CN112844396A - 一种铜/铈镧复合氧化物纳米棒催化剂、制备方法及应用 - Google Patents

一种铜/铈镧复合氧化物纳米棒催化剂、制备方法及应用 Download PDF

Info

Publication number
CN112844396A
CN112844396A CN202011632627.0A CN202011632627A CN112844396A CN 112844396 A CN112844396 A CN 112844396A CN 202011632627 A CN202011632627 A CN 202011632627A CN 112844396 A CN112844396 A CN 112844396A
Authority
CN
China
Prior art keywords
composite oxide
copper
catalyst
cerium lanthanum
lanthanum composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011632627.0A
Other languages
English (en)
Other versions
CN112844396B (zh
Inventor
魏雪姣
周雅娟
陈靖雯
王慧琳
徐治远
吴泽颖
曹桂萍
壮亚峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Institute of Technology
Original Assignee
Changzhou Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Institute of Technology filed Critical Changzhou Institute of Technology
Priority to CN202011632627.0A priority Critical patent/CN112844396B/zh
Publication of CN112844396A publication Critical patent/CN112844396A/zh
Application granted granted Critical
Publication of CN112844396B publication Critical patent/CN112844396B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种铜/铈镧复合氧化物纳米棒催化剂、制备方法及应用,本发明铜/铈镧复合氧化物纳米棒催化剂的制备方法,操作步骤简单,制备条件容易控制,原料易得,反应过程中无有毒有害产物质产生,环保性好,为可控性合成铈镧复合氧化物材料基催化剂奠定了基础;本发明铜/铈镧复合氧化物纳米棒催化剂的制备方法所制备得到的铜/铈镧复合氧化物纳米棒催化剂,具有形貌均匀、结构稳定、催化反应性能优异的特点;本发明的铜/铈镧复合氧化物纳米棒催化剂,可以用作一氧化碳催化还原一氧化氮反应中的催化剂,在工业催化领域中具有较大的应用潜力。

Description

一种铜/铈镧复合氧化物纳米棒催化剂、制备方法及应用
技术领域
本发明属于大气污染净化技术领域,具体涉及一种铜/铈镧复合氧化物纳米棒催化剂、制备方法及应用。
背景技术
一氧化氮(NO)和一氧化碳(CO)来源于化石燃料的燃烧,是大气中的两种主要污染物。NO会造成臭氧层损耗和光化学烟雾,而CO对人体健康有不良影响[Z.Liang,et.al.,Appl.Energy 88(2011)1120–1129;Y.Yang,et.al.,Inorg.Chem.Commun.86(2017)74–77]。一般情况下,选择性催化还原(SCR)或催化氧化是消除NO或CO的常用方法,CO和NO存在于石油化工企业和发动机排放的尾气,因此,需要在催化剂的作用下,同时消除两种污染物。基于此背景下,由于NO和CO可以转化为无毒的N2和CO2成为研究的热点。
贵金属,如Au、Pd和Rh[A.Beniya et.al.,ACS Catal.7(2017)1369–1377;K.Tang,et.al.,ACS Appl.Mater.Interfaces 10(2018)13614–13624;M.Makkee,Yet.al.,ChemCatChem 9(15)(2017)2935–2938],是已知的CO还原NO的高效催化剂,具有较高的活性和氮气选择性。然而,价格昂贵、资源分布少及热稳定性差等因素阻碍了其大规模的应用。非贵金属催化剂是贵金属的理想替代品,因为它们成本低廉且易于获得。此外,CO还原NO反应是典型的结构敏感性催化剂,因此催化剂的形貌对催化效果起着重要作用,例如,不同形貌CeO2负载Co催化剂中,Cox/CeO2纳米棒由于其丰富的氧空位,因而具有比立方体和纳米颗粒更高的NO消除反应效率[L.Savereide,et.al.,J.Catal.366(2018)150–158]。在氧化物载体的研究中,铈(Ce)因为具有Ce3+和Ce4+两种化合态,可以在适当条件下进行氧化还原循环,即达到储氧和放氧的目的,而掺杂非等价的金属离子之后,因为电荷补偿机制会使得氧化铈晶格内更易形成带电荷的氧空位,从而使得掺杂后形成的固溶体或复合氧化物具有氧化铈晶格中流动氧特性,也具有掺杂原子氧化物的特性,从而从多方面提高催化剂反应活性及稳定性等目的。更值得注意的是,在稀土金属氧化物中,氧化镧的碱性要高于其他稀土金属氧化物,对于需要碱催化剂的实际工业反应具有重要开发研究意义。
目前,对单纯氧化铈负载铜基催化剂的研究已经较为成熟[L.Liu,et.al.,Catal.Today 175(2011)48–54],但目前对于将镧插入氧化铈晶格内形成铈镧固溶体后负载铜基催化剂的形貌可控性研究寥寥无几,因此,对此课题的研究显得尤为重要,该研究可以为多组分形貌可控性合成铈镧复合氧化物材料基催化剂以及该催化剂在CO还原NO反应中的性能研究提供重要科研基础。
基于上述问题,本发明旨在提供一种铜/铈镧复合氧化物纳米棒催化剂、制备方法及应用,以解决上述技术问题,并达到对实际工业催化剂需求做出进一步贡献的目的。
发明内容
本发明的目的在于,克服现有技术中存在的缺陷,提供一种铜/铈镧复合氧化物纳米棒催化剂、制备方法及应用,本发明铜/铈镧复合氧化物纳米棒催化剂的制备方法,操作步骤简单,制备条件容易控制,原料易得,反应过程中无有毒有害产物质产生,环保性好,为可控性合成铈镧复合氧化物材料基催化剂奠定了基础;本发明铜/铈镧复合氧化物纳米棒催化剂的制备方法所制备得到的铜/铈镧复合氧化物纳米棒催化剂,具有形貌均匀、结构稳定、催化反应性能优异的特点;本发明的铜/铈镧复合氧化物纳米棒催化剂,可以用作一氧化碳催化还原一氧化氮反应中的催化剂,在工业催化领域中具有较大的应用潜力。
为实现上述目的,本发明的技术方案是设计一种铜/铈镧复合氧化物纳米棒催化剂的制备方法,包括如下步骤:
S1:将铈镧复合氧化物纳米棒分散于铜盐水溶液中,得混合液;
S2:将步骤S1制备的混合液中加入沉淀剂,加热至40~80℃,搅拌老化1~10h;
S3:将步骤S2搅拌老化好的混合液依次经过滤、洗涤、干燥、焙烧,得铜/铈镧复合氧化物纳米棒催化剂。
优选的技术方案是,步骤S1中,所述铈镧复合氧化物纳米棒的直径范围为20~40nm、长度范围为200~400nm、比表面积为50~80g/m2,所述铜盐水溶液中的Cu2+离子浓度为0.1~0.5mol/L,Cu2+离子与铈镧复合氧化物纳米棒的质量投料比为3~10∶100。
进一步优选的技术方案还有,步骤S2中,所述沉淀剂为尿素,铈镧复合氧化物纳米棒与尿素的质量投料比为1∶1~10。
进一步优选的技术方案还有,步骤S3中,焙烧具体操作为:在300~500℃的空气氛围中焙烧1~6h。
本发明提供一种铜/铈镧复合氧化物纳米棒催化剂,采用上述的铜/铈镧复合氧化物纳米棒催化剂的制备方法制成。
为了确保上述铜/铈镧复合氧化物纳米棒催化剂的顺利应用实施,本发明提出一种上述的铜/铈镧复合氧化物纳米棒催化剂的应用,用作一氧化碳催化还原一氧化氮反应中的催化剂。
本发明的优点和有益效果在于:
1、本发明提出的一种铜/铈镧复合氧化物纳米棒催化剂的制备方法,操作步骤简单,制备条件容易控制,原料易得,反应过程中无有毒有害产物质产生,环保性好,为可控性合成铈镧复合氧化物材料基催化剂奠定了基础。
2、本发明一种铜/铈镧复合氧化物纳米棒催化剂的制备方法所制备得到的铜/铈镧复合氧化物纳米棒催化剂,具有形貌均匀、结构稳定、催化反应性能优异的特点。
3、本发明的一种铜/铈镧复合氧化物纳米棒催化剂,可以用作一氧化碳催化还原一氧化氮反应中的催化剂,在工业催化领域中具有较大的应用潜力。
附图说明
图1的a为实施例1中所制备铈镧复合氧化物纳米棒的XRD谱图;
图1的b为实施例2中所制备铜/铈镧复合氧化物纳米棒催化剂的XRD谱图,横坐标为角度2θ,单位为°(度),纵坐标为衍射强度,单位为a.u.(绝对单位);
图2的a为实施例1中所制备铈镧复合氧化物纳米棒的透射电镜图(TEM);
图2的b为实施例2中所制备铜/铈镧复合氧化物纳米棒催化剂的透射电镜图(TEM);
图3是实施例3中NO随反应温度的转化率变化图谱;
图4是实施例3中CO随反应温度的转化率变化图谱;
图5是实施例3中N2随反应温度的选择性变化图谱。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例1
制备铈镧复合氧化物纳米棒,包括如下步骤:
步骤1:取48g NaOH溶于150ml去离子水中,然后倒入200ml容量瓶中定容,得NaOH溶液;
步骤2:在20ml蒸馏水中加入1.22g六水硝酸铈和0.51g水合硝酸镧,搅拌至完全溶解,得铈/镧混合溶液;
步骤3:取60ml NaOH溶液加入步骤2配置的铈/镧混合溶液中,然后转移至水热反应釜中,水热反应温度为150℃,水热反应时间为18h,反应结束冷却至室温,抽滤,80℃干燥10h,将所得产品研磨后转移至马弗炉中,升温速率为2℃/min,500℃焙烧6h,马弗炉冷却后得到铈镧复合氧化物纳米棒。
采用日本JEOL 2100型透射电子显微镜观察实施例1制备的铈镧复合氧化物纳米棒,其透射电镜图参见图2的a,从图2的a中可以看出铈镧复合氧化物纳米棒成功制备,铈镧复合氧化物纳米棒长度范围为200~400nm,宽度范围(或直径范围)为20~40nm。
实施例1所制备的铈镧复合氧化物纳米棒的晶相结构由日本理学D/max 2500PC自转X-射线衍射仪分析,其中,X射线为Cu靶Kα电压40kV,电流100mA,步长为0.02°,扫描范围5~80°。铈镧复合氧化物纳米棒的X射线衍射图谱参见图1的a,由图1的a可知,铈镧复合氧化物纳米棒被成功合成,谱图中只出现氧化铈特征峰,未出现镧的氧化物特征峰,说明La成功插入氧化铈晶格内,形成铈镧复合氧化物结构。
实施例2
制备铜/铈镧复合氧化物纳米棒,包括如下步骤:
S1:称取实施案例1制备的1g铈镧复合氧化物纳米棒分散于300mL水中,然后加入10mL CuNO3水溶液(CuNO3水溶液中Cu2+离子的浓度为0.124mol/L),搅拌30min,得混合液;
S2:将步骤S1制备的混合液中加入3g尿素,加热至40℃后,在该温度下搅拌老化6h;
S3:将步骤S2搅拌老化好的混合液依次经过滤、洗涤后,70℃干燥12h,得到固体前体;将固体前体在450℃空气中焙烧2h,得铜/铈镧复合氧化物纳米棒催化剂,其中铜/铈镧复合氧化物纳米棒催化剂中Cu的担载量为5wt.%;铜/铈镧复合氧化物纳米棒催化剂的XRD谱图参见图1的b,表明铜/铈镧复合氧化物纳米棒催化剂被成功合成,谱图中只出现氧化铈特征峰,未出现镧的氧化物特征峰,说明La成功插入氧化铈晶格内,形成铈镧复合氧化物结构,且没有出现铜的衍射峰,表明铜高度分散在催化剂表面;铜/铈镧复合氧化物纳米棒催化剂的TEM图片参见图2的b,图2的b显示载体纳米棒的直径为20~40nm,长度为200~400nm,Cu纳米粒子的平均尺寸为2~3nm。
实施例3
将实施例2制备的铜/铈镧复合氧化物纳米棒催化剂用于一氧化碳催化还原一氧化氮的反应,具体操作为:在50~350℃的反应温度区间、反应气10.0vol.%NO/Ar及10.0vol.%CO/Ar,流速50mL/min条件下考察实施例2所制备的铜/铈镧复合氧化物纳米棒催化剂的反应性能,结果如图3~5所示,催化剂的NO、CO的转化率在350℃均达到100%,N2的选择性在350℃也达到100%,说明实施例2所制备的铜/铈镧复合氧化物纳米棒催化剂体现了优异的催化反应活性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种铜/铈镧复合氧化物纳米棒催化剂的制备方法,其特征在于,包括如下步骤:
S1:将铈镧复合氧化物纳米棒分散于铜盐水溶液中,得混合液;
S2:将步骤S1制备的混合液中加入沉淀剂,加热至40~80℃,搅拌老化1~10h;
S3:将步骤S2搅拌老化好的混合液依次经过滤、洗涤、干燥、焙烧,得铜/铈镧复合氧化物纳米棒催化剂。
2.如权利要求1所述的铜/铈镧复合氧化物纳米棒催化剂的制备方法,其特征在于,步骤S1中,所述铈镧复合氧化物纳米棒的直径范围为20~40nm、长度范围为200~400nm、比表面积为50~80g/m2,所述铜盐水溶液中的Cu2+离子浓度为0.1~0.5mol/L,Cu2+离子与铈镧复合氧化物纳米棒的质量投料比为3~10∶100。
3.如权利要求2所述的铜/铈镧复合氧化物纳米棒催化剂的制备方法,其特征在于,步骤S2中,所述沉淀剂为尿素,铈镧复合氧化物纳米棒与尿素的质量投料比为1∶1~10。
4.如权利要求3所述的铜/铈镧复合氧化物纳米棒催化剂的制备方法,其特征在于,步骤S3中,焙烧具体操作为:在300~500℃的空气氛围中焙烧1~6h。
5.一种铜/铈镧复合氧化物纳米棒催化剂,其特征在于,采用权利要求1~4任一项所述的铜/铈镧复合氧化物纳米棒催化剂的制备方法制成。
6.一种如权利要求5所述的铜/铈镧复合氧化物纳米棒催化剂的应用,其特征在于,用作一氧化碳催化还原一氧化氮反应中的催化剂。
CN202011632627.0A 2020-12-31 2020-12-31 一种铜/铈镧复合氧化物纳米棒催化剂、制备方法及应用 Active CN112844396B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011632627.0A CN112844396B (zh) 2020-12-31 2020-12-31 一种铜/铈镧复合氧化物纳米棒催化剂、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011632627.0A CN112844396B (zh) 2020-12-31 2020-12-31 一种铜/铈镧复合氧化物纳米棒催化剂、制备方法及应用

Publications (2)

Publication Number Publication Date
CN112844396A true CN112844396A (zh) 2021-05-28
CN112844396B CN112844396B (zh) 2023-04-07

Family

ID=75999939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011632627.0A Active CN112844396B (zh) 2020-12-31 2020-12-31 一种铜/铈镧复合氧化物纳米棒催化剂、制备方法及应用

Country Status (1)

Country Link
CN (1) CN112844396B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115999559A (zh) * 2022-12-27 2023-04-25 太原理工大学 一种低温co-scr和co催化氧化的双金属催化剂及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513105A (zh) * 2011-12-16 2012-06-27 中国科学院生态环境研究中心 一种制氢催化剂
CN103230803A (zh) * 2013-04-22 2013-08-07 汕头大学 铜基铈钴镧复合氧化物催化剂及其制备方法
JP2015208692A (ja) * 2014-04-24 2015-11-24 国立大学法人 名古屋工業大学 セリウム酸化物と銅とを含む触媒、およびその製造方法
CN107684911A (zh) * 2017-10-09 2018-02-13 中国科学技术大学 铜基纳米晶复合材料及其制备方法和应用
CN108178179A (zh) * 2018-01-31 2018-06-19 江苏大学 一种高温稳定的铈镧固溶体纳米棒制备方法及其作为催化剂载体的应用
CN110040760A (zh) * 2019-05-09 2019-07-23 常州大学 一种可控制备铈镧氧化物固溶体纳米棒的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513105A (zh) * 2011-12-16 2012-06-27 中国科学院生态环境研究中心 一种制氢催化剂
CN103230803A (zh) * 2013-04-22 2013-08-07 汕头大学 铜基铈钴镧复合氧化物催化剂及其制备方法
JP2015208692A (ja) * 2014-04-24 2015-11-24 国立大学法人 名古屋工業大学 セリウム酸化物と銅とを含む触媒、およびその製造方法
CN107684911A (zh) * 2017-10-09 2018-02-13 中国科学技术大学 铜基纳米晶复合材料及其制备方法和应用
CN108178179A (zh) * 2018-01-31 2018-06-19 江苏大学 一种高温稳定的铈镧固溶体纳米棒制备方法及其作为催化剂载体的应用
CN110040760A (zh) * 2019-05-09 2019-07-23 常州大学 一种可控制备铈镧氧化物固溶体纳米棒的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANGKANG LIU等: ""Research on SCR of NO with CO over the Cu0.1La0.1Ce0.8O mixed-oxide catalysts: Effect of the grinding"", 《JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115999559A (zh) * 2022-12-27 2023-04-25 太原理工大学 一种低温co-scr和co催化氧化的双金属催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN112844396B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN109794241B (zh) 一种氧化铈选择性包覆负载型钯催化剂及其制备方法
CN109174144B (zh) Ni3C@Ni核壳助催化剂和Ni3C@Ni/光催化剂复合材料及其制备方法与应用
CN106268787A (zh) 一种钐掺杂MnOx低温SCR催化剂及其制备方法和应用
CN108620113B (zh) 一种氮掺杂的碳-铈复合纳米片的制备方法
CN111097442B (zh) 一种烟气协同脱硝脱汞催化剂及其制备方法
WO2009094891A1 (fr) Catalyseur au cu-ce-al permettant d'enlever des particules de suie et du nox simultanément, et procédé de préparation associé
CN113209976A (zh) 一种甲醇水蒸气重整制氢用催化剂及其制备方法与应用、甲醇水蒸气重整制氢反应
CN113198490A (zh) 一种用于甲烷低温燃烧的负载钯钴合金催化剂及其制备方法
CN114405505A (zh) 一种铂修饰铟基氧化物催化剂及其制备方法和应用
CN114308053B (zh) 一种以高熵氧化物为活性组分的脱硝催化剂及其制备与应用
CN112844396B (zh) 一种铜/铈镧复合氧化物纳米棒催化剂、制备方法及应用
CN111375411B (zh) 单原子Cu/TiO2纳米线的制备方法
CN114471555A (zh) 一种低温高效双金属协同催化净化VOCs催化剂及制备方法
CN113262780A (zh) 高活性和高稳定性的锰基碳烟催化剂及其制备方法和应用
CN113134352B (zh) 一种催化氮氧化物直接分解的复合金属氧化物催化剂及其制备方法
CN113546659A (zh) 采用配位法的高分散CeCN-urea-N2材料及其制备方法和应用
CN113731407B (zh) 一种TiO2基贵金属催化剂及其制备方法和应用
CN113546622B (zh) 一种低温高活性催化氧化甲苯催化剂及其制备方法和应用
CN110813301A (zh) 一种高分散负载型钙钛矿催化剂及其制备方法和应用
CN115155559A (zh) 一种脱硝催化剂及其制备方法和用途
CN114160161A (zh) 一种用于CO和NO氧化的Pt-Fe双金属催化剂及其制备方法和应用
CN114272922A (zh) 一种应用于no直接分解的复合金属氧化物催化剂及其制备方法
CN106582638A (zh) 一种应用于NO+CO反应的(Au,Rh)‑Cex/Al2O3的制备方法
CN114618469A (zh) 一种负载型氧化锌催化剂及其制备方法与应用
CN106492793B (zh) 一种电子束辐照改性材料提高其催化脱硝活性的方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant