CN112838234A - 金属纤维流场和金属纤维气体扩散层一体化烧结的双极板 - Google Patents

金属纤维流场和金属纤维气体扩散层一体化烧结的双极板 Download PDF

Info

Publication number
CN112838234A
CN112838234A CN201911156464.0A CN201911156464A CN112838234A CN 112838234 A CN112838234 A CN 112838234A CN 201911156464 A CN201911156464 A CN 201911156464A CN 112838234 A CN112838234 A CN 112838234A
Authority
CN
China
Prior art keywords
diffusion layer
flow field
gas diffusion
plate
metal fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911156464.0A
Other languages
English (en)
Other versions
CN112838234B (zh
Inventor
葛鹏
高建平
王晓哲
张欢
卢广轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Western Metal Material Co ltd
Original Assignee
Western Metal Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Western Metal Material Co ltd filed Critical Western Metal Material Co ltd
Priority to CN201911156464.0A priority Critical patent/CN112838234B/zh
Publication of CN112838234A publication Critical patent/CN112838234A/zh
Application granted granted Critical
Publication of CN112838234B publication Critical patent/CN112838234B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种金属纤维流场和金属纤维气体扩散层一体化烧结的双极板,包括导电分隔板、流场板和气体扩散层,所述流场板设置于所述导电分隔板的顶部,所述气体扩散层设置于所述流场板的顶部,所述流场板和所述气体扩散层均由金属纤维制成,所述流场板和所述气体扩散层一体化烧结成型;本发明提供的金属纤维流场和金属纤维气体扩散层一体化烧结的双极板,用金属纤维取代碳纸做气体扩散层,降低成本,强度与韧性匹配良好,可提高装配压力;金属纤维支撑的气体扩散层与金属纤维流场板一体烧结成形,能够消除二者之间的接触电阻,增加传质传热能力。

Description

金属纤维流场和金属纤维气体扩散层一体化烧结的双极板
技术领域
本发明涉及燃料电池技术领域,特别是涉及一种金属纤维流场和金属纤维气体扩散层一体化烧结的双极板。
背景技术
质子交换膜燃料电池(PEMFC)能量转换效率高、可以低温启动和零排放的新型能源装置,可以直接将燃料和氧化剂中的化学能转化为电能,不受卡诺循环限制,理论能量转化率高达80%。燃料电池结构包括膜电极(MEA)、流场板和集流板,所述膜电极包括气体扩散层(GDL)、质子交换膜和催化层。其中流场板提供燃料和氧化剂流通的通道,集流板收集电子,是电极与外电路之间的电流通道。目前应用最广泛的电池结构是将流场板与集流板合二为一制成双极板(BPP),兼做反应气体流场通道和电流通道。金属双极板具有导电导热性能好、强度高、阻气性好和成形性好,可以提高PEMFC的功率密度,被认为是质子交换膜燃料电池商品化的必然选择。目前常用的金属双极板大多是通过模具冲压成形加工出的脊-槽”结构,用于气体均匀分布和收集电流。但是冲压成形面临的问题是凹凸模定位误差大、尺寸回弹和翘曲变形,而且“脊-槽”式结构中作为“脊”的凸台与膜电极完全贴合,反应气体难于接触到膜电极,MEA有效反应面积只有一半左右。
气体扩散层是“五合一”膜电极组件的重要部分,在PEMFC中的GDL介于双极板流场与催化剂层之间,从流场来的反应气体通过GDL后可以与催化剂反应,生成的电子和热可以传导出去,所以要求GDL有一定的孔隙度,而且导电性和导热性良好,还要保证氧化或还原气氛下,在腐蚀性介质中不产生腐蚀和降解。目前碳纸和碳布是应用最广的气体扩散层材料,但是碳纤维材料为脆性材料,在装配和车载工况下容易导致纤维断裂、纤维和基体界面剥落,影响电池寿命,除此之外碳纤维气体扩散层材料工艺复杂,成本非常高。多孔金属材料本身是热和电的良导体,还具有刚度大、渗透性好、孔径和孔隙可控、加工性强等优点,理论上可做PEMFC的气体扩散层,但是多孔金属材料比表面积大、活性高,易腐蚀,而且某些金属多孔材料腐蚀后会生成的钝化膜,增加了GDL与金属双极板之间的接触电阻。
发明内容
本发明的目的是提供一种金属纤维流场和金属纤维气体扩散层一体化烧结的双极板,以解决上述现有技术存在的问题,用金属纤维取代碳纸做气体扩散层,降低成本,强度与韧性匹配良好,可提高装配压力;金属纤维支撑的气体扩散层与金属纤维流场板一体烧结成形,能够消除二者之间的接触电阻,增加传质传热能力。
为实现上述目的,本发明提供了如下方案:
本发明提供一种金属纤维流场和金属纤维气体扩散层一体化烧结的双极板,包括导电分隔板、流场板和气体扩散层,所述流场板设置于所述导电分隔板的顶部,所述气体扩散层设置于所述流场板的顶部,所述流场板和所述气体扩散层均由金属纤维烧结成型,且所述流场板和所述气体扩散层一体化烧结成型。
优选地,所述导电分隔板为平板状结构,所述导电分隔板的板厚为0.1mm-1mm,所述导电分隔板为金属板材或石墨/聚合物复合材料板材。
优选地,所述流场板与所述导电分隔板焊接连接或烧结连接或胶接。
优选地,所述流场板的金属纤维的孔隙度大于所述气体扩散层的金属纤维的孔隙度。
优选地,所述流场板的金属纤维的纤维直径为40μm-200μm、纤维长度为10mm-50mm、孔隙率为80-95%;所述流场板的厚度为0.2mm-3mm。
优选地,采用梯度过渡的铺毡方法,在所述流场板的金属纤维上铺制所述气体扩散层,且形成所述气体扩散层的多层金属纤维毡的孔隙度、纤维直径、纤维长度逐渐变小形成梯度过渡,所述气体扩散层的金属纤维的纤维直径为1μm-20μm、纤维长度为2mm-20mm、孔隙率为70-90%;金属纤维随机均布后的纤维毡孔隙的当量直径为10μm-30μm;所述气体扩散层的厚度为100μm-300μm。
优选地,构成所述流场板和所述气体扩散层的金属纤维为钛纤维或不锈钢纤维或铜纤维或高熵合金纤维。
优选地,所述流场板与所述导电分隔板连接的一侧端面上还加工有流道,所述流道采用辊压法或架空法加工而成。
优选地,所述气体扩散层做疏水处理,在所述气体扩散层的金属纤维表面形成疏水导电膜.
优选地,所述导电分隔板和流场板通过渗氮处理或渗碳处理或碳氮共渗表面处理形成耐腐蚀导电膜。
本发明相对于现有技术取得了以下有益技术效果:
本发明提供的金属纤维流场和金属纤维气体扩散层一体化烧结的双极板,用金属纤维取代碳纸做气体扩散层,降低成本,强度与韧性匹配良好,可提高装配压力;金属纤维支撑的气体扩散层与金属纤维流场板一体烧结成形,且气体扩散层与流场板的金属纤维通过梯度过渡一体成型,能够消除二者之间的接触电阻,增加传质传热能力。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中金属纤维流场和金属纤维气体扩散层一体化烧结的双极板的结构示意图;
图2为本发明中带流道的流场板的立体结构示意图;
图中:1-导电分隔板、2-流场板、3-气体扩散层、4-流道。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种金属纤维流场和金属纤维气体扩散层一体化烧结的双极板,以解决现有技术存在的问题。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本实施例提供一种金属纤维流场和金属纤维气体扩散层一体化烧结的双极板,如图1所示,具体包括导电分隔板1、流场板2和气体扩散层3,流场板2设置于导电分隔板1的顶部,气体扩散层3设置于流场板2的顶部,流场板2和气体扩散层3均由金属纤维烧结成型,且流场板2和气体扩散层3一体化烧结成型。
本实施例中,导电分隔板1为平板状结构,导电分隔板1的板厚为0.1mm-1mm,导电分隔板1为金属板材或石墨/聚合物(石墨烯与聚氯乙烯、聚苯乙烯、聚丙烯、聚酰亚胺、聚苯胺)复合材料板材;金属板材的材料包括钛及钛合金、不锈钢、铝及铝合金、镍基合金、高熵合金等。导电分隔板1作用是分隔氧化剂气体和燃料气体、收集电流、导电、起支撑电堆结构等作用,要求导电分隔板1材料的耐腐蚀性、气密性、导电性、结构强度良好。
本实施例中,流场板2与导电分隔板1可以直接连接或间接连接,直接连接包括焊接连接和烧结连接,烧结连接是在制备金属纤维烧结板时,将金属纤维随机排布在导电分隔板1上,随后烧结成金属纤维流场板2、导电分隔板1的一体化金属双极板结构;间接连接可以采用耐高温高湿的耐腐蚀导电胶,通过胶接方式将二者粘接。
本实施例中,流场板2的金属纤维的孔隙度大于气体扩散层3的金属纤维的孔隙度,靠近导电分隔板1一侧的部位是孔隙度较大的流场板2,另一侧是孔隙度较小的气体扩散层3,二者通过在厚度方向上梯度过渡的方法一体化烧结制备。流场板2做反应气体和生成水的通道,气体扩散层3起到支撑催化层、收集电流、传导气体和排出水等多重作用,实现了反应气体和产物水在流场和催化层之间的再分配。两者一体化烧结后消除了传统意义上的双极板和气体扩散层3装配在一起时的接触电阻,有利于提升电池效率,简化电池结构。
本实施例中,流场板2采用当量直径较大的粗纤维,流场板2的金属纤维的纤维直径为40μm-200μm、纤维长度为10mm-50mm、孔隙率为80-95%,流场板2的厚度为0.2mm-3mm。
形成气体扩散层3的多层金属纤维毡的孔隙度、纤维直径、纤维长度逐渐变小形成梯度过渡,即采用梯度过渡的铺毡方法,在流场板2的金属纤维上铺制气体扩散层3,气体扩散层3选用当量直径较小的细纤维,气体扩散层3的金属纤维的纤维直径为1μm-20μm、纤维长度为2mm-20mm、孔隙率为70-90%;金属纤维随机均布后的纤维毡孔隙的当量直径为10μm-30μm;气体扩散层3的厚度为100μm-300μm;铺毡采用不同直径和不同长度的金属纤维混合布毡,保证金属纤维扩散层良好的排水性、透气性和导电性,同时细的金属纤维有良好的柔韧性,在施加一定装配压力时可以与“三合一膜电极”接触紧密,降低接触电阻。金属纤维气体扩散层较碳纸成本降低,耐腐蚀性可以通过表面处理来提高。
本实施例中,构成流场板2和气体扩散层3的金属纤维为钛纤维或不锈钢纤维或铜纤维或高熵合金纤维。
本实施例中,为了提高反应气体在流场板2中的通透性和分布均匀性,避免电化学反应集中在电池中央、局部积水和过热等不均匀现象,流场板2与导电分隔板1连接的一侧端面上还加工有流道4(如图2所示)。加工方法包括辊压法,在金属纤维表面连续压制出流道4,因为金属纤维板孔隙率高,受压后会发生塌陷形成沟槽,保证其背面为平面状,不影响与膜电极的接触;或者采用架空法,在金属纤维铺毡时,将粗直的金属丝排布在金属纤维板中,烧结平整后支出孔隙做流道4。
为了提高氧化剂气体一侧双极板的排水性能,在气体扩散层3做疏水处理,在气体扩散层3的金属纤维表面形成疏水导电膜,具体将气体扩散层3浸入熔融态聚四氟乙烯,自然冷却后进行烘烤,在纤维表面生成疏水导电膜。
为了提高导电分隔板1和流场板2的导电性和耐腐蚀性,导电分隔板1和流场板2通过渗氮处理或渗碳处理或碳氮共渗表面处理形成耐腐蚀导电膜。具体包括气体渗氮/碳法、离子渗氮/碳法或碳氮共渗法,以及用磁控溅射、PVD、CVD、多弧离子镀等方法制备耐腐蚀导电膜,包括贵金属,如金、铱、钌、铂、钯,以及耐蚀金属,钨、钼、钽、铌等。
本实施例中提供的双级板在应用到质子交换膜燃料电池中时,质子交换膜燃料电池由双级板、催化层、质子交换膜和密封圈制成。
本发明应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种金属纤维流场和金属纤维气体扩散层一体化烧结的双极板,其特征在于:包括导电分隔板、流场板和气体扩散层,所述流场板设置于所述导电分隔板的顶部,所述气体扩散层设置于所述流场板的顶部,所述流场板和所述气体扩散层均由金属纤维烧结成型,且所述流场板和所述气体扩散层一体化烧结成型。
2.根据权利要求1所述的金属纤维流场和金属纤维气体扩散层一体化烧结的双极板,其特征在于:所述导电分隔板为平板状结构,所述导电分隔板的板厚为0.1mm-1mm,所述导电分隔板为金属板材或石墨/聚合物复合材料板材。
3.根据权利要求1所述的金属纤维流场和金属纤维气体扩散层一体化烧结的双极板,其特征在于:所述流场板与所述导电分隔板焊接连接或烧结连接或胶接。
4.根据权利要求1所述的金属纤维流场和金属纤维气体扩散层一体化烧结的双极板,其特征在于:所述流场板的金属纤维的孔隙度大于所述气体扩散层的金属纤维的孔隙度。
5.根据权利要求4所述的金属纤维流场和金属纤维气体扩散层一体化烧结的双极板,其特征在于:所述流场板的金属纤维的纤维直径为40μm-200μm、纤维长度为10mm-50mm、孔隙率为80-95%;所述流场板的厚度为0.2mm-3mm。
6.根据权利要求5所述的金属纤维流场和金属纤维气体扩散层一体化烧结的双极板,其特征在于:采用梯度过渡的铺毡方法,在所述流场板的金属纤维上铺制所述气体扩散层,且形成所述气体扩散层的多层金属纤维毡的孔隙度、纤维直径、纤维长度逐渐变小形成梯度过渡,所述气体扩散层的金属纤维的纤维直径为1μm-20μm、纤维长度为2mm-20mm、孔隙率为70-90%;金属纤维随机均布后的纤维毡孔隙的当量直径为10μm-30μm;所述气体扩散层的厚度为100μm-300μm。
7.根据权利要求1所述的金属纤维流场和金属纤维气体扩散层一体化烧结的双极板,其特征在于:构成所述流场板和所述气体扩散层的金属纤维为钛纤维或不锈钢纤维或铜纤维或高熵合金纤维。
8.根据权利要求1所述的金属纤维流场和金属纤维气体扩散层一体化烧结的双极板,其特征在于:所述流场板与所述导电分隔板连接的一侧端面上还加工有流道,所述流道采用辊压法或架空法加工而成。
9.根据权利要求1所述的金属纤维流场和金属纤维气体扩散层一体化烧结的双极板,其特征在于:所述气体扩散层做疏水处理,在所述气体扩散层的金属纤维表面形成疏水导电膜。
10.根据权利要求1所述的金属纤维流场和金属纤维气体扩散层一体化烧结的双极板,其特征在于:所述导电分隔板和所述流场板通过渗氮处理或渗碳处理或碳氮共渗表面处理形成耐腐蚀导电膜。
CN201911156464.0A 2019-11-22 2019-11-22 金属纤维流场和金属纤维气体扩散层一体化烧结的双极板 Active CN112838234B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911156464.0A CN112838234B (zh) 2019-11-22 2019-11-22 金属纤维流场和金属纤维气体扩散层一体化烧结的双极板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911156464.0A CN112838234B (zh) 2019-11-22 2019-11-22 金属纤维流场和金属纤维气体扩散层一体化烧结的双极板

Publications (2)

Publication Number Publication Date
CN112838234A true CN112838234A (zh) 2021-05-25
CN112838234B CN112838234B (zh) 2022-03-11

Family

ID=75922821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911156464.0A Active CN112838234B (zh) 2019-11-22 2019-11-22 金属纤维流场和金属纤维气体扩散层一体化烧结的双极板

Country Status (1)

Country Link
CN (1) CN112838234B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116598525A (zh) * 2023-07-18 2023-08-15 海卓动力(青岛)能源科技有限公司 一种磁控溅射双极板-膜电极总成和电堆及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457521A (zh) * 2001-03-08 2003-11-19 松下电器产业株式会社 气体扩散电极及使用了该电极的燃料电池
CN101789511A (zh) * 2010-02-23 2010-07-28 昆山弗尔赛能源有限公司 一种集成流场结构的膜电极组件及其燃料电池
US20110097643A1 (en) * 2009-10-22 2011-04-28 Enerfuel, Inc. Integrated pem fuel cell
CN102544519A (zh) * 2010-12-31 2012-07-04 中国科学院金属研究所 一种质子交换膜燃料电池双极板结构
CN203574057U (zh) * 2013-10-30 2014-04-30 贝卡尔特公司 燃料电池或者电解槽中的气体扩散层和膜电极
CN107369838A (zh) * 2017-06-23 2017-11-21 华南理工大学 一种用于直接甲醇燃料电池的免热压复合电极及其制备方法
CN207149631U (zh) * 2017-06-05 2018-03-27 上海汽车集团股份有限公司 Pemfc及其阴极流场板、双极板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457521A (zh) * 2001-03-08 2003-11-19 松下电器产业株式会社 气体扩散电极及使用了该电极的燃料电池
US20110097643A1 (en) * 2009-10-22 2011-04-28 Enerfuel, Inc. Integrated pem fuel cell
CN101789511A (zh) * 2010-02-23 2010-07-28 昆山弗尔赛能源有限公司 一种集成流场结构的膜电极组件及其燃料电池
CN102544519A (zh) * 2010-12-31 2012-07-04 中国科学院金属研究所 一种质子交换膜燃料电池双极板结构
CN203574057U (zh) * 2013-10-30 2014-04-30 贝卡尔特公司 燃料电池或者电解槽中的气体扩散层和膜电极
CN207149631U (zh) * 2017-06-05 2018-03-27 上海汽车集团股份有限公司 Pemfc及其阴极流场板、双极板
CN107369838A (zh) * 2017-06-23 2017-11-21 华南理工大学 一种用于直接甲醇燃料电池的免热压复合电极及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116598525A (zh) * 2023-07-18 2023-08-15 海卓动力(青岛)能源科技有限公司 一种磁控溅射双极板-膜电极总成和电堆及其制备方法

Also Published As

Publication number Publication date
CN112838234B (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
US6291094B1 (en) Separator for fuel cell, fuel cell incorporating the same, and method of production of the same
CN112838232B (zh) 一种全通孔金属纤维烧结体燃料电池双极板及燃料电池堆
US7951506B2 (en) Bipolar plate and direct liquid feed fuel cell stack
US20060147787A1 (en) Separator for fuel cell and fuel cell using it
US7601454B2 (en) Polymer electrolyte fuel cell
CA2500680A1 (en) Fuel cell stacks of alternating polarity membrane electrode assemblies
WO2015200629A1 (en) Flow fields for use with and electrochemical cell
JP4920137B2 (ja) 高分子電解質型燃料電池の運転方法
CN111621806A (zh) 异型集电器、pem电解水制氢装置及电解水制氢的方法
CN104157895A (zh) 聚合物电解质膜燃料电池轻型电堆及其制造方法
KR20110123561A (ko) 연료전지 스택
JP2002184422A (ja) 燃料電池のセパレータ
US7960071B2 (en) Separator for fuel cell using a metal plate coated with titanium nitride, method for manufacturing the same, and polymer electrolyte membrane fuel cell comprising the separator
JP5108377B2 (ja) 複合燃料電池スタック用の非浸透性の低接触抵抗シム
JP4047265B2 (ja) 燃料電池及びそれに用いられる冷却用セパレータ
JP5470232B2 (ja) 平板型固体電解質燃料電池
CN112838234B (zh) 金属纤维流场和金属纤维气体扩散层一体化烧结的双极板
WO2008101281A1 (en) A membrane electrode assembly with electrode support
JP2000021418A (ja) 固体高分子電解質型燃料電池
JP2018055945A (ja) 燃料電池スタック
US20100075189A1 (en) Current collector and fuel cell stack
JP3956746B2 (ja) 固体高分子型燃料電池,セパレータ及びその製造方法
CN112838233B (zh) 一种燃料电池气体扩散层、电极、膜电极组件、单电池及其制备方法
JP5401438B2 (ja) 平板型固体電解質燃料電池
CN115051010A (zh) 一种固体氧化物电池氧电极接触件及电池堆

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant