CN1128530C - 用于数字电视信号接收机的电路 - Google Patents

用于数字电视信号接收机的电路 Download PDF

Info

Publication number
CN1128530C
CN1128530C CN 98117833 CN98117833A CN1128530C CN 1128530 C CN1128530 C CN 1128530C CN 98117833 CN98117833 CN 98117833 CN 98117833 A CN98117833 A CN 98117833A CN 1128530 C CN1128530 C CN 1128530C
Authority
CN
China
Prior art keywords
response
signal
frequency
phase
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 98117833
Other languages
English (en)
Other versions
CN1242674A (zh
Inventor
艾伦·L·林伯格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to CN 98117833 priority Critical patent/CN1128530C/zh
Publication of CN1242674A publication Critical patent/CN1242674A/zh
Application granted granted Critical
Publication of CN1128530C publication Critical patent/CN1128530C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

数字TV接收机中的调谐器将接收信号转换为前置中频(IF)信号。在第一定相和与其正交的第二定相中提供前置本机振荡,分别与第一和第二混频器中的前置IF信号进行外差作用,以产生最终中频信号的实与虚分量。第一与第二混频器在前置本机振荡的各自响应中进行转换。第一模数转换电路和第二模数转换电路分别在N相位基础上数字化最终IF信号的实分量和虚分量,以转换到最终IF信号频带的无线电载波频率生成复合数字载波信号。

Description

用于数字电视信号接收机的电路
                       技术领域
本发明涉及具有多相位模数转换前的希耳伯特变换的带通相位跟踪器,即,在检测利用调幅无线电波一例如,具有残留边带(VSB)或正交调幅(QAM)类型-发送的数字信号中使用的带通相位跟踪器,例如,带通相位跟踪器在数字电视(DTV)接收机中是有用的。更具体讲,本发明涉及一种用于数字电视信号接收机的电路。
                       背景技术
1995年9月16日由先进电视委员会(ATSC)出版的数字电视标准规定了用于在诸如美国国家电视小组委员会(NTSC)模拟电视信号的空中广播中目前所用的6MHz带宽电视频道中发送数字电视(DTV)信号的残留边带(VSB)信号。由高级电视小组委员会(ATSC)用于标准的场测试的HDTV接收机的无线电接收机部分由Zenith电子公司设计。在Zenith接收机中,在完成同步检测之后,在基带上进行相位跟踪,在同步检测之后进行数字化。由ATSC批准的数字传输方案是独特的,因为它使用残留边带调幅(VSBAM)。
在1995年12月26日授予C.B.Patel和A.L.R.Limberg的题为“DIGITAL VSB DETECTOR WITH BANDPASS PHASE TRACKER,ASFOR INCLUSION IN AN HDTV RECEIVER(《带有带通相位跟踪器的数字VSB检测器,用于包括在HDTV接收机内》)”的美国专利第5,479,449号中,在同步检测之前进行数字化,并且在生成同步检测的复数数字样值之前在中频进行相位跟踪。美国专利第5,479,449号教导:尽管VSB AM上边带与下边带缺乏对称性,在VSB AM接收机中在生成同步检测的复数数字样值之前也能在中频上进行相位跟踪。在提取要与基带同步的载波以便产生用于带通跟踪器的控制信号之前,进行窄带通滤波以获得上与下边带的对称性。可选择地,载波从非对称的上与下边带中提取、与基带进行同步、并进行低通滤波以产生用于带通跟踪器的控制信号,低通滤波器的截止频率是如此低,以致对于载波边带结构的非对称部分没有响应。
带通相位跟踪器对于如在1996年4月9日授予C.B.Patel与A.L.R.Limberg的题为“HDTV SIGNAL RECEIVER WITH IMAGINARY-SAMPLE-PRESENCE DETECTOR FOR QAM/VSB MODE SELECTI0N(《用于QAM/VSB模式选择的带有虚数采样预测检测器的HDTV信号接收器》)”的美国专利第5,506,636号和在1994年6月28目C.B.Patel与A.L.R.Limberg申请的题为“RADIO RECEIVER FOR RECEIVING BOTH VSB ANDQAM DIGITAL HDTV SIGNALS(《接收VSB和QAM数字HDTV信号的无线电接收器》)”的允许的美国专利申请序号08/266,753中所述的检测利用中心频道载波的QAM发送的数字电视信号也是有用的。
美国专利第5,479,449号在利用具有希尔伯特(Hilbert)变换系统函数的数字滤波器将实数样值转换为复数样值以便生成虚数样值之后,将同相同步检测结果的边带数字化。这个希尔伯特变换利用具有1与10MHz之间频率的系统函数的中频(IF)信号的数字滤波进行,这比在基带上进行希尔伯特变换简单多了。为获得兆赫兹上90°相移所要求的延迟比在接近零的频率上约90°相移所要求的延迟小得多。然而,希尔伯特变换滤波电路采用大量的人们希望避免必须使用的数字硬件。
C.B.Patel和A.L.R.Limberg考虑利用使用FIR或IIR数字滤波器的微分90°相移网络来替代希尔伯特变换滤波电路。1996年8月20日授权的并且题为“DIGITAL VSB DETECTOR WITH BANDPASS PHASE TRACKERUSING RADER FILTERS,AS FOR USE IN AN HDTV RECEIVER(《利用Rader滤波器的带有带通相位跟踪器的数字VSB检测器,用于HDTV接收器》)”的美国专利第5,548,617号描述利用根据IEEE TRANSACTIONS ONAEROSPACE AND ELECTRONIC SYSTEMS(《航空和电子系统的IEEE学报》)第6期第AES-20卷(1984年11月)第821-824页由C.M.Rader在他的文章“A Simple Method for Sampling In-Phase and QuadratureComponents(《相位采样和正交补偿的简单方法》)”所述的类型的IIR数字滤波器的微分90°相移网络。1995年12月22日申请的题为“DIGITAL VSBDETECTOR WITH BANDPASS PHASE TRACKER USING NG FILTERS,ASFOR USE IN AN HDTV RECEIVER(《采用Ng滤波器的带有带通相位跟踪器的数字VSB检测器,用于HDTV接收器中》”的美国专利申请序号08/577,469中,描述利用根据一般由T.F.S.Ng在1991年11月27日出版的题为“QUADRATURE DEMO-DULATOR(《正交解调器》)”的UK(英国)专利申请2244410A中所述的类型的FIR数字滤波器的微分90°相移网络。
希尔伯特变换滤波电路在利用单个模数转换器(ADC)对接收机中所使用的前置(penultimate)中频信号进行模数转换之后,被实施为上述的带通跟踪器中的数字滤波器。这个前置中频(IF)信号位于比电视广播频道2稍低的甚高频(VHF)频带中。使用带通跟踪器的DTV接收机通常设计为三重转换(triple-conversion)接收机,将从天线或有线连接接收的射频(RF)信号转换为位于比电视广播频道83稍高的特高频(UHF)频带中的第一中频信号,将放大的UHF第一IF信号变换为VHF前置IF信号,并且最后将放大的VHF前置IF信号变换为在约1-10MHz频率范围内的最终的IF信号,以便与基带同步。在数字通信接收机中使用单个ADC避免了匹配分别用于转换模拟最终IF信号的实分量与虚分量的单独的ADC的问题,也避免了匹配分别提供给ADC的实分量与虚分量增益的问题,也极大地避免产生处于准确的90°定相(accurate90°phasing)中的最终IF信号的实分量与虚分量的问题。
而且,在数字通信接收机中数字化信号时实际上已使用快速(flash)模数转换器,并且DTV信号中所使用的高达每秒10.76兆码元(magesymbo1)的码元(symbo1)速率和8或16级码元(eight-or sixteen-level symbols)给快速转换器增加非常困难的操作要求。快速转换器具有大量的电路以并入单块集成电路(IC)模块内,采用(2n-1)电阻梯形分压器和(2n-1)个比较器来获得n比特数字分辨率,n是正整数。在模块上占用相当大的面积,因此ADC价格相当高,在几个美元范围内。在使用带通相位跟踪器时,快速转换器为了以每秒10.76百万码元数字化VSB AM DTV信号,以接收机中所要求每秒至少21.52百万样值速率操作而消耗大量的功率。希望尽可能地使用较不昂贵、功耗少的ID器件的愿望使本领域技术人员不考虑使用多相位模数转换。
为了得到每秒21.52百万样值的速率上的10至12比特的数字分辨率以便更好地实施均衡滤波,本发明人已考虑使用模数转换方法代替快速(flash)转换。本发明人发现:单个快速转换器能够由24个安排用于交错抽样的逐次二进制近似类型的ADC来替代,以提供具有多达11或12比特分辨率的24相位模拟转换,而不需要超过DTV码元速率的逐次二进制近似速率。每个ADC数字化1/2码元周期间隔的一个样值,每个ADC的转换速率是快速转换器转换速率的1/24,这使每个ADC中的功耗减少24的平方,而整个功率减少24倍。每个逐次二进制近似类型的ADC仅有1至12个比较器,这取决于所使用的ADC的特定类型,这少于在具有9比特至12比特分辨率的快速转换器中所用的(29-1)至(212-1)个比较器,并且绝不明显多于具有8比特分辨率的快速转换器中所使用的(28-1)个比较器。
1995年9月16日出版的ATSC数字电视标准规定格形编码(trellis coded)信号的码元编码,12个时间交错格形码用于828码元数据段内的数据,每个数据段前面是作为标题的4码元数据同步码组。使用12个时间交错格形码的最初目的是实施梳状滤波(comb filtering),以抑制同频道干扰NTSC信号的人为产物。在用于场测试ATSC数字电视标准的Zenith接收机中,利用格形解码(trellis decoding)的12个相位的每一个相位的各自的格形解码器,在12相位基础上解码12个时间交错格形码。每个格形解码器能使用由Viterbi(维特比)所述类型的“软判定”技术,其判定程序实际上独立于其他格形解码器中的判定程序。独立时间交错格形码的使用,在利用上述的24相位模数转换程序时,减少对于准确匹配ADC的转换增益的影响。除非重影(ghosting)很多,使均衡滤波大量混合ADC响应,否则ADC的转换增益中的差异在某些部分利用格形编码器中单个“软判定”程序进行补偿。
如果在任何情况下都能满意地进行ADC匹配,则具有较少的诸如16个相位的多相位转换是可能的,这将减少在整个模数转换电路中所要求的硬件数量。能提供每秒21.52百万样值速率上10至12比特的数字分辨率,而不消耗如此多的功率或化费如此多的器件费用的模数转换电路的可能性,促使本发明人考虑如何能克服而不是避免最终IF信号的实与虚分量的独立模数转换的问题。
均衡以模拟形式提供给其各自ADC的最终IF信号的实与虚分量的增益的问题,能通过提供前置IF信号给一对具有匹配结构的开关类型混频器,得到令人满意的解决,其中开关类型混频器进行转换,以响应前置本机振荡器的同相和正交相位输出信号。具有匹配结构的此对开关类型混频器例如利用许多发射极耦合的双极晶体管对在单片IC中形成。开关类型混频器响应同样进行低通滤波,以生成两个ADC各自的输入信号。设计为从零源阻抗(Zero source impedance)中有效进行驱动的各个IC低通滤波器,被建议用于维持以模拟形式提供给其各自ADC的前置IF信号的实与虚分量的相等插入增益。
产生处于准确90°定相的最终IF信号的实与虚分量的问题,通过提供准确定相的前置本机振荡器的同相与正交相位输出信号的安排来解决,由于前置本机振荡器输出信号基本上不进行调制,所以这使问题简化。
匹配ADC特征的问题例如利用单个单片IC内的匹配结构能得以解决。如果ADC是快速转换器,则最好安排它们共同使用一个电阻阶梯(ladder)。如果ADC是逐次二进制近似类型,则最好安排它们使用相同网络来建立在逐次近似程序中使用的比较器标准。
                       发明内容
本发明在用在数字电视接收机中的下列类型的无线电接收机电路中实施。该无线电接收机电路包括调谐器,用于选择频带中不同位置上的一个频道,和将所选频道转换为前置中频带中前置中频信号的频率,此一个频道被分配用于根据电视信息的数字信号描述来传送调幅无线电载波。前置本机振荡源提供第一定相和与第一定相正交的第二定相中的那些振荡,用于分别在第一与第二混频器中与前置IF信号进行外差作用(heterodyning)。第一与第二混频器具有开关类型,第一混频器根据第一定相中提供的前置本机振荡进行转换,以便提供最终中频信号的实分量,而第二混频器根据第二定相中提供的前置本机振荡进行转换,以便提供最终中频信号的虚分量。第一低通滤波器将最终IF信号的实分量与其虚分量分开,以便在偏离基带最多几兆赫兹的最终中频频带内生成第一低通滤波响应。第二低通滤波器将最终IF信号的实分量与其虚分量分开,以便在最终IF频带内生成第二低通滤波响应。包含数量为N的模数转换器的第一模数转换电路,用于在N相位基础上数字化所述第一低通滤波响应,以生成最终IF信号的实分量的数字样值作为其输出信号,N至少为1。包含数量为N的模数转换器的第二模数转换电路,用于在N相位基础上数字化第二低通滤波响应,以便生成最终IF信号的虚分量的数字样值,作为其输出信号。具有用于在转换为最终IF频带的无线电载波频率上生成复合数字载波信号的电路。第一同步电路响应复合数字载波信号和响应最终IF信号的实与虚分量的数字样值,以恢复同相基带信号,第二同步电路响应作为最终本机振荡提供的复合数字载波信号,并响应最终IF信号的实与虚分量的数字样值,以恢复正交相位基带信号。
按照本发明,提供了一种用于数字电视信号接收机的电路,该接收机具有同步检测器、均衡器、抽样控制电路和码元解码器,所述电路包括:
调谐器,用于在频带中的不同位置上选择一个频道,该频道被分配用于根据电视信息的数字信号说明来传输幅度调制的无线电载波,并用于选择将所选频道转换为前置中频频带中的前置中频信号;
在第一定相和与所述第一定相正交的第二定相中提供的前置本机振荡源,用于与所述前置中频信号进行外差(heterodyning)作用;
开关类型的第一与第二混频器,接收所述前置中频信号,以便与所述前置本机振荡进行外差作用,所述第一混频器根据在所述第一定相中提供的所述前置本机振荡进行转换,以便提供最终中频信号的实分量,并且所述第二混频器根据在所述第二定相中提供的所述前置本机振荡进行转换,以便提供所述最终中频信号的虚分量;
第一低通滤波器,将所述最终中频信号的所述实分量与其图象分开,以便在与基带最多偏移几个兆赫兹的最终中频带内产生第一低通滤波器响应;
第二低通滤波器,将所述最终中频信号的所述虚分量与其图象分开,以便在所述最终中频带内产生第二低通滤波器响应;
第一模数转换电路,用于数字化所述第一低通滤波器响应,以产生作为其输出信号的所述最终中频信号的所述实分量的数字化样值,所述第一模数转换电路包含数量为N的模数转换器,用于在N相位基础上数字化所述第一低通滤波器响应,N至少为1;
第二模数转换电路,用于数字化所述第二低通滤波器响应,以产生作为其输出信号的所述最终中频信号的所述虚分量的数字化样值,所述第二模数转换电路包含数量为N的模数转换器,用于在N相位基础上数字化所述第二低通滤波器响应;
用于以转换到所述最终中频频带的所述无线电载波频率来产生复合数字载波信号的电路;和
第一数字同步电路,响应于作为最终本机振荡提供给它的所述复合数字载波信号,和响应于所述最终中频信号的所述实与虚分量的数字化样值,用于恢复同相基带信号。
                       附图说明
图1-6的每幅图是采用本发明的各个数字电视信号接收机的示意图。
图7是适于在图1-6的数字电视信号接收机的任一个接收机中使用的类型的开关混频器的示意图;
图8是表示在图1-6的数字电视信号接收机的优选实施例中执行的多相位模数转换细节的示意图;
图9是表示在图1-4的数字电视信号接收机的具体实施例中执行的多相位格形解码细节的示意图;
图10是表示图5与6的数字电视信号接收机的具体实施例中执行的多相位格形解码细节的示意图;
图11是表示在图1-6的数字电视信号接收机的具体实施例中采用的抽样控制电路细节的示意图。
                     具体实施方式
在图1-6的数字电视信号接收机中,利用天线1(或可选地利用未示出的电缆连接)在射频上接收的数字电视信号由射频放大器2放大,加到第一混频器3,以便在混频器3中与第一本机振荡器4生成的第一本机振荡进行外差作用(heterodyne)。混频器3将所选的数字电视信号频率转换为第一中频带,这个频带在图1-6所示的多转换接收机中在稍高于电视广播频道83的UHF频带中。由混频器3如此生成的第一中频信号加到特高频带中频放大器5,放大器5将放大的第一中频信号加到设计为选择作为转换到第一中频带的VSB AM DTV信号的表面声波(SAW)滤波器6。
在数字信号接收机中,非常关注仔细控制接收机的整个幅度与相位特性,以使码元间误差最小,与此同时,抑制来自相邻频道中的信号的干扰。在保持可接受的群(group)延迟特性的同时,得到5.5至6MHz频带上±dB内平坦振幅响应,要求利用大量极点(pole)和零点(zero)进行SAW滤波,以定义接收机带宽,对于诸如41-47MHz的VHF频带,实施这样的SAW滤波既困难又昂贵,插入损耗在VHF频带中也相当高,一般对于41-47MHz频带插入损耗为15-17dB。为定义接收机带宽而进行的SAW滤波对于诸如917-923MHz的UHF频带能更容易地实现,只要注意从其制造商规定的最佳源阻抗中驱动SAW滤波器就可以。这是因为6MHz至920MHz的△f/f比明显低于6MHz至44MHz的Δf/f比。插入损耗在UHF频带中也趋于较低,对于917-923MHz频带一般为10-12dB。
UHF频带IF放大器5提供增益,以补偿SAW滤波器6中的插入损耗。不控制放大器5的增益使放大器5更容易从最佳源阻抗中驱动SAW滤波器6。所选的放大的第一中频信号从SAW滤波器6中提供给第二混频器7,以便在混频器7中与由图1、2和5中的受控第二本机振荡器8以及由图3、4和6中的固定频率第二本机振荡器08生成的第一本机振荡进行外差作用。混频器7将所选的数字电视信号频率转换为第二前置中频频带,此频带在图1-6所示的多转换接收机中处于稍低于电视广播频道2的VHF频带中。表面声波(SAW)滤波器9抑制由混频器7生成的第二前置中频信号的图像,并且该前置中频信号随后由甚高频带中频放大器10放大。此VHF频带IF放大器10装备有自动增益控制(AGC),并且RF放大器具有延迟的AGC。因此,来自VHF频带IF放大器10的放大的前置中频信号具有规定的幅度,以便加到开关类型的混频器11与12。
在设计用于接收伴有导频的VSB AM DTV信号的图1-4的数字信号接收机中,最好生成AGC以响应导频幅度,如由C.B.Patel和A.L R.Limberg在题为“AUTOMATIC GAIN CONTROL OF RADIO RECEIVERFOR RECEIVING DIGITAL HIGH-DEFINITION TELEVISIONSIGNALS(《用于接收数字高分辨率电视信号的无线接收器的自动增益控制》)”的1997年6月3日授权的美国专利第5,636,252中所述的。在设计用于接收未伴有导频的QAM DTV信号的图5与6的数字信号接收机中,能以许多方式中的任一种方式生成AGC。T.M.Wagner等人在本文引为参考的题为“AUTOMATIC GAIN CONTROL SYSTEM FOR A HIGH DEFINITIONTELEVISION RECEIVER(《用于高分辨率电视接收机的自动增益控制系统》)”的1993年8月10日授权的美国专利第5,235,424号中描述取QAM信号的实数与虚数样值的平方和的平方根来产生AGC信号。实际上,这是检测QAM信号包络的数字方法。
在图1-6的每一个DTV信号接收机中,混频器11与12对前置IF信号进行外差作用,以生成落入偏离零频率最多几个MHz的6MHz宽的频带中的最终中频信号的实与虚分量。混频器11输出信号中的最终中频信号的实分量利用低通滤波器13从其图像中分离出来,以便加到模数转换器14;混频器12输出信号中的最终中频信号的虚分量利用低通滤波器15从其图像中分离出来,以便加到模数转换器16。
在图1与2的DTV信号接收机中,混频器11中的交换由提供给它的第三本机振荡控制,而与第三本机振荡器17没有明显的相移,而混频器12中的转换利用由相移网络18相移90°的第三本机振荡进行控制。由最好是晶体控制振荡器的第三本机振荡器17提供第三本机振荡,而在固定频率上无明显的相位抖动。
在图1的DTV信号接收机中,同步检测器20采用同步程序来产生正交相位基带信号,从此基带信号中产生用于受控的第二本机振荡器8的自动频率与相位控制(AFPC)信号。同步检测器20包括数字乘法器21与22,接收最终IF信号载波的实与虚分量的数字样值,作为其各自的乘法器信号。同步检测器20还包括数字减法器23,此减法器23差分组合乘法器21与22相乘的输出信号,以生成同步检测器20作为其输出信号提供的正交相位基带信号。窄带带通数字滤波器19和29的响应作为乘法信号分别加到数字乘法器21与22。滤波器19与29是线性相位有限脉中响应(FIR)类型。滤波器19与29选择转换为最终IF频带的导频的实与虚分量,选择是在从DAC14与16提供的数字化的最终IF信号的实与虚分量中进行的。来自减法器23的差输出信号由于利用带通数字滤波器19与20的窄带导频提取滤波而在带宽上是窄的。作为同步检测器20输出信号提供的,来自减法器23的差信号利用数模转换器24转换为模拟形式,并随后利用AFPC滤波器25进行低通滤波,以生成用于受控的第二本机振荡器8的AFPC信号。
只读存储器(ROM)26与27分别存储用于数字化的最终IF信号载波的余弦查找表(LUT)和正弦查找表。ROM26与27从抽样控制电路30中的样值计数器接收输入地址,样值计数器的操作在此说明书中将进一步结合附图详细进行解释。ROM26存储用于数字化的最终IF信号载波的余弦查找表,而ROM27存储用于数字化的最终IF信号载波的正弦查找表。ROM26与27提供最终IF信号载波的实与虚分量的数字样值,作为加到数字乘法器21与22的其各自的乘法器信号。ROM26与27在数字方式中作为最终或最后的本机振荡器操作。
图2DTV信号接收机不同于图1的地方在于产生用于受控的第二本机振荡器8的AFPC信号的方式。同步检测器20分别直接从DAC14与16中接收数字化最终IF信号的实与虚分量,而不利用带通数字滤波器19与20进行窄带导频提取滤波。同步检测器20的宽带操作使其输出信号适于从中提取码元频率。因此,同步检测器20输出信号经过连线28提供给抽样控制电路30,在控制电路30中提取码元频率。
在图1-4的DTV数字接收机中,同步检测器40采用用于产生同相基带信号的同步程序。同步检测器40包括数字乘法器41和42,接收从DAC14与16提供的数字化最终IF信号的实与虚分量,作为其各自的乘法信号。同步检测器40还包括数字加法器43,它相加地组合乘法器41与42的乘积输出信号,以便生成同步检测器40作为其输出信号提供的同相基带信号。由ROM26与27提供的最终IF信号的实与虚分量的数字样值加到数字乘法器42与41,作为其各自的乘法器信号,以便采用用于产生同相基带信号的同步程序。
同步检测器40提供同相基带信号给均衡器44。图1-4表示在码元解码元前构成完整频谱滤波器时的均衡器44,然而,此完整的频谱滤波器可包括其他数字滤波单元,特别是梳状滤波器,用于抑制NTSC同频道干扰的人为产物。数字去交错器45将均衡器44响应转换为并行流,以便加到格形解码器电路46。格形解码器电路46常规地使用12个格形解码器。格形解码结果从格形解码器电路46提供给将格形解码器电路46输出信号转换为里德一索洛蒙(Reed-Solomon)纠错编码字节以便加到Reed-Solomn解码器电路48的字节组合器(assembler)47,Reed-Solomn解码器电路48执行Reed-Solomon解码,以便生成纠错字节流。如在用于场测试ATSC数字电视标准的DTV接收机中一样,纠错字节提供给数据去随机函数发生器(de-randomizer)(未示出)和接收机的其余部分(也未示出)。
同步检测器40的宽带操作,使其输出信号适于从中提取码元频率。因此,在图1与3的DTV信号接收机中,同步检测器40输出信号经过连线49提供给抽样控制电路30,在抽样控制电路30中提取码元频率。在图1与3的DTV信号接收机中,经过数字带通滤波器19与29的等待时间或延迟必须在从ADC14与16至乘法器41与42的连线中进行补偿,以便与用于提供乘法器信号给同步检测器20中的乘法器21与22相同的余弦与正弦查找表,能用于提供乘法器信号给同步检测器40中的乘法器42与41。这些补偿延迟能利用也在实现带通滤波器19与29中使用的抽头延迟线部分来提供。
图3与4的DTV数字接收机和图1与2中的DTV数字接收机的不同之处在于:受控的本机振荡器8利用最好是晶体控制振荡器的固定频率类型的第二本机振荡器08来替代。图3与4的DTV信号接收机和图1与2的接收机的不同之处还在于:固定频率类型的AFPC第三本机振荡器17与有关的90°相移网络18一起省去(dispensed)。而通过对多输出分频电路51中的受控振荡器50的振荡进行分频来提供0°与90°定相的前置本机振荡。受控振荡器50从AFPC滤波器26中接收AFPC信号。此外,图3的DTV信号接收机在构造上类似于图1的DTV信号接收机,并且图4的DTV信号接收机在构造上类似于图2的DTV信号接收机。
设计用于接收未伴有导频的QAM DTV信号的图5与6的数字信号接收机一般类似于设计用于接收伴有导频的VSB AM DTV信号的图2与4的数字信号接收机。在图5的接收机中,受控的第二本机振荡器8的AFPC信号利用Costas环路方法产生。数字乘法器52将同步检测器20的正交相位基带响应乘以同步检测器40的同相基带响应,所得到的乘积提供给DAC24作为其输入信号。AFPC滤波器25将DAC24输出信号的直流分量和低频交流分量作为AFPC信号提供给受控的第二本机振荡器8。图6的接收机采用Costas环路方法来产生受控振荡器50的AFPC信号。数字乘法器52将同步检测器20的正交相位基带响应乘以同步检测器40的同相基带响应,所得到的乘积提供给DAC24作为其输入信号。AFPC滤波器25将DAC24输出信号的直流分量和低频交流分量作为AFPC信号加到受控的振荡器50。
在图5与6的数字信号接收机中,单元126、127、130、144、145、146、147和148一般类似图1-4的数字信号接收机中的单元26、27、30、44、45、46、47和48。只读存储器126和127与ROM26和27的不同之处在于:它们存储中频道载波在频率变换为最终IF频带时的余弦和正弦查找表,而不存储来自TV传输频道的较低极限频率的载波310KHz的在频率变换为最终IF频带时的余弦和正弦查找表。
图5与6中的抽样控制电路130接收DAC24对乘法器52乘积的响应,以便进行滤波来恢复码元频率。抽样控制电路130在此方面与抽样控制电路30不同,抽样控制电路30从同步检测器20接收同相基带响应,或从同步检测器40接收正交相位基带响应,以便进行平方、数模转换和滤波来恢复码元频率。
均衡器144对来自同步检测器20的同相基带响应和来自同步检测器40的正交相位基带响应进行操作,而不是根据图1-4的DTV信号接收机中的均衡器44来仅对同步检测器20的同相基带响应进行操作。由于NTSC同频道干扰的人为产物在QAM DTV信号接收中具有不同的频谱特性,用于QAM DTV信号的格形解码器电路146不可以根据图1-4的格形解码器电路46在12相位基础上进行操作。在这种情况中,去交错器145具有与去交错器45不同的设计,或将它们一起省去,并且字节组合器147具有与字节组合器47不同的设计。如果Reed-Solomon解码器电路148具有与Reed-Solomon解码器电路48不同的设计,则字节组合器147也具有与字节组合器47不同的设计。
图7表示构造转换混频器11和其后面的低通滤波器13的一种特定方式。转换混频器12和其后的低通滤波器15具有与转换混频器11和其后的低通滤波器13相同的结构,转换混频器11和12最好构造在一块单片集成电路(IC)内,以便于实现这样相同的结构。直流电压源53-56代表此IC上内部电压源电路,这样的内部电压源电路的设计对于模拟IC设计者是公知的。电压总线57传送提供给IC的正操作电位,而接地连接是传送提供给IC的负操作电位的电压总线,根据习惯将电位加在IC的基底上。转换混频器11与12从同一源58接收前置IF信号输入,但每个混频器具有各自的推挽式本机振荡器信号源59和60。由转换混频器12中的源59和60提供的本机振荡器信号与转换混频器11中的源59和60提供的本机振荡器信号正交。在每一个转换混频器11与12中,前置IF信号由差分输入放大器放大,此放大器包括发射极耦合的NPN双极晶体管对61与62、在晶体管61与62发射极之间的电阻63、NPN双极晶体管64及其作为晶体管61发射极的恒定电流汇点(sink)连接的发射极衰减电阻65和NPN双极晶体管66及其作为晶体管62发射极恒定电流汇点连接的发射极衰减电阻67。晶体管61与62的集电极连到电压总线57,每个连接交替地是直接连接和通过混频器输出负载电阻68的连接。电阻63提供给晶体管61与62的发射极衰减使混频器转换增益稳定,使之比率固定到电阻68与63的电阻比。
更具体地,晶体管61的集电极连到NPN双极晶体管69与70的连接在一起的发射极,晶体管69与70的集电极分别直接地和通过混频器输出负载电阻68连到电压总线57。并且,晶体管62的集电极连到NPN双极晶体管71与72的连接在一起的发射极,晶体管71与72的集电极分别直接地和通过混频器输出负载电阻68连到电压总线57。本机振荡器信号源59连在节点73与节点74之间,晶体管69与72的基极连到节点73,而晶体管70与71的基极连到节点74。
在从源59和60提供的本机振荡器信号相对于节点73上的电压来正向升高节点74上的电压时,晶体管69和72加偏压使之进入不导通,而晶体管70和71加偏压使之进入导通,以便经过电阻68从电压总线57提供晶体管61的集电极电流需求,并直接从电压总线57提供晶体管62的集电极电流需求。混频器输出负载电阻68两端所得到的电压波动相对源58的前置IF信号输入呈现逆增益。
在从源59与60提供的本机振荡器信号相对于节点74上的电压来正向升高节点73上的电压时,晶体管70与71加偏压使之进入不导通,而晶体管69和72加偏压使之进入导通,以便直接从电压总线57提供晶体管61的集电极电流需求,并经过电阻68从电压总线57提供晶体管62的集电极电流需求。混频器输出负载电阻68两端所得到的电压波动相对源58的前置IF信号输入呈现非逆增益。
为了实现匹配混频器11与12的转换增益,每个混频器的两个转换状态应呈现相等的持续时间。例如,这能通过有区别地驱动来自调谐变压器的中心抽头次级绕组的节点73、74来安排,该调谐变压器的初级绕组接收足以保证每个转换状态180°持续时间的幅度的正弦本机振荡。
图7的转换混频器采用作为电压跟随器连接的NPN双极晶体管75,用于将表示混频器输出负载电阻68两端电压下降的信号加到后面的低通滤波器,以抑制图像信号。为了保持电压跟随器晶体管75发射极的源阻抗在输出信号电压波动的整个范围上为低,这个发射极跟随器晶体管具有并联可调(shunt regulated)负载。晶体管75的集电极电流使其中的集电极电阻76两端电压下降,这个下降通过电压转换网络加到作为并联调节器起作用的NPN双极晶体管77的基极。由并联调节器晶体管77所要求的来自跟随器晶体管75发射极的集电极电流递增,以响应要减少的晶体管75导通的任何趋势,这是因为电阻76两端的压降减少,以使晶体管77的基极电压升高。用于将电阻76两端的下降电压加到晶体管77的基极的电压转换网络,包括作为发射极跟随器连接的NPN双极晶体管78、晶体管78发射极与晶体管77基极之间的降压电阻79以及具有发射极衰减电阻81的NPN双极晶体管80,连接晶体管80是为满足恒定的集电极电流流过降压电阻79,以增加其两端的电压降。
保持电压跟随器晶体管75发射极的源阻抗在输出信号电压波动整个范围内为低,有助于跟随着混频器的低通滤波器设计为“零”源阻抗,以便从电压跟随器晶体管75中驱动串联电感线圈。这避免有关对低通滤波器转移特性有任何明显影响的IC中实际电阻值的不确定性。图7表示低通滤波器,包括具有串联分支电感器82、分路(shunt)电容器83和终端电阻84的单个LC部分。当然,可选择地使用多部分(section)LC滤波器,低通滤波器可以是Butterworth类型的。根据图7的转换混频器能用呈现良好定义的转换增益的其他类型的转换混频器替换,以便能构造具有匹配特性的一对转换混频器。
图8表示如何从多个逐次二进制近似类型的分件(component)ADC中构造多相位模数转换器(ADC)。优选地,在图1-6的任何一个DTV信号接收机中每个ADC14与16是类似于其他ADC的多相位类型的。图8表示利用顺序地和循环地抽样作为低通滤波器13或15之一的响应提供的模拟最终IF信号的一组86的24个分件ADC,即86A、86B、86C、86D、86E、86F、86G、86H、86J、86K、86L、86M、86N、86P、86Q、86R、86S、86T、86U、86V、86W、86X、86Y、86Z的24相位ADC。每个均是逐次二进制近似类型的APC86A、86B、86C、86D、86E、86F、86G、86H、86J、86K、86L、86M、86N、86P、86Q、86R、86S、86T、86U、86V、86W、86X、86Y、86Z以串行比特形式提供其各自的输出信号;并且串行输入/并行输出寄存器组87,即87A、87B、87C、87D、87E、87F、87G、87H、87J、87K、87L、87M、87N、87P、87Q、87R、87S、87T、87U、87V、87W、87X、87Y、87Z将这些各自的输出信号转换为并行比特形式。这些24相位并行比特ADC响应提供给交错器88,交错器88一起时分复用这些响应,以模拟单相位快速转换器的响应。
图8也表示包括在图1-4的DTV信号接收机的抽样控制电路30与图5与6的DTV信号接收机的抽样控制电路130中的单元89-92,并且如同在那些接收机中的ADC14与16共同使用的一样。二进制计数器89用于计数每个连续时间周期中的样值,该样值以至少两倍的码元速率出现,以满足用于抽样的Nyquist(奈奎斯特)准则而不丢失信息。这些连续时间周期的每个周期假定具有12个码元出现时间或其多倍数的时长,使得能通过解码样值计数器89的样值计数来控制格形解码器电路46的常规12相位操作(如在此说明书中在图9的详细描述中进一步描述的)。用于模数转换的相位数量影响这些连续时间周期必须具有的时长,所以能通过解码样值计数器89的样值计数来控制多相位模数转换。样值计数器89的样值计数的解码用于确定在模数转换的每个相位中所取的输入样值的定时和时长,并且根据样值计数器89中的计数条件,来计时利用多相位模数转换电路的每个分件ADC的逐次二进制近似。进行逐次二进制近似的速率能低于输入抽样速率,如果转换相位数量足够大的话。
优选以两倍于码元速率的速率进行24相位模数转换,除了能以与码元速率相同的逐次近似速率获得12或更多比特的ADC分辨率的事实之外,还部分地在以下事实上发现的:样值计数器89达到整个计数值的时间周期能具有仅12个码元出现时间的时长。易于通过解码设计为在12个码元出现时间的时长期间达到整个计数值的样值计数器89的样值计数,来控制以两倍码元速率的速率所进行的12相位模数转换。这能利用与码元速率相同的逐次近似速率达到,假定ADC比特分辨率要求是11或更低的话。较高比特分辨率实际要求是两倍码元速率的逐次近似速率,这增加ADC功耗几乎四倍。在保持与码元速率相同的逐次近似速率的同时,加倍转换相位数量为24,大体上加倍整个ADC功耗,而不是四倍于整个ADC功耗。
可能考虑利用与码元速率相同的逐次近似速率来以两倍于码元速率的速率进行16相位模数转换。这样的16相位模数转换利用设计为在48码元出现时间,而不是仅12码元出现时间,的时长期间达到整个计数值的样值计数器89实现。ADC硬件和功耗中的节省可以证明增加用于计时ADC操作的解码器的复杂性是有理由的。
利用与码元速率相同的逐次近似速率,以两倍于码元速率的速率进行的12相位模数转换能进行修改,以便利用快速转换而不是逐次二进制近似获得较低有效位。这能在仅节省快速转换的大量功率的同寸,得到高达12比特或更高的比特分辨率。
在图8(与9)中,电路90组合码元相位误差信号与样值计数器89的样值计数,以生成用于寻址图1-4的DTV信号接收机中的ROM26与27的已调样值计数。类似于S.U.H.Qureshi在1976年12月IEEE Transactions onCommunications(IEEE通信学报)第1326-1330页的文章“Timing Recoveryfor Equalized Partial-Response Systems(《均衡的局部响应系统的时间恢复》)”中所述的与脉中幅度调制(PAM)信号一起使用的方法,能用于从图1-4的DTV信号接收机中的均衡器44响应中生成码元相位误差信号。
可选择地,在图8(与10)中,电路90组合码元相位误差信号与样值计数器89的样值计数,以生成用于寻址图5与6的DTV信号接收机电的ROM126与127的已调样值计数。1992年5月19日授予A.D.Kucar的题为“METHOD AND APPARATUS FOR CARRIER SYNCHRONIZATION ANDDATA DETECTION(《载波同步和数据检测的方法和装置》)”的美国专利5,115,454号描述适于在QAM DTV信号接收机中使用的几种类型的码元时钟旋转(Symboc-clock-rotation)检测器,并描述这些类型的检测器中某些类型的检测器的种类背景文献。这些码元时钟旋转检测器中一个特定检测器195能安排在图5与6的任一个DTV信号接收机中,以生成对均衡器144响应应答的码元相位误差信号。
在图8中,解码器组91响应来自计数器89的各种样值计数值,用于计寸ADC 86A、86B、86C、86D、86E、86F、86G、86H、86J、86K、86L、86M、86N、86P、86Q、86R、86S、86T、86U、86V、86W、86X、86Y、86Z的连续输入抽样时间。来自计数器89中的一级的较低有效位的触发对这些ADC的每一个ADC及其串入/并出寄存器87A、87B、87C、87D、87E、87F、87G、87H、87J、87K、87L、87M、87N、87P、87Q、87R、87S、87T、87U、87V、87W、87X、87Y、87Z的串行负载中的连续二进制近似程序进行计时,这些ADC各自提供串行位输入信号给这些寄存器。解码器组92响应来自计数器89的各种样值计数值,用于由交错器88控制对SIPO寄存器87A、87B、87C、87D、87E、87F、87G、87H、87J、87K、87L、87M、87N、87P、87Q、87R、87S、87T、87U、87V、87W、87X、87Y、87Z的连续轮询(polling)以便时分复用24相位ADC结果来生成数字最终IF信号。
在ADC14情况中,这个数字最终IF信号提供给数字乘法器21和41;在ADC16情况中,这个数字最终IF信号提供给数字乘法器22和42。由于交错器88时分复用输出信号由并行位数字样值组成,数字乘法器21、22、41与42最好实施为只读存储器,以适应高样值通过速率。
在本发明的替换实施例中,利用乘法器21、22、41与42实现的单相位乘法程序能以24相位乘法程序替代。在此程序中每个乘数相位包括从各自一个ADC 86A、86B、86C、86D、86E、86F、86G、86H、86J、86K、86L、86M、86N、86P、86Q、86R、86S、86T、86U、86V、86W、86X、86Y、86Z接收串行位输入,作为与从一个数字载波ROM26、27、126、127加载到被乘数寄存器的被乘数信号相乘的乘数信号的数字乘法器。利用串入/并出寄存器87A、87B、87C、87D、87E、87F、87G、87H、87J、87K、87L、87M、87N、87P、87Q、87R、87S、87T、87U、87V、87W、87X、87Y、87Z的串行位至并行位的转换,则被延迟到在利用修改的减法器23的24相位减法或在利用修改的加法器43的24相位加法之后进行,这与前面描述的本发明实施例相比,使所要求的串入/并出寄存器数量减少。利用逻辑计算的乘法以单个相位计算所要求的速率的1/24的速率进行,节省了相当大的功率。
图9更详细地表示如何在图1-4的DTV信号接收机中利用12个诸如U.S.专利5,636,251中所述的一种公知形式的格形解码器46A、46C、46E、46G、46J、46L、46N、46Q、46S、46U、46W、46Y在12相位基础上实现格形编码器电路46。格形编码器可以是使用“软”解码的类型,诸如由Viterbi所述的,或可以是使用利用具有固定边界值的数据限制器的“硬”解码的类型。格形解码器46A、46C、46E、46G、46J、46L、46N、46Q、46S、46U、46W、46Y分别从去交错器45内的锁存电路45A、45C、45E、45G、45J、45L、45N、45Q、45S、45U、45W、45Y接收各自的输入信号。去交错器45内的这组12个锁存电路连续地和循环地锁存暂时存储12码元时长的均衡器44响应样值的交错样值,从而实现2∶1抽取程序。这12个锁存电路的锁存指令是由响应于样值计数器89所提供的合适的样值计数值的解码器组93来产生的。格形解码器46A、46C、46E、46G、46J、46L、46N、46Q、46S、46U、46W、46Y将它们各自的格形解码结果提供给字节组合器47。字节组合器47交错格形解码结果,并从交错的格形解码结果中建立字节,以便用到纠错Reed-Solomon解码器电路48。利用字节组合器47内的多路复用器完成用于建立字节的格形解码器46A、46C、46E、46G、46J、46L、46N、46Q、46S、46U、46W、46Y的格形解码结果的轮询,这些多路复用器由响应于样值计数器89所提供的合适样值计数值的解码器组94来控制。
图10更详细地表示在图5与6的DTV信号接收机中如何利用12个诸如美国专利5,636,251号中所述的一种公知类型的格形解器146A、146C、164E、146G、146J、146L、146N、146Q、146S、146U、146W、146Y在12相位基础上实现格形编码器电路146。格形编码器可以是使用“软”解码的类型,诸如由Viterbi所述的,或可以是使用利用具有固定边界值的数据限制器的“硬”件解码的类型。格形解码器146A、146C、164E、146G、146J、146L、146N、146Q、146Q、146S、146S、146U、146W、146Y分别从去交错器145内的锁存电路145A、145C、145E、145G、145J、145L、145N、145Q、145S、145U、145W、145Y接收各自的输入信号。去交错器145内的这组12个锁存电路连续地和循环地锁存暂时存储12码元时长的均衡器144响应的样值。这12个锁存电路的锁存指令是由响应于样值计数器89所提供的合适的样值计数值的解码器组193来产生的。格形解码器146A、146C、164E、146G、146J、146L、146N、146Q、146S、146U、146W、146Y提供它们各自的格形解码结果给字节组合器147。字节组合器147交错格形解码结果,并从交错的格形解码结果中建立字节,以便用到纠错Reed-Solomon解码器电路148。利用字节组合器147内的多路复用器完成用于建立字节的格形解码器146A、146C、164E、146G、146J、146L、146N、146Q、146S、146U、146W、146Y的格形解码结果的轮询,这些多路复用器由响应于样值计数器89所提供的合适样值计数值的解码器组194进行控制。
均衡器144的实与虚响应在图10的DTV信号接收机中独立进行码元解码。可选择地,可采用复合码元,并且不对实分量与虚分量进行一维格形解码,而能在两维基础上完成格形解码。
图11表示如何构造抽样控制电路30的细节。以码元速率的倍数的频率振荡的主振荡器31,在被控制响应自动频率与相位控制(AFPC)信号时,提供其振荡给过零(zero-crossing)检测器32,过零检测器32检测横过其平均值坐标轴的振荡,以产生作为要进行计数的输入信号提供给样值计数器89的脉中。此样值计数的四个最高有效位假定是码元周期的二进制编码的模12计数值,第四最高有效位以码元速率触发,这个第四最高有效位由数模转换器33转换为模拟信号,以便作为方波载波提供给同步检测器34,同步检测器34将提取的码元频率信号与基带信号同步,此后由自动频率与相位控制滤波器35进行低通滤波,以生成主振荡器31的AFPC信号。
在图1-4的DTV信号接收机中,提供给同步检测器34的提取的码元频率信号从数字乘法器36提供的乘积输出信号中产生。数字乘法器36安排为对同步程序的基带结果进行平方。优选地,正交相位同步程序的基带结果从减法器23中获得,以便于由乘法器36进行平方,因为这些基带结果未伴有通过检测DTV信号的导频产生的直流分量。可选择地,同相同步程序的基带结果从加法器43中获得,以便于由乘法器36进行平方。适于不从逻辑电路中构造数字乘法器36,而相反地构造数字乘法器36成为存储平方结果的查找表的只读存储器。数模转换器37将数字乘法器36的乘积转换为提供给带通滤波器38的模拟信号,以便从中提取10.76MHz码元频率信号。带通滤波器38的响应作为锁定输入信号,提供给具有大致在10.76MHz码元频率上的固定振荡频率的注入锁相(inzection-lock)振荡器39,注入锁相振荡器39将其振荡与锁相输入信号同步,并提供恒定幅度提取的码元频率信号给同步检测器34,以便与基带同步,用于产生利用低通滤波器35分开的AFPC信号,以便提供给主振荡器31。
至于图5与6的DTV信号接收机,修改图11的电路,乘法器36由数字乘法器52代替,并且解码器组93与94由解码器组193与194代替。样值计数偏差校正电路90修改为190形式,其中码元相位差错检测器95由码元相位差错检测器195替代,即,例如,安排为响应于均衡器144的响应产生码元相位误差信号的,在美国专利5,115,454号中所述的一个码元时钟旋转检测器。

Claims (23)

1.一种用于数字电视信号接收机的电路,该接收机具有同步检测器、均衡器、抽样控制电路和码元解码器,所述电路包括:
调谐器,用于在频带中的不同位置上选择一个频道,该频道被分配用于根据电视信息的数字信号说明来传输幅度调制的无线电载波,并用于选择将所选频道转换为前置中频频带中的前置中频信号;
在第一定相和与所述第一定相正交的第二定相中提供的前置本机振荡源,用于与所述前置中频信号进行外差作用;
开关类型的第一与第二混频器,接收所述前置中频信号,以便与所述前置本机振荡进行外差作用,所述第一混频器根据在所述第一定相中提供的所述前置本机振荡进行转换,以便提供最终中频信号的实分量,并且所述第二混频器根据在所述第二定相中提供的所述前置本机振荡进行转换,以便提供所述最终中频信号的虚分量;
第一低通滤波器,将所述最终中频信号的所述实分量与其图象分开,以便在与基带最多偏移几个兆赫兹的最终中频带内产生第一低通滤波器响应;
第二低通滤波器,将所述最终中频信号的所述虚分量与其图象分开,以便在所述最终中频带内产生第二低通滤波器响应;
第一模数转换电路,用于数字化所述第一低通滤波器响应,以产生作为其输出信号的所述最终中频信号的所述实分量的数字化样值,所述第一模数转换电路包含数量为N的模数转换器,用于在N相位基础上数字化所述第一低通滤波器响应,N至少为1;
第二模数转换电路,用于数字化所述第二低通滤波器响应,以产生作为其输出信号的所述最终中频信号的所述虚分量的数字化样值,所述第二模数转换电路包含数量为N的模数转换器,用于在N相位基础上数字化所述第二低通滤波器响应;
用于以转换到所述最终中频频带的所述无线电载波频率来产生复合数字载波信号的电路;和
第一数字同步电路,响应于所述最终中频信号的所述实与虚分量的数字化样值,用于产生一个同相基带信号。
2.根据权利要求1的电路,其中N大于1。
3.根据权利要求2的电路,其中每个所述模数转换器是逐次二进制近似类型。
4.根据权利要求3的电路,其中每个所述模数转换器对不大于一半码元周期持续时间的输入样值进行数字化。
5.根据权利要求4的电路,其中N是24,并且其中每个所述模数转换器对一半码元周期持续时间的输入样值进行数字化。
6.根据权利要求1的电路,用于接收具有残留边带幅度调制,并伴有相同频率的未调导频波的无线电载波,所述电路包括:
线性相位有限冲激响应类型的第一数字带通滤波器,接收所述最终中频信号的所述实分量的所述数字化样值作为其输入信号,和提供其频率转换到所述最终中频带并与所述最终中频信号的所述实分量的其他部分分开的所述未调导频波的实分量的数字化样值,作为其输出信号;
线性相位有限冲激响应类型的第二数字带通滤波器,接收所述最终中频信号的所述虚分量的所述数字化样值作为其输入信号,和提供其频率转换到所述最终中频带并与所述最终中频信号的所述虚分量的其他部分分开的所述未调导频波的虚分量的数字化样值,作为其输出信号;
第二数字同步电路,响应于所述复合数字载波信号,和响应于所述第一与第二数字带通滤波器的所述输出信号,用于生成正交相位基带信号;
用于响应于所述正交相位基带信号而在低通滤波器中生成自动频率与相位控制信号的电路;
包括在所述调谐器中的振荡器,用于产生本机振荡信号,并将该信号提供给所述第二混频器;
频谱滤波器,提供对所述同相基带信号的响应;和
码元解码器电路,响应于所述频谱滤波器的响应。
7.根据权利要求6的电路,其中N大于1,并且其中每个所述模数转换器是逐次二进制近似类型。
8.根据权利要求7的电路,其中所述码元解码器电路包括:
数量为P的多个格形解码器,用于在P相位基础上格形解码所述频谱滤波器对所述基带信号的实分量的所述响应。
9.根据权利要求1的电路,用于接收具有残留边带幅度调制,并伴有相同频率的未调导频波的无线电载波,所述电路包括:
线性相位有限冲激响应类型的第一数字带通滤波器,接收所述最终中频信号的所述实分量的所述数字化样值,作为其输入信号;和提供其频率转换到所述最终中频带并与所述最终中频信号的所述实分量的其他部分分开的所述未调导频波的实分量的数字化样值,作为其输出信号;
线性相位有限冲激响应类型的第二数字带通滤波器,接收所述最终中频信号的所述虚分量的所述数字化样值,作为其输入信号;和提供其频率转换到所述最终中频带并与所述最终中频信号的所述虚分量的其他部分分开的所述未调导频波的虚分量的数字化样值,作为其输出信号;
第二数字同步电路,响应于所述复合数字载波信号,和响应于所述第一与第二数字带通滤波器的所述输出信号,用于生成正交相位基带信号;
用于响应于所述正交相位基带信号而在低通滤波器中生成自动频率与相位控制信号的电路。
包括于在所述第一与第二定相中提供的所述前置本机振荡源内的振荡器,所述振荡器使自动频率与相位控制响应于所述自动频率与相位控制信号;
频谱滤波器,提供对所述同相基带信号的响应;和
码元解码器电路,响应于所述频谱滤波器的响应。
10.根据权利要求9的电路,其中N是大于1,并且其中每个所述模数转换器是逐次二进制近似类型。
11.根据权利要求10的电路,其中所述码元解码器电路包括:
数量为P的多个格形解码器,用于在P相位基础上格形解码所述频谱滤波器对所述基带信号的实分量的所述响应,P等于N或是N的倍数。
12.根据权利要求1的电路,用于接收具有残留边带幅度调制,并伴有相同频率的未调导频波的无线电载波,所述电路包括:
第二数字同步电路,响应于所述复合数字载波信号,和响应于所述最终中频信号的所述实与虚分量的数字化样值,用于产生正交相位基带信号;
用于响应于所述正交相位基带信号而在低通滤波器中产生自动频率与相位控制信号的电路;
包括在所述调谐器内的振荡器,用于产生本机振荡信号,并将该信号提供给所述第二混频器;
频谱滤波器,提供对所述同相基带信号的响应;和
码元解码器电路,响应于所述频谱滤波器的响应。
13.根据权利要求12的电路,其中N大于1,并且其中每个所述模数转换器是逐次二进制近似类型。
14.根据权利要求13的电路,其中所述码元解码器电路包括:
数量为P的多个格形解码器,用于在P相位基础上格形解码所述频谱滤波器对所述基带信号的实分量的所述响应,P等于N或是N的倍数。
15.根据权利要求1的电路,用于接收具有残留边带幅度调制,并伴有相同频率的未调导频波的无线电载波,所述电路包括:
第二数字同步电路,响应于所述复合数字载波信号,和响应于所述最终中频信号的所述实与虚分量的数字化样值,用于产生正交相位基带信号;
用于响应于所述正交相位基带信号而在低通滤波器中产生自动频率与相位控制信号的电路;
包括于在所述第一与第二定相中提供的所述前置本机振荡源内的振荡器,所述振荡器使自动频率与相位控制响应于所述自动频率与相位控制信号;
频谱滤波器,提供对所述同相基带信号的响应;和
码元解码器电路,响应于所述频谱滤波器的响应。
16.根据权利要求15的电路,其中N大于1,并且其中每一个所述模数转换器是连续二进制近似类型。
17.根据权利要求16的电路,其中所述码元解码器电路包括:
数量为P的多个格形解码器,用于在P相位基础上格形解码所述频谱滤波器对所述基带信号的实分量的所述响应,P等于N或是N的倍数。
18.根据权利要求1的电路,用于接收具有正交幅度调制的无线电载波,所述电路包括:
第二数字同步电路,响应于所述复合数字载波信号,和响应于所述最终中频信号的所述实与虚分量的数字化样值,用于产生正交相位基带信号;
用于产生自动频率与相位控制信号的电路,以响应通过将所述同相基带信号与所述正交相位基带信号乘在一起所产生的乘积;
包括在所述调谐器内的振荡器,用于产生本机振荡信号,并将该信号提供给所述第二混频器;
频谱滤波器,用于提供所述同相基带信号和所述正交相位基带信号的同相和正交相位解调响应;和
码元解码器电路,响应于所述同相与正交相位解调响应。
19.根据权利要求18的电路,其中N大于1,并且其中每一个所述模数转换器是逐次二进制近似类型。
20.根据权利要求19的电路,其中所述码元解码器电路包括:
数量为P的多个格形解码器,用于在P相位基础上格形解码所述频谱滤波器对所述基带信号的实分量的所述响应,P等于N或是N的倍数。
21.根据权利要求1的电路,用于接收具有正交幅度调制的无线电载波,所述电路包括:
第二数字同步电路,响应于所述复合数字载波信号,和响应于所述最终中频信号的所述实与虚分量的数字化样值,用于产生正交相位基带信号;
用于产生自动频率与相位控制信号的电路,以响应通过将所述同相基带信号与所述正交相位基带信号相乘所产生的乘积;
包括于在所述第一与第二定相中提供的所述前置本机振荡源内的振荡器,所述振荡器使自动频率与相位控制响应于所述自动频率与相位控制信号;
频谱滤波器,用于提供对所述同相基带信号与所述正交相位基带信号的同相与正交相位解调响应;和
码元解码器电路,响应于所述同相与正交相位解调响应。
22.根据权利要求21的电路,其中N大于1,并且其中每一个所述模数转换器是逐次二进制近似类似。
23.根据权利要求22的电路,其中所述码元解码器电路包括:
数量为P的多个格形解码器,用于在P相位基础上格形解码所述频谱滤波器对所述基带信号的实分量的所述响应,P等于N或是N的倍数。
CN 98117833 1998-07-18 1998-07-18 用于数字电视信号接收机的电路 Expired - Fee Related CN1128530C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 98117833 CN1128530C (zh) 1998-07-18 1998-07-18 用于数字电视信号接收机的电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 98117833 CN1128530C (zh) 1998-07-18 1998-07-18 用于数字电视信号接收机的电路

Publications (2)

Publication Number Publication Date
CN1242674A CN1242674A (zh) 2000-01-26
CN1128530C true CN1128530C (zh) 2003-11-19

Family

ID=5225746

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 98117833 Expired - Fee Related CN1128530C (zh) 1998-07-18 1998-07-18 用于数字电视信号接收机的电路

Country Status (1)

Country Link
CN (1) CN1128530C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104065611A (zh) * 2013-03-15 2014-09-24 亚德诺半导体技术公司 用于在直接转换接收器中进行i/q不匹配缓解的电路架构

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA03009272A (es) * 2001-04-16 2004-02-12 Thomson Licensing Sa Un sistema de rastreo de fase.
CN1317875C (zh) * 2003-09-26 2007-05-23 南京Lg新港显示有限公司 载波复原装置
CN105828340B (zh) * 2010-06-22 2019-11-05 汤姆森特许公司 电视空白区中设备访问、启用和控制的方法和装置
CN115499024B (zh) * 2022-09-15 2024-03-15 香港科技大学 一种pam4信号接收机及其自适应均衡控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104065611A (zh) * 2013-03-15 2014-09-24 亚德诺半导体技术公司 用于在直接转换接收器中进行i/q不匹配缓解的电路架构
CN104065611B (zh) * 2013-03-15 2017-11-24 亚德诺半导体集团 用于在直接转换接收器中进行i/q不匹配缓解的电路架构

Also Published As

Publication number Publication date
CN1242674A (zh) 2000-01-26

Similar Documents

Publication Publication Date Title
JP3369359B2 (ja) 直交振幅変調/残留側波帯のモード選択のための虚数サンプル有無検出器を有するディジタル高解像度テレビジョン信号受信機
US6184942B1 (en) Adaptively receiving digital television signals transmitted in various formats
US5982820A (en) Bandpass phase tracker with hilbert transformation before plural-phase analog-to-digital conversion
KR0143116B1 (ko) 잔류 측파대 및 직각 진폭 변조 디지탈 고품위 텔레비젼 신호들을 수신하기 위한 무선 수신기
USRE38456E1 (en) Decimation of baseband DTV signals prior to channel equalization in digital television signal receivers
US6333767B1 (en) Radio receivers for receiving both VSB and QAM digital television signals with carriers offset by 2.69 MHz
US6545728B1 (en) Digital television receivers that digitize final I-F signals resulting from triple-conversion
CN1097388C (zh) 用于高清晰度电视接收机的数字残留边带检波器
US5999223A (en) System for controlling the operating mode of an adaptive equalizer within a digital TV signal receiver
US6512555B1 (en) Radio receiver for vestigal-sideband amplitude-modulation digital television signals
CN1185866C (zh) 电视接收机
JP2003518834A (ja) Atsc−hdtvトレリス復号器におけるntsc干渉排除のための切り詰め距離
US6526101B1 (en) Receiver for QAM digital television signals
KR19990007351A (ko) 기저대역 심블 코딩을 위한 다위상 아날로그-디지털 변환기를 구비한 디지털 텔레비젼 수신기
CN1128530C (zh) 用于数字电视信号接收机的电路
CN1141836C (zh) 无线电接收机
AU720014B2 (en) Decimation of baseband DTV signals prior to channel equalization in digital television signal receivers
US20040213358A1 (en) Radio receiver for receiving both VSB and QAM digital HDTV signals
CN1139249C (zh) 带有基带符号编码的多相模数转换的数字电视接收机
KR100251966B1 (ko) 3단 변환에 의한 최종 중간주파수 신호를 디지털화하는 디지털텔레비전 수신기
MXPA98005807A (en) Digital television receivers with analogue to digital conversion of polifase, coding of band symbols b
AU2266500A (en) Digital television signal receiver
MXPA98005805A (en) Password phase tracer with hilbert type transformation before converting analogue to digital of phases multip

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee