CN112856374B - Heat re-extraction steam heating control system and method for coupling pressure matcher - Google Patents
Heat re-extraction steam heating control system and method for coupling pressure matcher Download PDFInfo
- Publication number
- CN112856374B CN112856374B CN202110125041.3A CN202110125041A CN112856374B CN 112856374 B CN112856374 B CN 112856374B CN 202110125041 A CN202110125041 A CN 202110125041A CN 112856374 B CN112856374 B CN 112856374B
- Authority
- CN
- China
- Prior art keywords
- steam
- temperature
- pressure
- regulating valve
- driving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B31/00—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements or dispositions of combustion apparatus
- F22B31/08—Installation of heat-exchange apparatus or of means in boilers for heating air supplied for combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B23/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01B23/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K17/00—Using steam or condensate extracted or exhausted from steam engine plant
- F01K17/02—Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B35/00—Control systems for steam boilers
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
本发明公开了一种耦合压力匹配器的热再抽汽供热控制系统及方法,耦合多喷嘴针阀控制压力匹配器,采用调节针阀开启来实现压力匹配器出口流量和压力的调节,同时选取两个串接工作的控制器构成的双闭环控制系统,使用副控制器对减温水干扰进行超前控制,减少减温水干扰对出口汽温的影响,同时根据双闭环系统,超前获得驱动蒸汽的温度设定前馈,可以削弱机组工况变化造成驱动蒸汽和吸入蒸汽参数变化带来的扰动影响,控制更为精确。本发明解决了压力匹配器出口汽温的滞后和时间常数很大、减温水干扰作用强而频繁、工况变化驱动/吸入蒸汽参数变化等难以控制精确的难题。
The invention discloses a heat re-extraction steam heating control system and method coupled with a pressure matcher. The pressure matcher is controlled by coupling a multi-nozzle needle valve, and the opening of the regulating needle valve is used to realize the regulation of the outlet flow and pressure of the pressure matcher. The double closed-loop control system composed of two controllers working in series is selected, and the sub-controller is used to control the disturbance of desuperheating water in advance, so as to reduce the influence of the disturbance of desuperheating water on the outlet steam temperature. The temperature setting feedforward can weaken the disturbance effect caused by the change of the driving steam and the suction steam parameters caused by the change of the working condition of the unit, and the control is more accurate. The invention solves the difficult and precise control problems such as the large lag and time constant of the steam temperature at the outlet of the pressure matcher, the strong and frequent interference effect of the desuperheating water, and the change of driving/inhaling steam parameters due to working condition changes.
Description
技术领域technical field
本发明涉及火电机组抽汽供热系统的自动控制领域,具体涉及一种耦合压力匹配器的热再抽汽供热控制系统及方法。The invention relates to the field of automatic control of steam extraction and heating systems for thermal power units, in particular to a thermal re-extraction steam heating control system and method coupled with a pressure matcher.
背景技术Background technique
随着我国经济、工业的快速发展,工业用汽和居民用汽量也随之增加,燃煤机组热电联产仍是满足当前的用汽负荷的重要途径之一。同时,随着我国电力体制改革和节能减排政策的深入和完善,发电企业在市场开放和竞价上网的竞争中,既要保证安全生产,同时对机组运行经济性的要求更加迫切,因此如何有效地降低热电联产供热热耗、实现热电解耦是当前供热技术的研究重点。With the rapid development of my country's economy and industry, the amount of industrial steam and residential steam has also increased. Cogeneration of coal-fired units is still one of the important ways to meet the current steam load. At the same time, with the deepening and improvement of my country's power system reform and energy conservation and emission reduction policies, power generation enterprises must ensure safe production in the competition of market opening and online bidding, and at the same time have more urgent requirements for unit operation economy. Therefore, how to effectively It is the research focus of current heating technology to reduce the heat consumption of cogeneration heat supply and realize the thermal electrolysis coupling.
目前汽轮机的再热器热段、再热器冷段蒸汽、中压缸排汽等都可以选作供热蒸汽。可以根据不同用户用汽参数需求,选择合理的蒸汽供热方式实现蒸汽的梯级利用。以较高参数的工业用汽为研究对象,多选用热再和冷再抽汽进行供热,经分析,由于热段抽汽温度高,在满足同样供热量的前提下,则抽汽量少,凝汽量增加(在同样进汽量的条件下),则机组发电量增加。当然热段抽汽的焓值耗用的锅炉热量多,但考虑到锅炉的运行方式,在蒸发量不变时,锅炉燃煤量不变。因此,相比在冷段抽汽,减少过热蒸汽量只会排烟温度升高。因此单从热经济上分析,利用热段抽汽比冷段抽汽更合适合适。同时冷段抽汽的抽汽量受再热器超温的限制,一般锅炉厂给出的数据是锅炉蒸发量的5%左右。由于冷段抽汽量受限制,在要求供汽量较大,温度较高时一般采用热段抽汽。At present, the steam in the hot section of the reheater, the cold section of the reheater, and the exhaust steam of the medium pressure cylinder can all be selected as heating steam. According to the requirements of different users' steam parameters, a reasonable steam heating method can be selected to realize the cascade utilization of steam. Taking the industrial steam with higher parameters as the research object, the hot and cold re-extraction steam is mostly used for heat supply. After analysis, due to the high extraction steam temperature in the hot section, under the premise of satisfying the same heat supply, the extraction steam quantity If the amount of condensed steam increases (under the same condition of steam intake), the power generation of the unit increases. Of course, the enthalpy value of the extraction steam in the hot section consumes a lot of boiler heat, but considering the operation mode of the boiler, when the evaporation rate is constant, the boiler coal consumption remains unchanged. Therefore, reducing the amount of superheated steam will only increase the exhaust gas temperature compared to extracting steam in the cold section. Therefore, it is more appropriate to use the hot section extraction steam than the cold section extraction steam from the analysis of thermal economy alone. At the same time, the amount of extraction steam in the cold section is limited by the over-temperature of the reheater. Generally, the data given by the boiler factory is about 5% of the boiler evaporation. Due to the limited steam extraction in the cold section, the hot section extraction is generally used when the required steam supply is large and the temperature is high.
目前常规的供汽手段及控制方法主要有以下几种:At present, the conventional steam supply methods and control methods mainly include the following:
1.汽轮机抽汽调压方式供汽,如旋转隔板,调节蝶阀,座缸阀等都是利用阀门节流的方式调节蒸汽压力,或者直接通过高压蒸汽减温减压降低到热用户所需参数。这种供热方式都有很大的节流作用,造成非供热蒸汽的节流损失,尤其是在供热量占总流量的份额较小时,节流损失更大,使其牺牲了蒸汽的作功能力,浪费了大量的高压蒸汽作功能力。1. Steam supply by steam turbine extraction and pressure regulation, such as rotating diaphragm, regulating butterfly valve, seat cylinder valve, etc., all use valve throttling to adjust steam pressure, or directly reduce temperature and pressure through high-pressure steam to meet the needs of heat users. parameter. This heating method has a great throttling effect, resulting in throttling loss of non-heating steam, especially when the proportion of heat supply in the total flow is small, the throttling loss is greater, which sacrifices steam It wastes a lot of high-pressure steam working power.
2.通过单喷嘴压力匹配器进行供热,采用高压蒸汽抽吸低压蒸汽,混合后达到所需蒸汽参数,由于负荷发生变化,蒸汽参数随之改变,相同的压力匹配器结构会造成抽吸比例不同,使得可控效果不好。虽然热利用效率较高,但受机组负荷变化和蒸汽参数影响较大,可调范围较窄,流量无法调节,不适合机组变工况运行。目前可调式多喷嘴压力匹配器是在单喷嘴的基础上发展起来的新型压力匹配器,内设有多个喷射器,每个喷射器有独立的制动装置,可以统一控制匹配器的压力和流量,在较大的蒸汽流量范围内调节,从而给热电厂热电解耦调节控制提供了有利的手段,但是目前采用压力匹配器出口温度、压力控制通过传统PID控制针阀开度和减温器减温水量,控制效果一般,具有较大的惯性和延时性。2. Heat supply through a single-nozzle pressure matcher, use high-pressure steam to suck low-pressure steam, and achieve the required steam parameters after mixing. Due to the change of load, the steam parameters change accordingly, and the same pressure matcher structure will cause the suction ratio. Different, making the controllable effect not good. Although the heat utilization efficiency is high, it is greatly affected by the change of unit load and steam parameters, the adjustable range is narrow, and the flow rate cannot be adjusted, so it is not suitable for the operation of the unit under variable working conditions. At present, the adjustable multi-nozzle pressure matcher is a new type of pressure matcher developed on the basis of a single nozzle. There are multiple injectors inside, and each injector has an independent braking device, which can uniformly control the pressure and pressure of the matcher. The flow rate can be adjusted within a larger range of steam flow, thus providing a favorable means for the thermo-electrolysis coupling control of thermal power plants. However, at present, the outlet temperature and pressure of the pressure matcher are controlled through the traditional PID to control the opening of the needle valve and the reduction of the desuperheater. The amount of warm water has a general control effect, and has a large inertia and delay.
发明内容SUMMARY OF THE INVENTION
为了解决上述现有技术存在的问题,本发明提出了一种耦合压力匹配器的热再抽汽供热控制系统及方法,本发明采用多喷嘴针阀控制压力匹配器的出口压力和流量,可以使得蒸汽流量在较大的范围内实现自动控制,解决了压力匹配器流量不能调节的矛盾;采用串级控制方法进行压力匹配器出口汽温的控制,由两个串接工作的控制器构成的双闭环控制系统,使用副控制器对减温水干扰进行超前控制,减少干扰对出口汽温的影响,解决压力匹配器出口汽温的滞后和时间常数很大、减温水干扰作用强而频繁、难以控制精确的难题。In order to solve the problems existing in the above-mentioned prior art, the present invention proposes a heat re-extraction steam heating control system and method coupled with a pressure matcher. The present invention uses a multi-nozzle needle valve to control the outlet pressure and flow of the pressure matcher, which can The steam flow can be automatically controlled in a wide range, and the contradiction that the flow of the pressure matcher cannot be adjusted is solved; the cascade control method is used to control the steam temperature at the outlet of the pressure matcher, which is composed of two controllers working in series. The double closed-loop control system uses the sub-controller to control the disturbance of desuperheating water in advance to reduce the influence of the disturbance on the outlet steam temperature, and solve the problem that the lag and time constant of the outlet steam temperature of the pressure matcher are large, and the disturbance of desuperheating water is strong, frequent and difficult. Control precise puzzles.
为了达到上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种耦合压力匹配器的热再抽汽供热控制系统,锅炉1内换热器出口与汽轮机的高压缸2入口相连,高压缸2出口与锅炉1内再热器入口相连,锅炉1内再热器出口分别与中调门5和热再抽汽止回阀6相连,中调门5与中压缸3相连,随后与低压缸4相连;热再抽汽止回阀6与热再抽汽调节阀7相连,减温水止回阀8与减温水调节阀9相连,随后热再抽汽调节阀7和减温水调节阀9与减温器10相连,随后减温器10依次与驱动蒸汽温度传感器11、驱动蒸汽压力传感器12和驱动蒸汽流量传感器13相连,中压缸3与吸入蒸汽调节阀14连接,随后吸入蒸汽调节阀14依次与吸入蒸汽流量传感器15、吸入蒸汽压力传感器16和吸入蒸汽温度传感器17相连,随后与吸入蒸汽止回阀18相连,驱动蒸汽流量传感器13和吸入蒸汽止回阀18与可调式多喷嘴压力匹配器19相连,随后可调式多喷嘴压力匹配器19依次与供汽母管蒸汽流量传感器20、供汽母管蒸汽压力传感器21和供汽母管蒸汽温度传感器22相连;用户侧实际需求供热流量23和供汽母管蒸汽流量传感器20与压力匹配器针阀控制器24相连,随后压力匹配器针阀控制器24与可调式多喷嘴压力匹配器19相连;供汽母管蒸汽压力传感器21和机组供汽出口温度设定值25与供热母管理论焓值计算模块26连接,吸入蒸汽压力传感器16和吸入蒸汽温度传感器17与吸入蒸汽焓值计算模块27相连,驱动蒸汽流量传感器13和吸入蒸汽流量传感器15和当前工况引射系数计算模块28相连,随后供热母管理论焓值计算模块26、吸入蒸汽焓值计算模块27和当前工况引射系数计算模块28与驱动蒸汽理论焓值计算模块29相连,驱动蒸汽压力传感器12和驱动蒸汽理论焓值计算模块29与驱动蒸汽理论温度计算模块30相连,驱动蒸汽温度传感器11和驱动蒸汽理论温度计算模块30与减温水调节阀超前控制器31相连,机组供汽出口温度设定值25和供汽母管蒸汽温度传感器22与减温水调节阀主控制器32相连,驱动蒸汽温度传感器11和减温水调节阀主控制器32与减温水调节阀副控制器33相连,随后减温水调节阀超前控制器31和减温水调节阀副控制器33与减温水调节阀9相连。A heat re-extraction steam heating control system coupled with a pressure matcher, the outlet of the heat exchanger in the boiler 1 is connected with the inlet of the high-
所述可调式多喷嘴压力匹配器19内设有多个喷射器,每个喷射器有独立的制动装置,能够统一控制压力和流量在较大的蒸汽流量范围内调节。The adjustable multi-nozzle pressure matching device 19 is provided with a plurality of injectors, and each injector has an independent braking device, which can control the pressure and flow uniformly and adjust it within a larger range of steam flow.
所述压力匹配器针阀控制器24、减温水调节阀超前控制器31、减温水调节阀主控制器32和减温水调节阀副控制器33均采用PID控制器。The pressure matcher
所述的一种耦合压力匹配器的热再抽汽供热控制系统的控制方法为:锅炉1通过其内换热器将热量传递给锅炉给水,使得锅炉给水变为高温高压的蒸汽,随后驱动高压缸2作功发电,高压缸2排汽进入锅炉1内再热器中进行换热,然后高温蒸汽通过中调门5驱动中压缸3、低压缸4进行作功发电;在中调门5前和锅炉1再热器后引出部分高温蒸汽,通过热再抽汽止回阀6、热再抽汽调节阀7送入减温器10,通过减温水调节阀9喷淋的减温水调节进入可调式多喷嘴压力匹配器19的驱动蒸汽温度,从而驱动中压缸3的低温抽汽,经过吸入蒸汽调节阀14和吸入蒸汽止回阀18进入可调式多喷嘴压力匹配器19进行混合至所需的蒸汽参数供热用户使用;The described control method of a heat re-extraction steam heating control system coupled with a pressure matcher is as follows: the boiler 1 transfers heat to the boiler feed water through its internal heat exchanger, so that the boiler feed water becomes high-temperature and high-pressure steam, and then drives the boiler 1. The high-
将供汽母管蒸汽流量传感器20测量的实际供汽母管蒸汽流量和用户侧实际需求供热流量23送入压力匹配器针阀控制器24进行计算产生针阀控制指令,从而控制可调式多喷嘴压力匹配器19的开度满足出口流量和压力需求;将供汽母管蒸汽压力传感器21测量的母管蒸汽压力和机组供汽出口温度设定值25送入供热母管理论焓值计算模块26计算获得供热母管理论焓值;将吸入蒸汽压力传感器16测量的吸入蒸汽压力和吸入蒸汽温度传感器17测量的吸入蒸汽温度送入吸入蒸汽焓值计算模块27计算获得吸入蒸汽焓值;将驱动蒸汽流量传感器13和吸入蒸汽流量传感器15测量的蒸汽流量送入当前工况引射系数计算模块28计算获得引射系数,然后将供热母管理论焓值计算模块26、吸入蒸汽焓值计算模块27、当前工况引射系数计算模块28计算的结果送入驱动蒸汽理论焓值计算模块29进行能量平衡计算获得驱动蒸汽理论焓值,随后将计算的驱动蒸汽理论焓值和驱动蒸汽压力传感器12测量的驱动蒸汽压力送入驱动蒸汽理论温度计算模块30计算获得驱动蒸汽理论温度,随后将驱动蒸汽温度传感器11测量的蒸汽温度和驱动理论温度同时送入减温水调节阀超前控制器31获得减温水调阀指令一;另一方面通过机组供汽出口温度设定值25和供汽母管蒸汽温度传感器22测得的供汽母管蒸汽温度送入减温水调节阀主控制器32,随后将计算结果与驱动蒸汽温度传感器11测得的驱动蒸汽温度一起送入减温水调节阀副控制器33中计算获得减温水调阀指令二;将减温水调阀指令一和减温水调阀指令二叠加作用从而控制减温水调节阀9的开度,实现压力匹配器供汽出口温度的精确控制。The actual steam supply main pipe steam flow measured by the steam supply main pipe steam flow sensor 20 and the actual demand
下面对现有技术的缺点与本发明技术方案的优点论述如下:Below the disadvantages of the prior art and the advantages of the technical solution of the present invention are discussed as follows:
(1)目前供热机组多采用减温减压阀进行供热控制,其中的控制方法多以供热出口压力为调节目的,并不能实现对流量的精确控制。由于供热管道较长,惯性较大,供热压力的变化具有较大的滞后性,以此来控制供热流量满足热用户需求,较为粗放;同时减温减压势必会造成较大的节流作用,浪费了大量的高温蒸汽能量。(1) At present, most of the heating units use temperature-reducing and pressure-reducing valves for heating control, and most of the control methods use the heating outlet pressure as the adjustment purpose, which cannot achieve precise control of the flow. Due to the long heating pipeline and large inertia, the change of heating pressure has a large hysteresis, so it is relatively extensive to control the heating flow to meet the needs of heat users; Flow effect, waste a lot of high-temperature steam energy.
(2)通过单喷嘴压力匹配器进行供热,采用高压蒸汽抽吸低压蒸汽,混合后达到所需蒸汽参数,避免了高温蒸汽的节流损失。但由于机组负荷发生变化,抽汽参数随之改变,相同的压力匹配器结构会造成抽吸比例不同,使得可控效果不好。虽然热利用效率较高,但受机组负荷变化和蒸汽参数影响较大,可调范围较窄,流量无法调节,不适合机组变工况运行。(2) Heating is provided by a single-nozzle pressure matcher, and high-pressure steam is used to suck low-pressure steam. After mixing, the required steam parameters are achieved, avoiding the throttling loss of high-temperature steam. However, due to the change of the unit load, the extraction parameters will change accordingly. The same pressure matcher structure will cause different extraction ratios, making the controllable effect poor. Although the heat utilization efficiency is high, it is greatly affected by the change of unit load and steam parameters, the adjustable range is narrow, and the flow rate cannot be adjusted, so it is not suitable for the operation of the unit under variable working conditions.
(3)本发明的控制系统及方法是基于可调式多喷嘴压力匹配器来进行控制,内设有多个喷射器,每个喷射器有独立的制动装置,可以统一控制匹配器的压力和流量,在较大的蒸汽流量范围内调节,从而给热电厂热电解耦调节控制提供了有利的手段,但是目前采用常规PID单回路控制方法,通过控制针阀开度和减温器减温水量,直接控制压力匹配器出口温度、压力,控制效果一般,具有较大的惯性和延时性。(3) The control system and method of the present invention is controlled based on an adjustable multi-nozzle pressure matcher, which is provided with a plurality of injectors, and each injector has an independent braking device, which can uniformly control the pressure and pressure of the matcher. The flow rate can be adjusted within a larger range of steam flow, thus providing a favorable means for the thermo-electrolysis coupling adjustment control of thermal power plants. Directly control the outlet temperature and pressure of the pressure matcher, the control effect is general, and it has large inertia and delay.
(4)本发明采用调节针阀开启来实现压力匹配器出口流量和压力的调节,同时选取串级控制系统对压力匹配器汽温进行调节,通过引入驱动蒸汽温度这一直接反应减温水扰动的变量组成副控制器回路,完成出口汽温的粗调控制,同时使用主控制器回路完成出口汽温的细调,通过这两条回路的配合控制完成普通单回路控制系统很难达到的控制效果,削弱减温水对出口汽温的扰动影响;除此之外,在机组变负荷工况下,驱动蒸汽和吸入蒸汽的参数实时变化,在通过压力匹配器的混合后,反映到出口汽温势必会有一定的滞后,本发明可以超前获得驱动蒸汽的温度前馈,可以削弱机组工况变化造成驱动蒸汽和吸入蒸汽参数变化带来的扰动影响,控制更为精确。(4) In the present invention, the opening of the regulating needle valve is used to realize the regulation of the outlet flow and pressure of the pressure matcher, and at the same time, a cascade control system is selected to adjust the steam temperature of the pressure matcher. The variables form a sub-controller loop to complete the coarse adjustment control of the outlet steam temperature, and at the same time use the main controller loop to complete the fine adjustment of the outlet steam temperature. , to weaken the disturbance effect of desuperheating water on the outlet steam temperature; in addition, under the variable load condition of the unit, the parameters of driving steam and suction steam change in real time. There will be a certain lag. The present invention can obtain the temperature feedforward of the driving steam ahead of time, which can weaken the disturbance effect caused by the change of the parameters of the driving steam and the suction steam caused by the change of the working condition of the unit, and the control is more accurate.
附图说明Description of drawings
图1为本发明耦合压力匹配器的热再抽汽供热控制系统连接示意图。FIG. 1 is a schematic diagram of the connection of a heat re-extraction steam heating control system coupled with a pressure matcher according to the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明作进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
如图1所示,本发明一种耦合压力匹配器的热再抽汽供热控制系统,锅炉1内换热器出口与汽轮机的高压缸2入口相连,高压缸2出口与锅炉1内再热器入口相连,锅炉1内再热器出口分别与中调门5和热再抽汽止回阀6相连,中调门5与中压缸3相连,随后与低压缸4相连;热再抽汽止回阀6与热再抽汽调节阀7相连,减温水止回阀8与减温水调节阀9相连,随后热再抽汽调节阀7和减温水调节阀9与减温器10相连,随后减温器10依次与驱动蒸汽温度传感器11、驱动蒸汽压力传感器12和驱动蒸汽流量传感器13相连,中压缸3与吸入蒸汽调节阀14连接,随后吸入蒸汽调节阀14依次与吸入蒸汽流量传感器15、吸入蒸汽压力传感器16和吸入蒸汽温度传感器17相连,随后与吸入蒸汽止回阀18相连,驱动蒸汽流量传感器13和吸入蒸汽止回阀18与可调式多喷嘴压力匹配器19相连,随后可调式多喷嘴压力匹配器19依次与供汽母管蒸汽流量传感器20、供汽母管蒸汽压力传感器21和供汽母管蒸汽温度传感器22相连;用户侧实际需求供热流量23和供汽母管蒸汽流量传感器20与压力匹配器针阀控制器24相连,随后压力匹配器针阀控制器24与可调式多喷嘴压力匹配器19相连;供汽母管蒸汽压力传感器21和机组供汽出口温度设定值25与供热母管理论焓值计算模块26连接,吸入蒸汽压力传感器16和吸入蒸汽温度传感器17与吸入蒸汽焓值计算模块27相连,驱动蒸汽流量传感器13和吸入蒸汽流量传感器15和当前工况引射系数计算模块28相连,随后供热母管理论焓值计算模块26、吸入蒸汽焓值计算模块27和当前工况引射系数计算模块28与驱动蒸汽理论焓值计算模块29相连,驱动蒸汽压力传感器12和驱动蒸汽理论焓值计算模块29与驱动蒸汽理论温度计算模块30相连,驱动蒸汽温度传感器11和驱动蒸汽理论温度计算模块30与减温水调节阀超前控制器31相连,机组供汽出口温度设定值25和供汽母管蒸汽温度传感器22与减温水调节阀主控制器32相连,驱动蒸汽温度传感器11和减温水调节阀主控制器32与减温水调节阀副控制器33相连,随后减温水调节阀超前控制器31和减温水调节阀副控制器33与减温水调节阀9相连。As shown in Figure 1, a heat re-extraction steam heating control system of the present invention coupled with a pressure matching device, the outlet of the heat exchanger in the boiler 1 is connected to the inlet of the high-
作为本发明的优选实施方式,所述可调式多喷嘴压力匹配器19内设有多个喷射器,每个喷射器有独立的制动装置,能够统一控制压力和流量在较大的蒸汽流量范围内调节。As a preferred embodiment of the present invention, the adjustable multi-nozzle pressure matcher 19 is provided with a plurality of injectors, and each injector has an independent braking device, which can uniformly control the pressure and flow in a large steam flow range Internal regulation.
作为本发明的优选实施方式,所述压力匹配器针阀控制器24、减温水调节阀超前控制器31、减温水调节阀主控制器32和减温水调节阀副控制器33均采用PID控制器。PID控制器基本原理如下:As a preferred embodiment of the present invention, the pressure matcher
其中,P(t)为控制器输出控制指令;K为设定的参数增益;e(t)为t时刻,控制器实际输入值与该控制器模块理论设定值之间的偏差;Ti表示积分时间,Td表示微分时间。Among them, P(t) is the output control command of the controller; K is the set parameter gain; e(t) is the deviation between the actual input value of the controller and the theoretical setting value of the controller module at time t; T i represents the integration time, and T d represents the derivative time.
作为本发明的优选实施方式,所述当前工况引射系数计算模块28可以通过驱动蒸汽流量传感器13和吸入蒸汽流量传感器15所测得的实际蒸汽流量计算获得压力匹配器的引射系数。计算公式如下:As a preferred embodiment of the present invention, the current operating condition extraction
μ=GH/GP μ = GH /GP
其中:GH为吸入蒸汽流量;GP为驱动蒸汽流量。Among them: GH is the suction steam flow; GP is the driving steam flow.
作为本发明的优选实施方式,所述供热母管理论焓值计算模块26、吸入蒸汽焓值计算模块27、驱动蒸汽理论焓值计算模块29与驱动蒸汽理论温度计算模块30采用水和水蒸气热力学性质计算公式进行求解,获得蒸汽焓值和温度值。计算公式如下:As a preferred embodiment of the present invention, the theoretical enthalpy
其中:p、T、h分别为压力、温度、焓值,p*、T*、h*为定值,ni、Ii、Ji、ni1、Ji1、ni2、Ii2、Ji2为一组常数组,R为气体常数。Among them: p, T, h are pressure, temperature, enthalpy respectively, p * , T * , h * are fixed values, n i , I i , J i , n i1 , J i1 , n i2 , I i2 , J i2 is a set of constants, and R is the gas constant.
如图1所示,本发明所述的一种耦合压力匹配器的热再抽汽供热控制系统的控制方法为:锅炉1通过其内换热器将热量传递给锅炉给水,使得锅炉给水变为高温高压的蒸汽,随后驱动高压缸2作功发电,高压缸2排汽进入锅炉1内再热器中进行换热,然后高温蒸汽通过中调门5驱动中压缸3、低压缸4进行作功发电;在中调门5前和锅炉1再热器后引出部分高温蒸汽,通过热再抽汽止回阀6、热再抽汽调节阀7送入减温器10,通过减温水调节阀9喷淋的减温水调节进入可调式多喷嘴压力匹配器19的驱动蒸汽温度,从而驱动中压缸3的低温抽汽,经过吸入蒸汽调节阀14和吸入蒸汽止回阀18进入可调式多喷嘴压力匹配器19进行混合至所需的蒸汽参数供热用户使用;As shown in FIG. 1, the control method of a heat re-extraction steam heating control system coupled with a pressure matcher according to the present invention is as follows: the boiler 1 transfers heat to the boiler feed water through its internal heat exchanger, so that the boiler feed water changes It is high-temperature and high-pressure steam, and then drives the high-
将供汽母管蒸汽流量传感器20测量的实际供汽母管蒸汽流量和用户侧实际需求供热流量23送入压力匹配器针阀控制器24进行计算产生针阀控制指令,从而控制可调式多喷嘴压力匹配器19的开度满足出口流量和压力需求;将供汽母管蒸汽压力传感器21测量的母管蒸汽压力和机组供汽出口温度设定值25送入供热母管理论焓值计算模块26计算获得供热母管理论焓值;将吸入蒸汽压力传感器16测量的吸入蒸汽压力和吸入蒸汽温度传感器17测量的吸入蒸汽温度送入吸入蒸汽焓值计算模块27计算获得吸入蒸汽焓值;将驱动蒸汽流量传感器13和吸入蒸汽流量传感器15测量的蒸汽流量送入当前工况引射系数计算模块28计算获得引射系数,然后将供热母管理论焓值计算模块26、吸入蒸汽焓值计算模块27、当前工况引射系数计算模块28计算的结果送入驱动蒸汽理论焓值计算模块29进行能量平衡计算获得驱动蒸汽理论焓值,随后将计算的驱动蒸汽理论焓值和驱动蒸汽压力传感器12测量的驱动蒸汽压力送入驱动蒸汽理论温度计算模块30计算获得驱动蒸汽理论温度,随后将驱动蒸汽温度传感器11测量的蒸汽温度和驱动理论温度同时送入减温水调节阀超前控制器31获得减温水调阀指令一;另一方面通过机组供汽出口温度设定值25和供汽母管蒸汽温度传感器22测得的供汽母管蒸汽温度送入减温水调节阀主控制器32,随后将计算结果与驱动蒸汽温度传感器11测得的驱动蒸汽温度一起送入减温水调节阀副控制器33中计算获得减温水调阀指令二;将减温水调阀指令一和减温水调阀指令二叠加作用从而控制减温水调节阀9的开度,实现压力匹配器供汽出口温度的精确控制。The actual steam supply main pipe steam flow measured by the steam supply main pipe steam flow sensor 20 and the actual demand heat supply flow 23 on the user side are sent to the pressure matcher needle valve controller 24 for calculation to generate needle valve control instructions, thereby controlling the adjustable multi- The opening of the nozzle pressure matcher 19 meets the outlet flow and pressure requirements; the steam pressure of the main pipe measured by the steam pressure sensor 21 of the steam supply main pipe and the set value 25 of the outlet temperature of the steam supply of the unit are sent to the heating main pipe for calculation of the theoretical enthalpy value The module 26 calculates and obtains the theoretical enthalpy value of the heating master; the suction steam pressure measured by the suction steam pressure sensor 16 and the suction steam temperature measured by the suction steam temperature sensor 17 are sent to the suction steam enthalpy value calculation module 27 to calculate and obtain the suction steam enthalpy value; The steam flow measured by the driving steam flow sensor 13 and the suction steam flow sensor 15 is sent to the injection coefficient calculation module 28 of the current working condition to calculate the extraction coefficient, and then the theoretical enthalpy value calculation module 26 of the heat supply mother, the suction steam enthalpy value The results calculated by the calculation module 27 and the current operating condition extraction coefficient calculation module 28 are sent to the driving steam theoretical enthalpy value calculation module 29 for energy balance calculation to obtain the driving steam theoretical enthalpy value, and then the calculated driving steam theoretical enthalpy value and driving steam pressure are calculated. The driving steam pressure measured by the sensor 12 is sent to the driving steam theoretical
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110125041.3A CN112856374B (en) | 2021-01-29 | 2021-01-29 | Heat re-extraction steam heating control system and method for coupling pressure matcher |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110125041.3A CN112856374B (en) | 2021-01-29 | 2021-01-29 | Heat re-extraction steam heating control system and method for coupling pressure matcher |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112856374A CN112856374A (en) | 2021-05-28 |
CN112856374B true CN112856374B (en) | 2022-06-17 |
Family
ID=75986794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110125041.3A Active CN112856374B (en) | 2021-01-29 | 2021-01-29 | Heat re-extraction steam heating control system and method for coupling pressure matcher |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112856374B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113489024B (en) * | 2021-07-13 | 2023-05-26 | 西安热工研究院有限公司 | Multi-mode steam extraction auxiliary peak regulation and frequency modulation control system and method for cogeneration unit |
CN113983441A (en) * | 2021-10-09 | 2022-01-28 | 上海核工程研究设计院有限公司 | Multipurpose coordination control scheme for heat supply reactor |
CN114060105A (en) * | 2021-10-19 | 2022-02-18 | 国能(福州)热电有限公司 | Combined heat and power central heating system and its control method |
CN115097730A (en) * | 2022-06-23 | 2022-09-23 | 西安热工研究院有限公司 | Advanced control method and system for desuperheating water regulating valve of high and low bypass heating system |
CN115341969B (en) * | 2022-07-05 | 2024-06-18 | 华能应城热电有限责任公司 | System and method for improving overall flexibility and economy of cogeneration power plant |
CN115263468B (en) * | 2022-07-29 | 2025-01-24 | 西安西热锅炉环保工程有限公司 | A control method for a heating system of a wide-load thermal power unit |
CN115839515A (en) * | 2022-10-24 | 2023-03-24 | 无锡新联热力有限公司 | Heating steam remote track temperature control tracking system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004164153A (en) * | 2002-11-12 | 2004-06-10 | Nikki Co Ltd | Pressure regulator |
CN202132926U (en) * | 2011-04-29 | 2012-02-01 | 山西省电力公司电力科学研究院 | A Control System of Main Steam Temperature of Large Boiler |
CN107605553A (en) * | 2017-09-12 | 2018-01-19 | 华电电力科学研究院 | Energy conserving system and its intelligent control method for steam power plant's multi-heat source industrial heating |
CN108868921A (en) * | 2018-07-12 | 2018-11-23 | 广西电网有限责任公司电力科学研究院 | A kind of large size pure condensed steam formula Turbo-generator Set heating system and heat supply method |
CN208518719U (en) * | 2018-07-12 | 2019-02-19 | 广西电网有限责任公司电力科学研究院 | A kind of large size pure condensed steam formula Turbo-generator Set heating system |
CN110701663A (en) * | 2019-11-05 | 2020-01-17 | 清华大学 | Method and system of exhaust steam recovery and heating supply of ejector heat pump based on complete thermo-decoupling |
-
2021
- 2021-01-29 CN CN202110125041.3A patent/CN112856374B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004164153A (en) * | 2002-11-12 | 2004-06-10 | Nikki Co Ltd | Pressure regulator |
CN202132926U (en) * | 2011-04-29 | 2012-02-01 | 山西省电力公司电力科学研究院 | A Control System of Main Steam Temperature of Large Boiler |
CN107605553A (en) * | 2017-09-12 | 2018-01-19 | 华电电力科学研究院 | Energy conserving system and its intelligent control method for steam power plant's multi-heat source industrial heating |
CN108868921A (en) * | 2018-07-12 | 2018-11-23 | 广西电网有限责任公司电力科学研究院 | A kind of large size pure condensed steam formula Turbo-generator Set heating system and heat supply method |
CN208518719U (en) * | 2018-07-12 | 2019-02-19 | 广西电网有限责任公司电力科学研究院 | A kind of large size pure condensed steam formula Turbo-generator Set heating system |
CN110701663A (en) * | 2019-11-05 | 2020-01-17 | 清华大学 | Method and system of exhaust steam recovery and heating supply of ejector heat pump based on complete thermo-decoupling |
Non-Patent Citations (2)
Title |
---|
减温减压器和压力匹配器在供热系统中的热经济性分析;马家贵;《科技与创新》;20150514;第11-19页 * |
压力匹配器用于大型机组汽动给水系统经济性分析;仲昭勇;《东北电力技术》;20181029;第119页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112856374A (en) | 2021-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112856374B (en) | Heat re-extraction steam heating control system and method for coupling pressure matcher | |
CN111852597B (en) | Variable parameter multi-element cascade thermal-electric decoupling system and adjustment method for thermal power heating unit | |
CN108361086B (en) | Energy-saving thermoelectric decoupling system and operation method | |
CN108868909B (en) | Starting mode of double-machine regenerative small steam turbine | |
CN111577410B (en) | Gas turbine inlet air temperature control device and gas turbine inlet air temperature control method | |
CN102787870A (en) | Method for improving primary frequency modulation capacity of heat supply unit | |
CN107725122B (en) | 9MW mixed-temperature steam inlet back-pressure steam turbine for controlling exhaust steam temperature and temperature adjusting method thereof | |
CN108194156A (en) | A kind of zero output heating system of low pressure (LP) cylinder and method of no cooling steam bypass | |
CN210858830U (en) | A deep thermal and electrolytic coupling system of ejector gas distribution based on axial thrust balance | |
CN113606001B (en) | 600MW supercritical unit bypass system and bypass temperature control method thereof | |
CN111649372A (en) | A back pressure heating system and method suitable for small circulating water flow | |
CN114991893B (en) | A pre-steam turbine system and operation method for deep peak regulation | |
CN109779705B (en) | Heating system for flexibly regulating steam inlet of steam turbine of coal-fired heat supply power plant | |
CN112833378B (en) | Reheating system capable of improving heat supply capacity | |
CN114233403A (en) | High-efficient turbo electric power generation system of degree of depth peak regulation that split-axis was arranged | |
CN113464225A (en) | System and method for wide load operation of power plant with two-stage steam ejector | |
CN209800043U (en) | High-pressure industrial steam supply system | |
CN114776396B (en) | Quick starting system and operation method for coal-fired power plant | |
CN113325713B (en) | Method for determining optimal operation mode of heat supply unit by adopting matched extraction steam external supply technology | |
CN217813611U (en) | System for rapidly improving load response rate of thermal power generating unit based on heat storage tank | |
CN114963298B (en) | Online quantitative calculation method and system for energy storage of steam pipe network | |
CN207146485U (en) | A kind of high-low pressure steam supply system with injector | |
CN116877973A (en) | An energy cascade utilization system and method applied to condensation extraction back heating units | |
CN111706898B (en) | Method for improving heat supply capacity of unit after high-back-pressure heat supply transformation | |
CN210889045U (en) | High-flexibility peak shaving thermodynamic system of secondary reheating unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |