CN112843252A - 一种用于治疗肿瘤的复方制剂与制备方法 - Google Patents

一种用于治疗肿瘤的复方制剂与制备方法 Download PDF

Info

Publication number
CN112843252A
CN112843252A CN202110202546.5A CN202110202546A CN112843252A CN 112843252 A CN112843252 A CN 112843252A CN 202110202546 A CN202110202546 A CN 202110202546A CN 112843252 A CN112843252 A CN 112843252A
Authority
CN
China
Prior art keywords
liposome
adh
daunorubicin
preparation
ord
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110202546.5A
Other languages
English (en)
Inventor
何伟
李晓彤
乔治·费姆厐
肖青青
滕超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Pharmaceutical University
Original Assignee
China Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Pharmaceutical University filed Critical China Pharmaceutical University
Priority to CN202110202546.5A priority Critical patent/CN112843252A/zh
Publication of CN112843252A publication Critical patent/CN112843252A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6911Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于药物制剂领域,尤其涉及一种用于治疗肿瘤的复方制剂与制备方法。本发明设计的药物递送系统是由透明质酸(HA)‑化药前药和脂质体构成的杂化纳米粒。该递药系统中透明质酸(HA)‑化药作为前药能降低普通小分子化药的毒性,脂质体能提升包裹药物的稳定性。二者自组装形成杂化纳米粒能共同靶向至肿瘤部位实现精准联合治疗,利用两种药物的协同作用提升药物有效性的同时降低毒副作用,使治疗过程更安全有效。

Description

一种用于治疗肿瘤的复方制剂与制备方法
技术领域
本发明属于药物制剂领域,涉及一种药物共递送体系的构成及制备方法。
背景技术
化疗、放疗是癌症的常用临床疗法,但由于其副作用大,导致治疗体验差,为患者带来极大痛苦。药物递送系统(Drug delivery system,DDS)能克服传统疗法的众多缺点,在肿瘤、炎症等众多疾病中发挥重要作用。相比于传统给药形式,通过设计药物递送系统能赋予体系靶向性等不同功能,从而提升药物有效性同时降低毒副作用,使治疗过程更安全有效。此外通过递送系统的设计实现多种药物共递送也是目前的研究热点。近年来,一些利用DDS实现的药物治疗已经在国内外陆续上市,其中上市最多、技术最成熟的是脂质体体系。
脂质体是由磷脂双分子层包载药物的小泡,其结构与细胞高度相似,因此一直被密切关注。由于其具备稳定药物、毒性小、靶向递送等优点,在过去的50年中,脂质体已经在医学、食品工业等多个领域中发挥了重要作用。但是,普通脂质体只能通过被动靶向被运送至具备增强的渗透性和保留(Enhanced penetration and retention,EPR)效应的病理部位,提升脂质体的主动靶向能力从而实现精准治疗是近年来被关注的焦点。
目前国内外上市的脂质体产品主要递送单一化疗药物,或直接递送或通过PEG进行修饰,实现药物靶向递送。值得关注的是2017年美国食品药品监督管理局(FDA)批准了由柔红霉素和阿糖胞苷组成的固定脂质体复方制剂Vyxeos用于两类急性髓系白血病成人患者的治疗。这种1:5摩尔比柔红霉素和阿糖胞苷的脂质体制剂能够实现两种药物的协同治疗作用,相较于柔红霉素和阿糖胞苷7+3的标准治疗方案,其在主要终点总生存期上具有显著优势。但是,这种上市药物在通过静脉注射进入体循环后只能通过被动靶向蓄积至肿瘤部位,这种靶向方式的有效递送率不到1%。此外在体循环过程中,脂质体会发生药物泄露,从而导致严重的不良反应。由此我们希望通过建立一种新型药物递送系统,在保证两种药物能够发挥协同作用的同时,实现两种化疗药物更安全、有效的递送。
透明质酸(Hyaluronic acid,HA)是分布在结缔组织,上皮和神经组织中的阴离子非硫酸化糖胺聚糖。HA大量存在于肿瘤微环境(Tumor microenvironment,TME)中,是构成细胞外基质和细胞间质的主要成分,且能被体内存在的透明质酸酶降解,故其具备生物相容性和生物降解性,是安全的药物递送工具。此外,HA能与CD44受体结合,而CD44受体在肿瘤细胞中过表达。因此,基于HA设计前药能实现递送体系对肿瘤细胞具有理想的靶向性,能显著地促进化疗药物的胞吞。
鉴于HA的主动靶向作用,本发明设计出HA-化药前体药物。将前药与包载另一种化疗药物或能干扰肿瘤细胞进程等成分的脂质体进行自组装结合,制得共递送复方制剂。不仅能降低传统化药的毒性、提升药物稳定性,同时赋予递送体系主动靶向能力。
发明内容
本发明的主要目的是设计一种杂化药物共递送系统。该递药系统系将透明质酸(HA)-化药前药锚定于载药脂质体表面,实现药共递送。其次,本发明的另一目的是提供这种共递送体系的处方构成与制备方法,该方法工艺简单,制备过程可控制备所需材料易得,制备出的杂化纳米粒均匀稳定。
一种复方制剂,其特征在于包括HA-化药前药以及脂质体。
所述的复方制剂,其特征在于,所述的脂质体是普通脂质体或智能型脂质体。
所述的复方制剂,其特征在于,所述的HA-化药前药与脂质体通过自组装形成杂化纳米粒。
所述的复方制剂的制备方法,其特征在于,将HA-化药前药与脂质体混合,在室温下涡旋震荡1min,制备出杂化纳米粒。
所述的制备方法,其特征在于,HA-化药前药与脂质体的质量比范围为1:2至1:100。
所述的制备方法,其特征在于,所述的前药为柔红霉素,其中HA-ADH-柔红霉素与阿糖胞苷脂质体中,柔红霉素与阿糖胞苷的质量比为1:3至1:100
所述的制备方法,其特征在于,前药为ORD,其中HA-ORD与Caspase 3脂质体中,ORD与Caspase 3的质量比为25:1至1:100。
具体而言:以HA-ADH-柔红霉素/阿糖胞苷脂质体、HA-冬凌草甲素(HA-ORD)/Caspase 3脂质体为例)
其具体制备步骤如下
1、HA-ADH-柔红霉素的制备
为了提升HA的反应能力,首先将HA与己二酸二酰肼(ADH)结合形成HA-ADH,随后将柔红霉素与HA-ADH结合,实现HA-ADH-柔红霉素的合成制备
1)将200mg透明质酸(35kDa)溶解于40mL纯化水,得到HA溶液;
2)于搅拌条件下将436mg ADH以及48mg 1-乙基-3(3-二甲基丙胺)碳二亚胺(EDCI)加入上述HA溶液;
3)将上述溶液用盐酸调节pH至4.75,持续搅拌10h;
4)检测溶液pH,若发生变化则重新调整pH至4.75,持续搅拌2h;
5)将上述溶液用氢氧化钠溶液调节pH至7.0,完成HA-ADH制备过程;
6)收集上述HA-ADH反应产物,将其置于截留分子量为3500的透析袋中,于纯化水环境透析48h,每12小时更换一次透析介质;
7)收集透析产物并冻干,所得产物为HA-ADH。
8)将110mg HA-ADH溶解于30mL浓度为2mM、pH为6.5的磷酸缓冲液中;
9)向上述HA-ADH溶液中逐滴加入2mL浓度为2mg/mL的柔红霉素溶液;
10)将上述溶液用氢氧化钠溶液调节pH至6.5,持续搅拌2h。
11)收集上述HA-柔红霉素反应产物,将其置于截留分子量为3500的透析袋中,于浓度为2mM、pH为7.8的磷酸缓冲液环境透析48h,每12h更换一次透析介质;
12)收集透析产物并冻干,所得产物为HA-ADH-柔红霉素。
2、阿糖胞苷脂质体的制备
1)将30mg大豆卵磷脂溶解于12mL三氯甲烷,于45℃条件下旋转蒸发1h,形成磷脂薄膜;
2)将20mg阿糖胞苷溶解于5mL磷酸缓冲液(pH 6.8),将其加入上述磷脂薄膜中,于45℃条件下旋转混合40min;
3)将上述混合液于200W功率条件下探头超声10min,完成阿糖胞苷脂质体的制备。
3、HA-ADH-柔红霉素/阿糖胞苷脂质体杂化纳米粒的制备
1)将90mg HA-ADH-柔红霉素溶解于4mL纯化水;
2)取4mL阿糖胞苷脂质体,将上述4mL HA-ADH-柔红霉素逐滴加入,涡旋混合1min,完成HA-ADH-柔红霉素/阿糖胞苷脂质体杂化纳米粒的制备。
本发明中,步骤1-3)中的盐酸溶液浓度为1mol/L;步骤1-5)和步骤1-10)中的氢氧化钠溶液浓度为0.1mol/L。
4、HA-ORD的制备
1)将120mg HA溶解于5mL纯化水;
2)称取12.5mg DCC,5mg DMAP,加入HA溶液中,水浴超声5min,使之成为乳白色;
3)向上述反应中加入5mL DMSO,搅拌条件下反应1h。
4)将27mg ORD溶于5mL DMSO,加入上述反应体系,避光反应12-18h。
5)收集上述HA-ORD反应产物,将其置于截留分子量为3500的透析袋中,于纯化水环境透析48h,每12h更换一次透析介质;
6)收集透析产物并冻干,完成HA-ORD的制备。
5、Caspase 3脂质体的制备
1)将30mg大豆卵磷脂溶解于12mL三氯甲烷,于45℃条件下旋转蒸发1h,形成磷脂薄膜,加入12mL乙醚将磷脂膜溶解;
2)将0.16mg Caspase 3溶解于4mL磷酸缓冲液(pH 7.4),将其加入上述磷脂薄膜乙醚溶液中。在冰浴条件下水浴超声2min,使其成为乳状;
3)于常温条件下旋转蒸发45min,抽出乙醚;
4)将上述制剂于200W功率条件下探头超声10min,完成Caspase 3脂质体的制备。
6、HA-ORD/Caspase 3脂质体杂化纳米粒的制备
1)称取20mg HA-ORD溶解于2mL纯化水。
2)取2mL Caspase 3脂质体,将上述2mL HA-ORD逐滴加入,涡旋混合1min,完成HA-ORD/Caspase 3脂质体杂化纳米粒的制备。
有益效果
1、本发明设计的药物递送系统是由透明质酸(HA)-化药前药和脂质体构成的杂化纳米粒。该递药系统中透明质酸(HA)-化药作为前药能降低普通小子化药的毒性,脂质体能提升包裹药物的稳定性。二者自组装形成杂化纳米粒能共同靶向至肿瘤部位实现精准联合治疗,利用两种药物的协同作用提升药物有效性的同时降低毒副作用,使治疗过程更安全有效。
2、本发明的注射用HA-化药前药、脂质体共递送系统具有制备工艺简单、制备过程可控等优点。
附图说明
图1为实施例1所制得的HA-ADH(A)及HA-ADH-柔红霉素(B)的1H NMR光谱图片;由图中可见,HA-ADH及HA-ADH-柔红霉素均成功结合。
图2为实施例2所制得的阿糖胞苷脂质体(A)及实施例3所制得的HA-ADH-柔红霉素/阿糖胞苷脂质体杂化纳米粒(B)的粒径分布情况;由图中可见,阿糖胞苷脂质体及杂化纳米粒的平均粒径均为100nm左右,且符合正态分布,分布均匀。
图3为实施例2所制得的阿糖胞苷脂质体(A)及实施例3所制得的HA-ADH-柔红霉素/阿糖胞苷脂质体杂化纳米粒(B)的透射电子显微镜(TEM)照片;由图中可见,脂质体及杂化纳米粒为球形,其粒径为100nm左右,分布均匀,与图2的粒径分布情况相符。
图4为实施例3所制得的杂化纳米粒的血清稳定性情况;由图中可见,在10%胎牛血清条件下,杂化纳米粒的粒径及PDI电位均能保持稳定。
图5为实施例5所制备得到的Caspase 3脂质体的SDS-PAGE包封情况验证照片;由图中可见Caspase 3成功包封。
图6为杂化纳米粒中,不同pH条件下阿糖胞苷(A)和柔红霉素(B)的释放曲线;由图中可见,两种药物在不同pH条件下均在24h内达到释放平衡。
图7为FITC-HA-ADH-柔红霉素、Rho脂质体以及不同比例的FITC-HA-ADH-柔红霉素/Rho脂质体杂化纳米粒的荧光强度曲线;由图中可见,HA前药与脂质体具备FRET效应,说明二者成功自组装结合为杂化纳米粒。
图8为HA-ADH-柔红霉素/FITC脂质体杂化纳米粒的细胞摄取随时间的变化情况,其中A为流式细胞检测结果,B为柱状统计结果;由图中可见,HA-ADH-柔红霉素/FITC脂质体杂化纳米粒在2h达到摄取平衡。
图9为HA-ADH-柔红霉素/FITC脂质体杂化纳米粒的细胞摄取随浓度的变化情况;其中A为流式细胞检测结果,B为柱状统计结果;由图中可见,HA-ORD/Rho脂质体杂化纳米粒的摄取与药物浓度呈正相关。
图10为HA-ADH-柔红霉素/FITC脂质体杂化纳米粒的细胞摄取随时间变化的激光共聚焦照片;由图中可见,HA-ADH-柔红霉素/FITC脂质体杂化纳米粒在2h达到摄取平衡,与FCM结果一致。
图11为HA-ADH-柔红霉素/阿糖胞苷脂质体杂化纳米粒的细胞凋亡作用,其中A为流式细胞检测结果,B为柱状统计结果;由图中可见,相比于对照组,杂化纳米粒对肿瘤细胞有最强的促凋亡作用。
图12为HA-ORD/Caspase 3脂质体杂化纳米粒的细胞毒性作用,其中A为Caspase3浓度变化对应的细胞毒性,B为ORD浓度变化对应的细胞毒性;由图中可见,相比于对照组,杂化纳米粒对肿瘤细胞有最强的毒性作用。
图13为HA-ORD/Caspase 3脂质体杂化纳米粒的协同作用,由图中可见,当HA-ORD与Caspase 3脂质体的比例小于1时,二者形成的杂化纳米粒具备良好的协同作用。
图14为HA-ORD/Caspase 3脂质体杂化纳米粒的体内抗肿瘤作用曲线;由图中可见,相比于对照组,HA-ORD/Caspase 3脂质体杂化纳米粒具备最好的肿瘤抑制效果。
具体实施方式
本发明除特殊说明,所用的百分比都是体积百分比。
本发明所用的原料或者试剂,均市售或实验室自行制备可得。
本发明采用核磁共振波谱仪,动态光散射纳米粒径仪,透射电子显微镜等对杂化纳米粒的结构和粒径进行表征。
实例实施例1
Figure BDA0002948380500000061
Figure BDA0002948380500000071
制备工艺:
称取200mg透明质酸(35kDa)溶解于40mL纯化水,得到HA溶液;称取436mg ADH以及48mg EDCI,于搅拌条件下将加入上述HA溶液。用盐酸调节溶液pH至4.75,持续搅拌反应10h。再次检测溶液pH,若发生变化则重新调整pH至4.75,持续搅拌反应2h。将上述溶液用氢氧化钠溶液调节pH至7.0,完成HA-ADH制备过程。收集上述HA-ADH反应产物,将其置于截留分子量为3500的透析袋中,于纯化水环境透析48h,每12小时更换一次透析介质。收集透析产物并冻干,所得产物为HA-ADH。称取110mg HA-ADH溶解于30mL浓度为2mM、pH为6.5的磷酸缓冲液中,向上述HA-ADH溶液中逐滴加入2mL浓度为2mg/mL的柔红霉素溶液。用氢氧化钠溶液调节pH至6.5,持续搅拌反应2h。收集上述HA-ADH-柔红霉素反应产物,将其置于截留分子量为3500的透析袋中,于浓度为2mM、pH为7.8的磷酸缓冲液环境透析48h,每12h更换一次透析介质。收集透析产物并冻干,所得产物为HA-ADH-柔红霉素。
所制备得到的HA-ADH-柔红霉素前药中,柔红霉素的包封率为40.00%,载药量为1.78%。
采用核磁共振波谱仪对所制备得到的HA-ADH及HA-ADH-柔红霉素进行检测。所制备得到的HA-ADH-柔红霉素1H NMR图谱相比于HA-ADH1H NMR图谱在2.86ppm及2.85ppm处发生明显变化,表明HA-ADH-柔红霉素成功结合制备,见图1所示。
实例实施例2
Figure BDA0002948380500000072
制备工艺:
将30mg大豆卵磷脂溶解于12mL三氯甲烷,于45℃条件下旋转蒸发1h,形成磷脂薄膜。将20mg阿糖胞苷溶解于4mL磷酸缓冲液(pH 6.8),将其加入上述磷脂薄膜中,于45℃条件下旋转混合40min。将上述混合液于200W功率条件下探头超声10min,完成阿糖胞苷脂质体的制备。
实施例2所制备得到的阿糖胞苷脂质体中,阿糖胞苷的包封率为23.75%,载药量为13.67%。
实例实施例3
HA-ADH-柔红霉素 90mg
阿糖胞苷脂质体 4mL
ddH2O
制备工艺:
称取90mg HA-ADH-柔红霉素溶解于4mL纯化水。
取4mL阿糖胞苷脂质体,将上述4mL HA-ADH-柔红霉素逐滴加入,涡旋混合1min,完成HA-ADH-柔红霉素/阿糖胞苷脂质体杂化纳米粒的制备。
实施例3所制备得到的HA-ADH-柔红霉素/阿糖胞苷脂质体杂化纳米粒中,药物的总包封率为26.46%,总载药量为5.09%。
采用动态光散射纳米粒径仪对实施例2所制备得到的阿糖胞苷脂质体及实施例3所制备得到的杂化纳米粒进行检测。实施例2所制备得到的阿糖胞苷脂质体及实施例3所制备得到的杂化纳米粒的平均粒径均为100nm左右,且符合正态分布,分布均匀。采用透射电子显微镜对实施例2所制备得到的阿糖胞苷脂质体及实施例3所制备得到的杂化纳米粒进行观察拍摄。由图3中可见,阿糖胞苷脂质体及杂化纳米粒为球形,其粒径为100nm左右,分布均匀,与图2的粒径分布情况相符。如图4所示,将杂化纳米粒保存于37℃、10%胎牛血清环境中进行稳定性研究。分别于0.5h、1h、2h、4h、6h、8h、10h测量粒径。在10h内能保持粒径及PDI无明显变化,说明杂化纳米粒体系能保持大小和分布的稳定。
实例实施例4
Figure BDA0002948380500000091
制备工艺:
称取120mg HA溶解于5mL纯化水中。称取12.5mg DCC,5mg DMAP,加入HA溶液中,水浴超声5min,使之成为乳白色。加入5mL DMSO,搅拌条件下反应1h。
称取27mg ORD,溶于5mL DMSO,加入上述反应体系,避光反应12-18h。收集上述HA-ORD反应产物,将其置于截留分子量为3500的透析袋中,于纯化水环境透析48h,每12h更换一次透析介质。收集透析产物并冻干,所得产物为HA-ORD。
实施例4所制备得到的HA-ORD前药中,ORD的包封率为40.74%,载药量为10.00%。
实例实施例5
Figure BDA0002948380500000092
制备工艺:
将30mg大豆卵磷脂溶解于12mL三氯甲烷,于45℃条件下旋转蒸发1h,形成磷脂薄膜。加入12mL乙醚将磷脂膜溶解。将0.16mg Caspase 3溶解于4mL磷酸缓冲液(pH 7.4),将其加入上述磷脂薄膜乙醚溶液中,在冰浴条件下水浴超声2min,使其成为乳状。于常温条件下旋转蒸发45min,抽出乙醚。将上述制剂于200W功率条件下探头超声10min,完成Caspase3脂质体的制备。将Caspase 3脂质体与等体积PBS混合,置于超滤离心管(MWCO 100kDa),以3000rpm转速离心30min,完成Caspase 3脂质体的纯化,最终用PBS将体积补齐至4mL。
实施例5所制备得到的Caspase 3脂质体中,Caspase 3的包封率为56.10%,载药量为6.96%。
采用动态光散射纳米粒径仪对实施例5所制备得到的Caspase 3脂质体进行检测。实施例5所制备得到的Caspase 3脂质体的平均粒径均为100nm左右,且符合正态分布,分布均匀。采用SDS-PAGE对实施例5所制备得到的Caspase 3脂质体进行包封情况验证。图5为SDS-PAGE结果照片,证明Caspase 3成功包封。
实例实施例6
HA-ORD 20mg
Caspase 3脂质体 4mL
ddH2O
制备工艺:
称取20mg HA-ORD溶解于2mL纯化水。
取2mL Caspase 3脂质体,将上述2mL HA-ORD逐滴加入,涡旋混合1min,完成HA-ORD/Caspase 3脂质体杂化纳米粒的制备。
实施例6所制备得到的HA-ORD/Caspase 3脂质体杂化纳米粒中,药物的总包封率为48.75%,总载药量为7.92%。采用动态光散射纳米粒径仪对实施例6所制备得到的杂化纳米粒进行检测。实施例6所制备得到的杂化纳米粒的平均粒径均为100nm左右,且符合正态分布,分布均匀。
实例实施例7
HA-ADH-柔红霉素 90mg
阿糖胞苷脂质体 4mL
ddH2O
制备工艺:
称取16mg HA-ADH-柔红霉素溶解于4mL纯化水。
取4mL阿糖胞苷脂质体,将阿糖胞苷脂质体与等体积PBS混合,置于超滤离心管(MWCO 3500Da),以3000rpm转速离心30min,完成阿糖胞苷脂质体的纯化,最终用PBS将体积补齐至4mL。将上述4mL HA-ADH-柔红霉素逐滴加入,涡旋混合1min,完成HA-ADH-柔红霉素/阿糖胞苷脂质体杂化纳米粒的制备。
将制得的HA-ADH-柔红霉素/阿糖胞苷脂质体杂化纳米粒等分置于透析袋(MWCO3500Da),置于pH分别为5.4,6.4,7.4的PBS释放介质中进行体外药物释放研究,37℃条件下于0,0.5,1,2,4,6,8,10,12,24,36,48h取样1mL,同时补充释放介质1mL。利用紫外分光光度计测定各个时间点药物浓度并描绘释放曲线。由图6中可见,HA-ADH-柔红霉素/阿糖胞苷脂质体杂化纳米粒在不同pH条件下均在24h内达到释放平衡。
实例实施例8
Figure BDA0002948380500000111
制备工艺:
称取1mg FITC溶于4mL乙醇,待用。称取15mg HA-ADH-柔红霉素溶于10mL纯化水,待用。将以上FITC溶液和HA-ADH-柔红霉素溶液加入100mL圆底烧瓶,在磁力搅拌器搅拌下,持续搅拌反应24h。将产物置于透析袋(MWCO3500Da),于纯化水中透析两天,每12h换一次纯化水,收集最终透析产物得到纯化FITC-HA-ADH-柔红霉素。
将30mg大豆卵磷脂溶解于12mL三氯甲烷,于45℃条件下旋转蒸发1h,形成磷脂薄膜。将1mg Rho溶解于5mL磷酸缓冲液(pH 6.8),取4mL加入上述磷脂薄膜中,于45℃条件下旋转混合40min。将上述混合液于200W功率条件下探头超声10min,完成Rho脂质体的制备。将Rho脂质体与等体积PBS混合,置于超滤离心管(MWCO 3500Da),以3000rpm转速离心30min,完成Rho脂质体的纯化,最终用PBS将体积补齐至4mL。
将纯化FITC-HA-ADH-柔红霉素平均分为4份,分别以FITC:Rho=2:1、1:1、1:2三种比例,制备FITC-HA-ADH-柔红霉素/Rho脂质体杂化纳米粒,实验全程避光。
取以上不同比例的FITC-HA-ADH-柔红霉素/Rho脂质体杂化纳米粒、FITC-HA-ADH-柔红霉素、Rho脂质体并用pH 7.4的PBS缓冲液稀释到相同体积,于450nm处测定荧光强度。由图7中可见,HA前药与脂质体具备FRET效应,说明二者成功自组装结合为杂化纳米粒。
实例实施例9
Figure BDA0002948380500000121
制备工艺:
将30mg大豆卵磷脂溶解于12mL三氯甲烷,于45℃条件下旋转蒸发1h,形成磷脂薄膜。将1mg FITC溶解于4mL磷酸缓冲液(pH 6.8),将其加入上述磷脂薄膜中,于45℃条件下旋转混合40min。将上述混合液于200W功率条件下探头超声10min,完成FITC脂质体的制备。将Rho脂质体与等体积PBS混合,置于超滤离心管(MWCO 3500Da),以3000rpm转速离心30min,完成FITC脂质体的纯化,最终用PBS将体积补齐至4mL。
取4mL FITC脂质体,将上述4mL HA-ADH-柔红霉素逐滴加入,涡旋混合1min,完成HA-ADH-柔红霉素/FITC脂质体杂化纳米粒的制备。
培养4T1细胞,于对数生长期将其培养于12孔板,每孔1*105个细胞,于孵箱内孵育24h。将上述HA-ADH-柔红霉素/FITC脂质体杂化纳米粒对细胞进行给药,分别孵育0.5,1,2,4,6,8h。将上述HA-ADH-柔红霉素/FITC脂质体杂化纳米粒梯度稀释后对细胞进行给药,孵育4h。用胰酶消化,以2000rpm转速离心5min,去除上清液,加入PBS溶液1mL,吹打混匀细胞,再次离心完成细胞洗涤。最后加入PBS溶液200μL进行细胞重悬,利用流式细胞仪进行检测。
由图8中可见,HA-ADH-柔红霉素/FITC脂质体杂化纳米粒在2h达到摄取平衡。由图9中可见,HA-ORD/Rho脂质体杂化纳米粒的摄取与药物浓度呈正相关。
实例实施例10
Figure BDA0002948380500000131
制备工艺:
将30mg大豆卵磷脂溶解于12mL三氯甲烷,于45℃条件下旋转蒸发1h,形成磷脂薄膜。将1mg FITC溶解于4mL磷酸缓冲液(pH 6.8),将其加入上述磷脂薄膜中,于45℃条件下旋转混合40min。将上述混合液于200W功率条件下探头超声10min,完成FITC脂质体的制备。将Rho脂质体与等体积PBS混合,置于超滤离心管(MWCO 3500Da),以3000rpm转速离心30min,完成FITC脂质体的纯化,最终用PBS将体积补齐至4mL。
取4mL FITC脂质体,将上述4mL HA-ADH-柔红霉素逐滴加入,涡旋混合1min,完成HA-ADH-柔红霉素/FITC脂质体杂化纳米粒的制备。
培养4T1细胞,于对数生长期将其培养于12孔板,每孔1*105个细胞,于孵箱内孵育24h。将上述HA-ADH-柔红霉素/FITC脂质体杂化纳米粒对细胞进行给药,分别孵育1,2,4h,利用激光共聚焦观察摄取情况。
由图10中可见,HA-ADH-柔红霉素/FITC脂质体杂化纳米粒在2h达到摄取平衡,与FCM结果一致。
实例实施例11
HA-ADH-柔红霉素 90mg
阿糖胞苷脂质体 4mL
ddH2O
制备工艺:
称取90mg HA-ADH-柔红霉素溶解于4mL纯化水。
取4mL阿糖胞苷脂质体,将上述4mL HA-ADH-柔红霉素逐滴加入,涡旋混合1min,完成HA-ADH-柔红霉素/阿糖胞苷脂质体杂化纳米粒的制备。
培养4T1细胞,于对数生长期将其培养于6孔板,每孔1*106个细胞,于孵箱内孵育24h。将上述HA-ADH-柔红霉素/FITC脂质体杂化纳米粒及对应浓度的对照组对细胞进行给药,孵育48h后,利用凋亡试剂盒进行流式细胞术检测。
由图11中可见,相比于对照组,杂化纳米粒对肿瘤细胞有最强的毒性作用。
实例实施例12
HA-ORD 20mg
Caspase 3脂质体 4mL
ddH2O
制备工艺:
称取20mg HA-ORD溶解于2mL纯化水。
取2mL阿糖胞苷脂质体,将上述2mL HA-ADH-柔红霉素逐滴加入,涡旋混合1min,完成HA-ADH-柔红霉素/阿糖胞苷脂质体杂化纳米粒的制备。取纯化Caspase 3脂质体2mL,将上述2mL HA-ORD逐滴加入,涡旋混合1min,完成HA-ORD/Caspase 3脂质体杂化纳米粒的制备,进行梯度稀释。根据浓度配置对照组。根据HA-ORD与Caspase 3脂质体的不同比例制备不同杂化纳米粒,进行梯度稀释。
培养4T1细胞,与对数生长期将其培养与96孔细胞板,每孔5000个细胞,与孵箱内孵育24h。取各组制剂50μL加入150μL培养基,与孵箱内孵育48h。利用MTT法测定细胞活性,于570nm处用多功能酶标仪测定紫外吸收情况。
由图12中可见,相比于对照组,杂化纳米粒对肿瘤细胞有最强的毒性作用。图12为HA-ORD/Caspase 3脂质体杂化纳米粒的细胞毒性作用。由图13中可见,当HA-ORD与Caspase3脂质体的比例小于1(即ORD与Caspase 3的比例小于25)时,二者形成的杂化纳米粒具备良好的协同作用。
实例实施例1213
HA-ORD 20mg
Caspase 3脂质体 4mL
ddH2O
制备工艺:
称取20mg HA-ORD溶解于2mL纯化水。
取纯化Caspase 3脂质体2mL,将上述2mL HA-ORD逐滴加入,涡旋混合1min,完成HA-ORD/Caspase 3脂质体杂化纳米粒的制备。
培养4T1细胞,于对数生长期以1*106个细胞每只小鼠的数量皮下接种于Balb/c小鼠右方腋下,正常饲养一周。将荷瘤小鼠随机分组,共分为:生理盐水组、游离Caspase 3组、游离HA-ORD组、物理混合物组、杂化纳米粒低剂量组、杂化纳米粒高剂量组,共六组,使每组小鼠数均为7只。根据组别进行三天一次尾静脉注射给药,并测量瘤体大小。
由图14中可见,相比于对照组,HA-ORD/Caspase 3脂质体杂化纳米粒具备最好的肿瘤抑制效果。

Claims (7)

1.一种复方制剂,其特征在于包括HA-化药前药以及脂质体。
2.根据权利要求1所述的复方制剂,其特征在于,所述的脂质体是普通脂质体或智能型脂质体。
3.根据权利要求1或2所述的复方制剂,其特征在于,所述的HA-化药前药与脂质体通过自组装形成杂化纳米粒。
4.根据权利要求1-3任意一项所述的复方制剂的制备方法,其特征在于,将HA-化药前药与脂质体混合,在室温下涡旋震荡1 min,制备出杂化纳米粒。
5.根据权利要求4所述的制备方法,其特征在于, HA-化药前药与脂质体的质量比范围为1:2至1:100。
6.根据权利要求4所述的制备方法,其特征在于,所述的前药为柔红霉素, 其中HA-ADH-柔红霉素与阿糖胞苷脂质体中,柔红霉素与阿糖胞苷的质量比为1:3至1:100。
7.如权利要求4所述的制备方法,其特征在于,前药为ORD,其中 HA-ORD与Caspase 3脂质体中,ORD与Caspase 3的质量比为25:1至1:100。
CN202110202546.5A 2021-02-23 2021-02-23 一种用于治疗肿瘤的复方制剂与制备方法 Pending CN112843252A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110202546.5A CN112843252A (zh) 2021-02-23 2021-02-23 一种用于治疗肿瘤的复方制剂与制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110202546.5A CN112843252A (zh) 2021-02-23 2021-02-23 一种用于治疗肿瘤的复方制剂与制备方法

Publications (1)

Publication Number Publication Date
CN112843252A true CN112843252A (zh) 2021-05-28

Family

ID=75990409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110202546.5A Pending CN112843252A (zh) 2021-02-23 2021-02-23 一种用于治疗肿瘤的复方制剂与制备方法

Country Status (1)

Country Link
CN (1) CN112843252A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104491875A (zh) * 2014-12-22 2015-04-08 中国药科大学 一种基于透明质酸-难溶性药物前药的自聚纳米系统的制备方法
CN107485603A (zh) * 2017-08-02 2017-12-19 中国药科大学 一种自组装的透明质酸-难溶性前药包覆的包载活性药物的脂质体纳米给药系统及其制备方法
CN107670033A (zh) * 2016-08-02 2018-02-09 天津中医药大学 抗肿瘤药物组合物及其应用
CN109248145A (zh) * 2018-09-28 2019-01-22 中国药科大学 一种共载小分子药物与大分子药物的组合体系

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104491875A (zh) * 2014-12-22 2015-04-08 中国药科大学 一种基于透明质酸-难溶性药物前药的自聚纳米系统的制备方法
CN107670033A (zh) * 2016-08-02 2018-02-09 天津中医药大学 抗肿瘤药物组合物及其应用
CN107485603A (zh) * 2017-08-02 2017-12-19 中国药科大学 一种自组装的透明质酸-难溶性前药包覆的包载活性药物的脂质体纳米给药系统及其制备方法
CN109248145A (zh) * 2018-09-28 2019-01-22 中国药科大学 一种共载小分子药物与大分子药物的组合体系

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高世勇等: "冬凌草的化学和药理作用研究", 《哈尔滨商业大学学报(自然科学版)》, vol. 30, no. 1, 28 February 2014 (2014-02-28), pages 4 *

Similar Documents

Publication Publication Date Title
Zhang et al. Construction of a tumor microenvironment pH-responsive cleavable PEGylated hyaluronic acid nano-drug delivery system for colorectal cancer treatment
Chen et al. Synergistic chemo-photodynamic therapy mediated by light-activated ROS-degradable nanocarriers
Han et al. Redox-sensitive micelles for targeted intracellular delivery and combination chemotherapy of paclitaxel and all-trans-retinoid acid
CN108635593B (zh) 一种e-选择素肽配体修饰的靶向热敏脂质体的制备和应用
CN109999197B (zh) 肿瘤靶向的纳米复合物、制备方法及其在声动力介导的肿瘤精准治疗中的应用
Liao et al. A chitosan/mesoporous silica nanoparticle-based anticancer drug delivery system with a “tumor-triggered targeting” property
Lin et al. Doxorubicin loaded silica nanoparticles with dual modification as a tumor-targeted drug delivery system for colon cancer therapy
CN110755382B (zh) 一种靶向性核酸药物及其制备方法和用途
CN112386585B (zh) 一种自组装纳米药物及其制备方法与应用
CN111420068B (zh) 聚乙二醇-树枝状聚赖氨酸/酸酐-顺铂复合物及其制备方法和应用
Liu et al. Curcumin doped zeolitic imidazolate framework nanoplatforms as multifunctional nanocarriers for tumor chemo/immunotherapy
Zhang et al. Morphology tunable and acid-sensitive dextran–doxorubicin conjugate assemblies for targeted cancer therapy
CN113648401B (zh) 一种蛋白酶体抑制增敏光动力治疗的杂化纳米组装体及其制备与应用
Li et al. LAPONITE® nanoplatform functionalized with histidine modified oligomeric hyaluronic acid as an effective vehicle for the anticancer drug methotrexate
CN113461754B (zh) 一种碱基修饰的阿霉素前药及其制备方法和应用
CN100486646C (zh) 聚乙二醇-磷脂酰乙醇胺聚合物或它的药用酸加成盐及在制药中的应用
CN107266384A (zh) 基于2‑氨基十六烷酸的n‑羧基内酸酐单体和聚氨基酸及其制备方法
KR20130117361A (ko) 양친성 저분자량 히알루론산 복합체를 포함하는 나노 입자 및 그의 제조 방법
Gu et al. Construction of multifunctional targeted nano-prodrugs based on PAMAM dendrimers for tumor therapy
Wang et al. Sulfur dioxide-releasing polymeric micelles based on modified hyaluronic acid for combined cancer therapy
CN109481400B (zh) 一种肝靶向阿霉素/Bcl-2 siRNA共载纳米胶束及其制备方法和应用
Zhu et al. In vitro–in vivo evaluation of hyaluronic acid-based amphiphilic copolymers for tumour targeted delivery: The role of hydrophobic groups
CN107812189B (zh) 一种主动靶向特定肿瘤细胞的竹红菌素纳米制剂及其制备方法和应用
Xu et al. pH-sensitive deoxycholic acid dimer for improving doxorubicin delivery and antitumor activity in vivso
CN112843252A (zh) 一种用于治疗肿瘤的复方制剂与制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210528