16、第一波分复用器3和第二光环形器19后重新进入第一光放大器9形成光谐振腔;另一路先经过第二再生腔腔长调节器25,然后通过第二高速光电探测器26进行光电转换,之后送入第二微波滤波放大单元27进行微波滤波和放大,经第三微波功分器47分为两路,一路注入第一光电强度调制器10进行微波调制,形成再生锁模回路,一路作为顺时针方向的谐振微波输出f1;其中调节第二高速光电探测器26前的第二再生腔腔长调节器25可改变再生锁模回路注入第一光电强度调制器10的微波相位,实现稳定的f1频率输出;Step 2: The output light of the first optical amplifier 9 enters the common cavity in a clockwise direction through the first photoelectric intensity modulator 10 and the first optical circulator 11, first passes through the second wavelength division multiplexer 4 in the common cavity, and then passes through the second wavelength division multiplexer 4 in the common cavity. The first optical coupler 12 is divided into two paths, and one path continues through the narrow-band bidirectional optical filter 13 , the sensitive ring interferometer structure 29 , the second optical coupler 16 , the first wavelength division multiplexer 3 and the second optical circulator 19 After that, it re-enters the first optical amplifier 9 to form an optical resonant cavity; the other path first passes through the second regenerating cavity cavity length regulator 25, and then undergoes photoelectric conversion through the second high-speed photodetector 26, and then is sent to the second microwave filtering and amplifying unit 27. After microwave filtering and amplification, the third microwave power divider 47 is divided into two channels, and one channel is injected into the first photoelectric intensity modulator 10 for microwave modulation to form a regenerative mode-locked loop, and the other channel is used as a clockwise resonant microwave output f1; Adjusting the second regenerative cavity cavity length regulator 25 before the second high-speed photodetector 26 can change the phase of the microwave injected into the first photoelectric intensity modulator 10 by the regenerative mode-locking loop to achieve a stable f1 frequency output;

步骤3:逆时针方向的再生锁模原理与顺时针方向相似,第二光放大器17的输出光经过第二光电强度调制器18和第二光环形器19沿逆时针方向进入公共腔,在公共腔内经过第二光耦合器16分为两路,一路继续经过敏感环干涉仪结构29、窄带双向光滤波器13、第一光耦合器12、第二波分复用器4、第一光环形器11后重新进入第二光放大器17,形成光谐振腔;另一路先经过第一再生腔腔长调节器20,然后通过第一高速光电探测器21进行光电转换,之后送入第一微波滤波放大单元22进行微波滤波和放大,经第一微波功分器24、第二微波功分器46后分为两路,一路注入第二光电强度调制器18进行微波调制,形成再生锁模回路,一路作为逆时针方向的谐振微波输出f2;其中调节第一高速光电探测器21前的第一再生腔腔长调节器20可改变再生锁模回路注入第二光电强度调制器18的微波相位,实现稳定的f2频率输出;Step 3: The principle of regenerative mode locking in the counterclockwise direction is similar to that in the clockwise direction. The output light of the second optical amplifier 17 passes through the second photoelectric intensity modulator 18 and the second optical circulator 19 and enters the common cavity in the counterclockwise direction. The cavity is divided into two paths through the second optical coupler 16, and one path continues through the sensitive ring interferometer structure 29, the narrow-band bidirectional optical filter 13, the first optical coupler 12, the second wavelength division multiplexer 4, the first optical ring After the regenerator 11, it re-enters the second optical amplifier 17 to form an optical resonant cavity; the other path first passes through the first regenerator cavity length regulator 20, and then undergoes photoelectric conversion through the first high-speed photodetector 21, and then sends the first microwave The filtering and amplifying unit 22 performs microwave filtering and amplifying, and is divided into two paths through the first microwave power divider 24 and the second microwave power divider 46, and one path is injected into the second photoelectric intensity modulator 18 for microwave modulation to form a regenerative mode locking loop , one channel is the counterclockwise resonant microwave output f2; the first regeneration cavity cavity length regulator 20 before the first high-speed photodetector 21 can be adjusted to change the phase of the microwave injected into the second photoelectric intensity modulator 18 by the regeneration mode locking loop, To achieve stable f2 frequency output;

步骤4:顺时针方向的工作光和逆时针方向的工作光在敏感环干涉仪结构29中产生相反的sagnac效应,差频检测单元48检测步骤1获得的频率f1和频率f2的频率差即拍频,记为Δf;Step 4: The clockwise working light and the counterclockwise working light produce opposite sagnac effects in the sensitive ring interferometer structure 29, and the difference frequency detection unit 48 detects the frequency difference between the frequency f1 and the frequency f2 obtained in step 1. frequency, recorded as Δf;

步骤5:通过以下公式,即可获得旋转角速度Ωr Step 5: The rotational angular velocity Ω r can be obtained by the following formula

Figure BDA0001849961300000081
Figure BDA0001849961300000081

其中,S为敏感环干涉仪结构中光纤敏感环包围的面积,λ为频率f1或频率f2对应的波长,L为光纤敏感环的总光纤长度;G1为顺时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益;G2为逆时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益。Among them, S is the area surrounded by the optical fiber sensitive ring in the sensitive ring interferometer structure, λ is the wavelength corresponding to frequency f1 or frequency f2, L is the total fiber length of the optical fiber sensitive ring; G 1 is the clockwise working light entering the optical fiber sensitive ring , the gain due to the sensitive sagnac effect of two paths with vertical polarization states; G 2 is the gain generated by the two paths of sensitive sagnac effect with the polarization state perpendicular to the light entering the optical fiber sensitive ring in the counterclockwise direction.

实施例2Example 2

如图2所示,本实施例提供的一种基于环形器结构的双向光载微波谐振系统,在实施例 1的基础上,还包括腔长控制系统,所述腔长控制系统包括腔长调节器、腔长控制单元30和外部时钟参考源45。As shown in FIG. 2 , a bidirectional optical carrier microwave resonance system based on a circulator structure provided in this embodiment, on the basis of Embodiment 1, further includes a cavity length control system, and the cavity length control system includes cavity length adjustment controller, cavity length control unit 30 and external clock reference source 45.

所述腔长调节器设置在双向环形谐振腔内,所述第一微波功分器24输入腔长控制单元 30,所述外部时钟参考源45输入腔长控制单元30,所述腔长控制单元30连接腔长调节器,实现谐振腔腔长稳定。The cavity length regulator is arranged in a bidirectional ring resonant cavity, the first microwave power divider 24 is input to the cavity length control unit 30, the external clock reference source 45 is input to the cavity length control unit 30, and the cavity length control unit 30 is connected to the cavity length regulator to realize the stability of the cavity length of the resonant cavity.

进一步地,所述腔长调节器包括第一级腔长调节器14和第二级腔长调节器15,所述第一级腔长调节器14的调节范围大于第二级腔长调节器15,所述第一级腔长调节器14用于慢速调节腔长,所述第二级腔长调节器15用于快速调节腔长,所述第一级腔长调节器14和第二级腔长调节器15作为光程调节单元,采用光纤拉伸器、可调光延时线或空间光位移台。Further, the cavity length regulator includes a first stage cavity length regulator 14 and a second stage cavity length regulator 15 , and the adjustment range of the first stage cavity length regulator 14 is larger than that of the second stage cavity length regulator 15 , the first-stage cavity length adjuster 14 is used to adjust the cavity length at a slow speed, the second-stage cavity length adjuster 15 is used to quickly adjust the cavity length, and the first-stage cavity length adjuster 14 and the second-stage cavity length adjuster 14 The cavity length adjuster 15 is used as an optical path adjustment unit, and adopts an optical fiber stretcher, a tunable light delay line or a spatial optical displacement stage.

经过第一微波功分器24分配的逆时针方向微波频率f1与外部时钟参考源45进行鉴频鉴相,输出信号经过腔长控制单元30用于控制腔长调节器,实现逆时针方向谐振腔长锁定;此时,顺时针方向谐振腔长变化量是腔长锁定前的顺时针方向谐振腔长变化量和腔长锁定前的逆时针方向谐振腔长变化量的总和。The counterclockwise microwave frequency f1 distributed by the first microwave power divider 24 is subjected to frequency and phase discrimination with the external clock reference source 45, and the output signal is used to control the cavity length regulator through the cavity length control unit 30, so as to realize the counterclockwise resonant cavity Long locking; at this time, the clockwise resonator length change is the sum of the clockwise resonator length change before cavity length locking and the counterclockwise resonator length change before cavity length locking.

本技术领域的人员根据本发明所提供的文字描述、附图以及权利要求书能够很容易在不脱离权利要求书所限定的本发明的思想和范围条件下,可以做出多种变化和改动。凡是依据本发明的技术思想和实质对上述实施例进行的任何修改、等同变化,均属于本发明的权利要求所限定的保护范围之内。Those skilled in the art can easily make various changes and modifications according to the written description, drawings and claims provided by the present invention without departing from the spirit and scope of the present invention defined by the claims. Any modifications and equivalent changes made to the above embodiments according to the technical idea and essence of the present invention fall within the protection scope defined by the claims of the present invention.

Claims (10)

1.一种基于环形器结构的双向光载微波谐振系统,其特征在于,该系统包括宽谱光源(1)、50:50耦合器(2)、第一波分复用器(3)、第二波分复用器(4)、低速光电转换器(5)、干涉仪控制器(6)、腔长补偿调节器(7)、第一光放大器(9)、第一光电强度调制器(10)、第一光环形器(11)、第一光耦合器(12)、窄带双向光滤波器(13)、第二光耦合器(16)、第二光放大器(17)、第二光电强度调制器(18)、第二光环形器(19)、第一再生腔腔长调节器(20)、第一高速光电探测器(21)、第一微波滤波放大单元(22)、第一微波功分器(24)、第二再生腔腔长调节器(25)、第二高速光电探测器(26)、第二微波滤波放大单元(27)、敏感环干涉仪结构(29)、第二微波功分器(46)、第三微波功分器(47)和差频检测单元(48);1. A bidirectional optical carrier microwave resonance system based on a circulator structure, characterized in that the system comprises a broad-spectrum light source (1), a 50:50 coupler (2), a first wavelength division multiplexer (3), A second wavelength division multiplexer (4), a low-speed photoelectric converter (5), an interferometer controller (6), a cavity length compensation regulator (7), a first optical amplifier (9), and a first photoelectric intensity modulator (10), a first optical circulator (11), a first optical coupler (12), a narrow-band bidirectional optical filter (13), a second optical coupler (16), a second optical amplifier (17), a second optical A photoelectric intensity modulator (18), a second optical circulator (19), a first regenerating cavity cavity length regulator (20), a first high-speed photodetector (21), a first microwave filtering and amplifying unit (22), a first a microwave power divider (24), a second regeneration cavity cavity length regulator (25), a second high-speed photodetector (26), a second microwave filter amplifying unit (27), a sensitive ring interferometer structure (29), A second microwave power divider (46), a third microwave power divider (47) and a difference frequency detection unit (48); 所述第一光放大器(9)、第一光电强度调制器(10)、腔长补偿调节器(7)、第一光环形器(11)、第二波分复用器(4)、第一光耦合器(12)、窄带双向光滤波器(13)、敏感环干涉仪结构(29)、第二光耦合器(16)、第一波分复用器(3)和第二光环形器(19)依次连接构成顺时针方向环形谐振腔;顺时针方向谐振光依次经过第一光耦合器(12)、第二再生腔腔长调节器(25)、第二高速光电探测器(26)、第二微波滤波放大单元(27)和第三微波功分器(47)反馈调制第一光电强度调制器(10),构成顺时针方向再生锁模结构;顺时针方向再生锁模结构产生的电信号通过第三微波功分器(47)输入差频检测单元(48);the first optical amplifier (9), the first photoelectric intensity modulator (10), the cavity length compensation regulator (7), the first optical circulator (11), the second wavelength division multiplexer (4), the an optical coupler (12), a narrow-band bidirectional optical filter (13), a sensitive ring interferometer structure (29), a second optical coupler (16), a first wavelength division multiplexer (3) and a second optical ring The resonator (19) is sequentially connected to form a clockwise ring resonant cavity; the clockwise resonant light passes through the first optical coupler (12), the second regenerating cavity cavity length regulator (25), and the second high-speed photodetector (26) in sequence. ), the second microwave filter amplifying unit (27) and the third microwave power divider (47) to feedback modulate the first photoelectric intensity modulator (10) to form a clockwise regenerative mode-locking structure; the clockwise regenerative mode-locking structure generates The electrical signal is input to the difference frequency detection unit (48) through the third microwave power divider (47); 所述第二光放大器(17)、第二光电强度调制器(18)、第二光环形器(19)、第一波分复用器(3)、第二光耦合器(16)、敏感环干涉仪结构(29)、窄带双向光滤波器(13)、第一光耦合器(12)第二波分复用器(4)和第一光环形器(11)依次连接构成逆时针方向环形谐振腔;逆时针方向谐振光依次经过第二光耦合器(16)、第一再生腔腔长调节器(20)、第一高速光电探测器(21)、第一微波滤波放大单元(22)、第一微波功分器(24)和第二微波功分器(46)反馈调制第二光电强度调制器(18),构成逆时针方向再生锁模结构;逆时针方向再生锁模结构产生的电信号通过第二微波功分器(46)输入差频检测单元(48);The second optical amplifier (17), the second photoelectric intensity modulator (18), the second optical circulator (19), the first wavelength division multiplexer (3), the second optical coupler (16), the sensitive The ring interferometer structure (29), the narrow-band bidirectional optical filter (13), the first optical coupler (12), the second wavelength division multiplexer (4) and the first optical circulator (11) are connected in sequence to form a counterclockwise direction A ring resonator; the counterclockwise resonant light sequentially passes through a second optical coupler (16), a first regenerating cavity cavity length regulator (20), a first high-speed photodetector (21), and a first microwave filtering and amplifying unit (22) ), the first microwave power divider (24) and the second microwave power divider (46) feedback modulate the second photoelectric intensity modulator (18) to form a counterclockwise regenerative mode-locking structure; the counterclockwise regenerative mode-locking structure generates The electrical signal is input to the difference frequency detection unit (48) through the second microwave power divider (46); 所述宽谱光源(1)、50:50耦合器(2)、第一波分复用器(3)、第二波分复用器(4)、低速光电转换器(5)、干涉仪控制器(6)和腔长补偿调节器(7)组成顺逆时针双环路的互易性误差补偿宽谱光干涉仪;所述宽谱光源(1)发出的光经50:50耦合器(2)分为两臂,第一臂依次通过第二波分复用器(4)、第一光环形器(11)、第二光放大器(17)、第二光电强度调制器(18)、第二光环形器(19)、第一波分复用器(3)、50:50耦合器(2)进入低速光电转换器(5);第二臂依次通过第一波分复用器(3)、第二光环形器(19)、第一光放大器(9)、第一光电强度调制器(10)、腔长补偿调节器(7)、第一光环形器(11)、第二波分复用器(4)、50:50耦合器(2)进入低速光电转换器(5);所述低速光电转换器(5)的检测信号经过干涉仪控制器(6),输出控制腔长补偿调节器(7),实现宽谱光干涉仪的两臂光程相同,消除两臂上非双向器件引起的非互易误差;所述宽谱光源(1)发出的光与顺时针谐振光和逆时针谐振光均不干涉;The broadband light source (1), a 50:50 coupler (2), a first wavelength division multiplexer (3), a second wavelength division multiplexer (4), a low-speed photoelectric converter (5), and an interferometer The controller (6) and the cavity length compensation regulator (7) form a clockwise and counterclockwise double-loop reciprocity error compensation broad-spectrum optical interferometer; the light emitted by the broad-spectrum light source (1) passes through a 50:50 coupler ( 2) Divided into two arms, the first arm passes through the second wavelength division multiplexer (4), the first optical circulator (11), the second optical amplifier (17), the second photoelectric intensity modulator (18), The second optical circulator (19), the first wavelength division multiplexer (3), and the 50:50 coupler (2) enter the low-speed photoelectric converter (5); the second arm sequentially passes through the first wavelength division multiplexer ( 3), a second optical circulator (19), a first optical amplifier (9), a first photoelectric intensity modulator (10), a cavity length compensation regulator (7), a first optical circulator (11), a second The wavelength division multiplexer (4) and the 50:50 coupler (2) enter the low-speed photoelectric converter (5); the detection signal of the low-speed photoelectric converter (5) passes through the interferometer controller (6) and outputs the control cavity The long compensation adjuster (7) realizes that the optical paths of the two arms of the broad-spectrum optical interferometer are the same, and eliminates the non-reciprocal error caused by the non-bidirectional devices on the two arms; the light emitted by the broad-spectrum light source (1) resonates clockwise Neither the light nor the counterclockwise resonant light interferes; 所述敏感环干涉仪结构(29)包括第一正交偏振态调节单元(37)、偏振分束器(38)、光纤敏感环(39)和第二正交偏振态调节单元(40);The sensitive ring interferometer structure (29) comprises a first orthogonal polarization state adjustment unit (37), a polarization beam splitter (38), an optical fiber sensitive ring (39) and a second orthogonal polarization state adjustment unit (40); 顺时针方向谐振光经过第一正交偏振态调节单元(37)将窄带双向光滤波器(13)的双峰值光谱信号调节为偏振态垂直的两路信号,经过偏振分束器(38)进入光纤敏感环(39),依次经过偏振分束器(38)、第二正交偏振态调节单元(40)将偏振态调回初始状态;The clockwise resonant light passes through the first orthogonal polarization state adjusting unit (37) to adjust the double-peak spectral signal of the narrow-band bidirectional optical filter (13) into two-way signals with vertical polarization states, and enters through the polarization beam splitter (38) an optical fiber sensitive ring (39), the polarization state is adjusted back to the initial state through the polarization beam splitter (38) and the second orthogonal polarization state adjustment unit (40) in sequence; 逆时针方向谐振光经过第二正交偏振态调节单元(40)将窄带双向光滤波器(13)的双峰值光谱信号调节为偏振态垂直的两路信号,经过偏振分束器(38)进入光纤敏感环(39),依次经过偏振分束器(38)、第一正交偏振态调节单元(37)将偏振态调回初始状态。The counterclockwise resonant light passes through the second orthogonal polarization state adjustment unit (40) to adjust the double-peak spectral signal of the narrow-band bidirectional optical filter (13) into two-way signals with vertical polarization states, and enters through the polarization beam splitter (38) The optical fiber sensitive ring (39) adjusts the polarization state back to the initial state through the polarization beam splitter (38) and the first orthogonal polarization state adjustment unit (37) in sequence. 2.根据权利要求1所述的一种基于环形器结构的双向光载微波谐振系统,其特征在于,采用顺时针方向再生锁模结构和逆时针方向再生锁模结构产生的微波信号输入差频检测单元(48)进行角速度检测。2. a kind of bidirectional optical carrier microwave resonance system based on circulator structure according to claim 1, it is characterized in that, adopt the microwave signal input difference frequency that clockwise regeneration mode locking structure and counterclockwise regeneration mode locking structure produce A detection unit (48) performs angular velocity detection. 3.根据权利要求书1所述的一种基于环形器结构的双向光载微波谐振系统,其特征在于,所述窄带双向光滤波器(13)将系统工作时的谐振光载微波信号变为双峰值光谱信号,谱峰对应波长分别为λ1和λ2,λ1和λ2的频率差为调制信号fm,实现双向双频谐振。3. a kind of bidirectional optical carrier microwave resonant system based on circulator structure according to claim 1, is characterized in that, described narrow-band bidirectional optical filter (13) changes the resonant optical carrier microwave signal during system operation into For a double-peak spectral signal, the corresponding wavelengths of the spectral peaks are λ 1 and λ 2 respectively, and the frequency difference between λ 1 and λ 2 is the modulation signal f m , which realizes two-way dual-frequency resonance. 4.根据权利要求书1所述的一种基于环形器结构的双向光载微波谐振系统,其特征在于,所述敏感环干涉仪结构(29)中,所述第一正交偏振态调节单元(37)和第二正交偏振态调节单元(40)均由若干偏振分束器和偏振态控制器实现。4. A bidirectional optical carrier microwave resonance system based on a circulator structure according to claim 1, characterized in that, in the sensitive ring interferometer structure (29), the first orthogonal polarization state adjustment unit (37) and the second orthogonal polarization state adjusting unit (40) are both realized by several polarization beam splitters and polarization state controllers. 5.根据权利要求1所述的一种基于环形器结构的双向光载微波谐振系统,其特征在于,所述敏感环干涉仪结构(29)中,偏振态垂直的两路信号在敏感环内相向传输时的光速不同,增加敏感环SAGNAC效应检测增益。5. A kind of bidirectional optical carrier microwave resonant system based on circulator structure according to claim 1, it is characterized in that, in described sensitive ring interferometer structure (29), the two-way signal whose polarization state is vertical is in sensitive ring The speed of light is different when transmitting in opposite directions, and the detection gain of the SAGNAC effect of the sensitive ring is increased. 6.根据权利要求1所述的一种基于环形器结构的双向光载微波谐振系统,其特征在于,所述第一再生腔腔长调节器(20)和第二再生腔腔长调节器(25)作为光程调节单元,采用光纤拉伸器、可调光延时线或空间光位移台;所述腔长补偿调节器(7)作为宽谱干涉仪臂长调节单元,采用光纤拉伸器、可调光延时线或空间光位移台。6. A bidirectional optical carrier microwave resonance system based on a circulator structure according to claim 1, characterized in that the first regeneration cavity cavity length regulator (20) and the second regeneration cavity cavity length regulator ( 25) As an optical path adjustment unit, an optical fiber stretcher, a tunable optical delay line or a spatial optical displacement stage are used; the cavity length compensation adjuster (7) is used as a broad-spectrum interferometer arm length adjustment unit, and an optical fiber tensioner is used device, dimmable delay line or spatial optical stage. 7.根据权利要求1所述的一种基于环形器结构的双向光载微波谐振系统,其特征在于,该系统还包括腔长控制系统,所述腔长控制系统包括腔长调节器、腔长控制单元(30)和外部时钟参考源(45),所述腔长调节器设置在顺时针方向环形谐振腔和逆时针方向环形谐振腔内,所述第一微波功分器(24)输入腔长控制单元(30),所述外部时钟参考源(45)输入腔长控制单元(30),所述腔长控制单元(30)连接腔长调节器,实现谐振腔腔长稳定。7 . The bidirectional optical carrier microwave resonance system based on the circulator structure according to claim 1 , wherein the system further comprises a cavity length control system, and the cavity length control system comprises a cavity length regulator, a cavity length A control unit (30) and an external clock reference source (45), the cavity length regulator is arranged in the clockwise ring resonator and the counterclockwise ring resonator, and the first microwave power divider (24) is input into the cavity A length control unit (30), the external clock reference source (45) is input to the cavity length control unit (30), and the cavity length control unit (30) is connected to a cavity length regulator to realize the stability of the cavity length of the resonant cavity. 8.根据权利要求7所述的一种基于环形器结构的双向光载微波谐振系统,其特征在于,所述腔长调节器包括第一级腔长调节器(14)和第二级腔长调节器(15),所述第一级腔长调节器(14)的调节范围大于第二级腔长调节器(15),所述第一级腔长调节器(14)用于慢速调节腔长,所述第二级腔长调节器(15)用于快速调节腔长,所述第一级腔长调节器(14)和第二级腔长调节器(15)作为光程调节单元,采用光纤拉伸器、可调光延时线或空间光位移台。8. A bidirectional optical carrier microwave resonance system based on a circulator structure according to claim 7, wherein the cavity length adjuster comprises a first-stage cavity length adjuster (14) and a second-stage cavity length adjuster A regulator (15), the adjustment range of the first-stage cavity length regulator (14) is larger than that of the second-stage cavity length regulator (15), and the first-stage cavity length regulator (14) is used for slow adjustment Cavity length, the second-stage cavity length adjuster (15) is used to quickly adjust the cavity length, and the first-stage cavity length adjuster (14) and the second-stage cavity length adjuster (15) are used as optical path adjustment units , using a fiber stretcher, a dimmable delay line or a spatial optical stage. 9.一种利用权利要求7所述的一种基于环形器结构的双向光载微波谐振系统进行角速度检测的方法,其特征在于,该方法包括以下步骤:9. A method for angular velocity detection using a bidirectional optical carrier microwave resonance system based on a circulator structure according to claim 7, wherein the method comprises the following steps: 步骤1:顺时针方向的工作光经过顺时针方向环形谐振腔和顺时针方向再生锁模结构,通过第三微波功分器(47)实现稳定的f1频率输出;Step 1: The clockwise working light passes through the clockwise ring resonant cavity and the clockwise mode-locking structure, and achieves a stable f1 frequency output through the third microwave power divider (47); 逆时针方向的工作光经过逆时针方向环形谐振腔和逆时针方向再生锁模结构,通过第二微波功分器(46)实现稳定的f2频率输出;The counterclockwise working light passes through the counterclockwise ring resonator and the counterclockwise regenerative mode-locking structure, and the second microwave power divider (46) realizes a stable f2 frequency output; 步骤2:顺时针方向的工作光和逆时针方向的工作光在敏感环干涉仪结构(29)中产生相反的sagnac效应,差频检测单元(48)检测步骤1获得的频率f1和频率f2的频率差即拍频,记为Δf;Step 2: The clockwise working light and the counterclockwise working light produce opposite sagnac effects in the sensitive ring interferometer structure (29), and the difference frequency detection unit (48) detects the frequency f1 and the frequency f2 obtained in step 1. The frequency difference is the beat frequency, recorded as Δf; 步骤3:通过以下公式,即可获得旋转角速度Ωr Step 3: By the following formula, the rotational angular velocity Ω r can be obtained
Figure FDA0002614035510000031
Figure FDA0002614035510000031
其中,S为敏感环干涉仪结构中光纤敏感环包围的面积,λ为频率f1或频率f2对应的波长,L为光纤敏感环的总光纤长度;G1为顺时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益;G2为逆时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益。Among them, S is the area surrounded by the optical fiber sensitive ring in the sensitive ring interferometer structure, λ is the wavelength corresponding to frequency f1 or frequency f2, L is the total fiber length of the optical fiber sensitive ring; G 1 is the clockwise working light entering the optical fiber sensitive ring , the gain due to the sensitive sagnac effect of two paths with vertical polarization states; G 2 is the gain generated by the two paths of sensitive sagnac effect with the polarization state perpendicular to the light entering the optical fiber sensitive ring in the counterclockwise direction.
10.根据权利要求9所述的方法,其特征在于,当基于环形器结构的双向光载微波谐振系统具有腔长控制系统时,经过第一微波功分器(24)分配的逆时针方向微波频率f1与外部时钟参考源(45)进行鉴频鉴相,输出信号经过腔长控制单元(30)用于控制腔长调节器,实现逆时针方向谐振腔长锁定;此时,顺时针方向谐振腔长变化量是腔长锁定前的顺时针方向谐振腔长变化量和腔长锁定前的逆时针方向谐振腔长变化量的总和。10. The method according to claim 9, characterized in that, when the bidirectional optical carrier microwave resonance system based on the circulator structure has a cavity length control system, the counterclockwise microwave distributed by the first microwave power divider (24) The frequency f1 and the external clock reference source (45) are used for frequency and phase discrimination, and the output signal is used to control the cavity length regulator through the cavity length control unit (30) to realize the counterclockwise resonant cavity length locking; at this time, the clockwise resonance The cavity length variation is the sum of the clockwise resonant cavity length variation before cavity length locking and the counterclockwise resonant cavity length variation before cavity length locking.
CN201811290663.6A 2018-10-31 2018-10-31 A bidirectional optical carrier microwave resonance system based on circulator structure and method for detecting angular velocity Active CN109357672B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811290663.6A CN109357672B (en) 2018-10-31 2018-10-31 A bidirectional optical carrier microwave resonance system based on circulator structure and method for detecting angular velocity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811290663.6A CN109357672B (en) 2018-10-31 2018-10-31 A bidirectional optical carrier microwave resonance system based on circulator structure and method for detecting angular velocity

Publications (2)

Publication Number Publication Date
CN109357672A CN109357672A (en) 2019-02-19
CN109357672B true CN109357672B (en) 2020-11-27

Family

ID=65343590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811290663.6A Active CN109357672B (en) 2018-10-31 2018-10-31 A bidirectional optical carrier microwave resonance system based on circulator structure and method for detecting angular velocity

Country Status (1)

Country Link
CN (1) CN109357672B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504176B (en) * 2020-04-30 2021-03-30 浙江大学 Large optical path closed-loop measurement system based on two-stage actuator structure
CN111721277B (en) * 2020-05-18 2025-01-07 浙江贯道精密科技有限公司 High-precision fiber optic gyroscope with stable scale factor
CN111917476A (en) * 2020-07-24 2020-11-10 天津大学 Linear radio over fiber communication system based on photoelectric oscillator
CN112104415B (en) * 2020-08-27 2024-10-25 国网江西省电力有限公司信息通信分公司 System for detecting Rayleigh scattering signal intensity by adopting EDFA (electronic data transfer function) amplifying device
CN112113556B (en) * 2020-08-28 2022-06-24 哈尔滨工程大学 A high-sensitivity resonant micro-optical gyroscope based on self-injection frequency locking and its detection method
CN114552340B (en) * 2020-11-24 2023-09-05 中国科学院半导体研究所 Tunable broadband random photoelectric oscillator
CN115268161B (en) * 2021-04-30 2023-05-09 华中科技大学 A system and method for achieving phase regeneration with low power consumption

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1382958A (en) * 2002-06-20 2002-12-04 北京大学 Beat frequency detection method for travelling-wave annular resonance cavity of non-mechanical gyro
WO2007067823A3 (en) * 2005-12-09 2007-07-26 Massachusetts Inst Technology A balanced optical-radiofrequency phase detector
CN103267521A (en) * 2013-05-10 2013-08-28 浙江大学 Method for detecting angular velocity through adopting one-loop two-way bidirectional resonant optical microwaves
CN103267522A (en) * 2013-05-10 2013-08-28 浙江大学 Bidirectional locking frequency switching method for eliminating nonreciprocal error of optical microwave gyroscope
CN103278150A (en) * 2013-05-10 2013-09-04 浙江大学 Optical carrier microwave gyroscopic method for detecting angular velocity
CN103471579A (en) * 2013-09-29 2013-12-25 浙江大学 Angular velocity detection method adopting two-way full reciprocity coupling optoelectronic oscillator
CN107084713A (en) * 2017-05-26 2017-08-22 北京交通大学 Method and device for measuring angular velocity based on photoelectric oscillator
CN108344408A (en) * 2017-12-19 2018-07-31 北京交通大学 Angular velocity measurement device based on tunable optical electrical oscillator
CN108614126A (en) * 2018-05-30 2018-10-02 北京交通大学 Angular velocity measurement device and method based on wideband adjustable optical-electronic oscillator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1382958A (en) * 2002-06-20 2002-12-04 北京大学 Beat frequency detection method for travelling-wave annular resonance cavity of non-mechanical gyro
WO2007067823A3 (en) * 2005-12-09 2007-07-26 Massachusetts Inst Technology A balanced optical-radiofrequency phase detector
CN103267521A (en) * 2013-05-10 2013-08-28 浙江大学 Method for detecting angular velocity through adopting one-loop two-way bidirectional resonant optical microwaves
CN103267522A (en) * 2013-05-10 2013-08-28 浙江大学 Bidirectional locking frequency switching method for eliminating nonreciprocal error of optical microwave gyroscope
CN103278150A (en) * 2013-05-10 2013-09-04 浙江大学 Optical carrier microwave gyroscopic method for detecting angular velocity
CN103471579A (en) * 2013-09-29 2013-12-25 浙江大学 Angular velocity detection method adopting two-way full reciprocity coupling optoelectronic oscillator
CN107084713A (en) * 2017-05-26 2017-08-22 北京交通大学 Method and device for measuring angular velocity based on photoelectric oscillator
CN108344408A (en) * 2017-12-19 2018-07-31 北京交通大学 Angular velocity measurement device based on tunable optical electrical oscillator
CN108614126A (en) * 2018-05-30 2018-10-02 北京交通大学 Angular velocity measurement device and method based on wideband adjustable optical-electronic oscillator

Also Published As

Publication number Publication date
CN109357672A (en) 2019-02-19

Similar Documents

Publication Publication Date Title
CN109357672B (en) A bidirectional optical carrier microwave resonance system based on circulator structure and method for detecting angular velocity
CN103471579B (en) A kind of angular velocity detection method adopting two-way full reciprocity coupling light electrical oscillator
US11874113B2 (en) Bidirectional optical-carrying microwave resonance system based on circulator structure and method for detecting angular velocity by said system
US8009296B2 (en) Light-phase-noise error reducer
CN103278150B (en) A kind of light of detection angle speed carries microwave gyroscope method
CN105091776B (en) The optical-fiber laser static strain beat frequency demodulating system modulated based on single-side belt frequency sweep
CN115112111B (en) Single-beam wide-spectrum light source secondary filtering resonant fiber optic gyroscope and closed-loop control method
CN107084713B (en) Method and device for measuring angular velocity based on photoelectric oscillator
CN108344408B (en) Angular velocity measuring device based on tunable optoelectronic oscillator
CN110672137B (en) An Interferometric Fiber Optic Vibration Sensing System Based on Wavelength Division Multiplexing and Microwave Photonic Technology
CN108332735B (en) Resonance type fiber-optic gyroscope coherent demodulation system and method based on external beam interference
EP3514491A1 (en) Apparatus and method for diminished bias error due to polarization mismatch
CN103267522B (en) The two-way frequency locking switching method of microwave gyroscope irreplaceable error is carried for eliminating light
CN110470292A (en) A kind of self seeding frequency locking resonance type optical gyroscope and its working method
CN112857355B (en) Passive laser gyroscope and angular velocity determination method based on polarization selective locking
US11378401B2 (en) Polarization-maintaining fully-reciprocal bi-directional optical carrier microwave resonance system and angular velocity measurement method thereof
CN103267521B (en) Monocycle two-way two-way resonance light is adopted to carry the method for microwave detection angle speed
CN109323690B (en) A polarization-maintaining fully reciprocal bidirectional optical carrier microwave resonant system and method for detecting angular velocity
CN112066969B (en) Dual-light source self-injection locked resonant micro-optical electromechanical gyroscope based on optical phase-locked loop
Ye et al. High-sensitivity angular velocity measurement based on bidirectional coupled optoelectronic oscillator
CN115451934A (en) A Singularity Enhanced Brillouin Micro-Optical Gyroscope Based on Self-injection Frequency Locking
CN114935306A (en) High-stability interference device based on phase locking between multi-core optical fiber cores
CN109270029B (en) Universal NICE-OHMS system for detecting sub-Doppler spectrum
CN111721277A (en) High Precision Fiber Optic Gyroscope with Stable Scale Factor
CN113532413B (en) A Light Source Relative Intensity Noise Suppression Device Based on F-P Cavity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant