CN112838124A - 横向扩散金属-氧化物半导体晶体管及其形成方法 - Google Patents

横向扩散金属-氧化物半导体晶体管及其形成方法 Download PDF

Info

Publication number
CN112838124A
CN112838124A CN202011312930.2A CN202011312930A CN112838124A CN 112838124 A CN112838124 A CN 112838124A CN 202011312930 A CN202011312930 A CN 202011312930A CN 112838124 A CN112838124 A CN 112838124A
Authority
CN
China
Prior art keywords
region
sidewall
trench
semiconductor substrate
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011312930.2A
Other languages
English (en)
Inventor
S·R·梅霍特拉
B·格罗特
L·拉蒂克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP USA Inc
Original Assignee
NXP USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NXP USA Inc filed Critical NXP USA Inc
Publication of CN112838124A publication Critical patent/CN112838124A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7825Lateral DMOS transistors, i.e. LDMOS transistors with trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/765Making of isolation regions between components by field effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/66704Lateral DMOS transistors, i.e. LDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本公开涉及横向扩散金属‑氧化物半导体晶体管及其形成方法。一种晶体管包括在半导体衬底中形成的沟槽,其中所述沟槽具有第一侧壁和第二侧壁。栅极区包括填充于所述沟槽中的导电材料。具有第一导电类型的漂移区邻近所述第二侧壁形成于所述半导体衬底中。漏极区形成于所述漂移区中并且与所述第二侧壁间隔开第一距离。电介质层形成于所述半导体衬底的顶表面处,覆盖所述栅极区和所述第二侧壁与所述漏极区之间的所述漂移区。场板形成于所述电介质层上方并且借助于所述电介质层与所述导电材料和所述漂移区隔离。

Description

横向扩散金属-氧化物半导体晶体管及其形成方法
技术领域
本公开大体上涉及半导体装置,且更具体地说,涉及横向扩散金属-氧化物半导体(LDMOS)晶体管及其形成方法。
背景技术
传统的半导体装置和半导体装置制造工艺正在不断发展。例如,金属氧化物半导体场效应晶体管(MOSFET)用于各种不同的应用和电子产品-从缝纫机到洗衣机、从汽车到蜂窝电话等等。随着工艺技术的进步,预期这些半导体装置在减小大小和成本的同时提高性能。然而,在平衡大小、成本和性能方面存在挑战。
发明内容
总的来说,提供一种晶体管,其包括:沟槽,其形成于半导体衬底中,所述沟槽具有第一侧壁和第二侧壁;栅极区,其包括填充于沟槽中的导电材料;漂移区,其邻近第二侧壁形成于半导体衬底中,所述漂移区具有第一导电类型;漏极区,其形成于漂移区中,所述漏极区与第二侧壁间隔开第一距离;电介质层,其形成于半导体衬底的顶表面处,覆盖栅极区和第二侧壁与漏极区之间的漂移区;以及场板,其形成于电介质层上方,所述场板借助于电介质层与导电材料和漂移区隔离。场板的第一边缘可与栅极区的一部分重叠,并且场板的第二边缘可在漂移区上方延伸第二距离,所述第二距离小于第一距离。场板可包括水平部分和竖直部分,水平部分通过层间电介质(ILD)与电介质层间隔开,并且竖直部分在第一边缘附近与水平部分接触且从水平部分的底表面延伸到电介质层的顶表面。所述晶体管可另外包括安置于沟槽的侧壁和底部处的栅极电介质,所述栅极电介质将导电材料与半导体衬底隔离。导电材料可由多晶硅材料形成,并且场板可由金属材料形成。所述晶体管可另外包括邻近第一侧壁形成于半导体衬底中的源极区,电介质层的一部分与源极区重叠。所述晶体管可另外包括邻近第一侧壁形成于半导体衬底中的具有第二导电类型的主体区,源极区形成于主体区中。所述晶体管可另外包括形成于漏极区和源极区的顶表面处的自对准硅化物层,并且其中电介质层由氮化物材料形成且被配置成充当自对准硅化物层的掩模。所述晶体管可另外包括与源极区接触的源极端,源极端借助于金属层连接到场板。
在另一实施例中,提供一种方法,其包括:在半导体衬底中蚀刻沟槽,所述沟槽具有第一侧壁和第二侧壁;用导电材料填充沟槽以形成栅极区;在半导体衬底中邻近第二侧壁形成漂移区,所述漂移区具有第一导电类型;在漂移区中形成漏极区,所述漏极区与第二侧壁间隔开第一距离;将在半导体衬底的顶表面处的电介质层图案化以覆盖栅极区和在第二侧壁与漏极区之间的漂移区;以及在电介质层上方形成场板,所述场板借助于电介质层与导电材料和漂移区隔离。场板的第一边缘可与栅极区的一部分重叠,并且场板的第二边缘可在漂移区上方延伸第二距离,所述第二距离小于第一距离。导电材料可由多晶硅材料形成,并且场板可由金属材料形成。形成场板可包括:形成竖直部分,所述竖直部分具有与电介质层的顶表面接触的底表面和延伸穿过层间电介质(ILD)的顶表面;以及形成水平部分,所述水平部分与竖直部分的顶表面接触,所述水平部分通过ILD与电介质层间隔开。所述方法可另外包括在用导电材料填充沟槽之前在沟槽的侧壁和底部处形成栅极电介质,所述栅极电介质将导电材料与半导体衬底隔离。所述方法可另外包括在半导体衬底中邻近第一侧壁形成源极区,电介质层的一部分与源极区重叠。所述方法可另外包括在半导体衬底中邻近第一侧壁形成具有第二导电类型的主体区,源极区形成于主体区中。所述方法可另外包括形成与栅极区接触的栅极端,以及借助于金属层将栅极端连接到场板。
在又一实施例中,提供一种晶体管,其包括:沟槽,其形成于半导体衬底中,所述沟槽具有第一侧壁和第二侧壁;栅极区,其包括填充于沟槽中的导电材料;栅极电介质,其安置于沟槽的侧壁和底部处,栅极电介质将导电材料与半导体衬底隔离;漂移区,其邻近第二侧壁形成于半导体衬底中,漂移区具有第一导电类型;漏极区,其形成于漂移区中,漏极区与第二侧壁间隔开第一距离;主体区,其邻近第一侧壁形成于半导体衬底中,主体区具有第二导电类型;电介质层,其形成于半导体衬底的顶表面处,覆盖栅极区和第二侧壁与漏极区之间的漂移区;以及场板,其形成于电介质层上方,场板借助于电介质层与导电材料和漂移区隔离。场板的第一边缘可与栅极区的一部分重叠,并且场板的第二边缘可在漂移区上方延伸第二距离,所述第二距离小于第一距离。晶体管可另外包括邻近第一侧壁形成于主体区中的具有第一导电类型的源极区,电介质层的一部分与源极区重叠。
附图说明
本发明借助于例子示出且不受附图的限制,附图中的类似标记指示类似元件。为简单和清晰起见示出图中的元件,并且元件不一定按比例绘制。
图1至图7以简化的横截面视图示出根据实施例的示例横向扩散金属-氧化物半导体(LDMOS)晶体管的各个制造阶段。
图8和图9以简化的平面视图示出根据实施例的处于制造阶段的示例LDMOS晶体管。
具体实施方式
近年来,汽车,工业和消费者应用对智能功率技术的需求不断增长,智能功率技术将数字、模拟和高压功率晶体管集成在单个芯片上,旨在降低制造成本。在半导体制造中,硅面积非常宝贵。本文所述的基于沟槽的晶体管中发生的技术改进的一个例子是:硅面积影响减小的功率晶体管的合乎需要的改进的导通电阻*面积(RonA)值。
总的来说,提供一种基于沟槽的横向扩散金属-氧化物半导体(LDMOS)晶体管。形成于半导体衬底中的沟槽填充有导电材料以形成栅极区。栅极电介质形成为沟槽中的内衬,从而将栅极区与衬底隔离。源极区邻近沟槽形成于半导体衬底的表面处。漏极区与沟槽间隔开预定距离形成于半导体衬底的表面处。电介质层形成于栅极区上方且在沟槽与漏极区之间的漂移区上方跨越预定距离。场板形成于电介质层的一部分上方。选择场板和电介质层的尺寸以实现较高击穿电压和改进的RonA。
图1至图7以简化的横截面视图示出根据实施例形成的示例横向扩散金属-氧化物半导体(LDMOS)晶体管100的各个制造阶段。
图1以简化的横截面视图示出根据实施例的处于制造阶段的示例LDMOS晶体管100。在此阶段,晶体管100包括硅基衬底102、形成于衬底102上方的图案化硬掩模116、形成于衬底102中的沟槽104,以及形成于沟槽104的侧壁和底部处的栅极电介质106。在此实施例中,衬底102形成为具有P型导电类型的P型掺杂硅衬底。衬底102可形成为具有N型外延层的P型掺杂硅衬底。举例来说,衬底102可替代地由其它合适的硅基基质形成,所述硅基基质例如砷化镓、锗化硅、绝缘体硅(SOI)、硅、单晶硅等,以及其组合等。
在此实施例中,氧化物层112形成于上衬底102上,且氮化物层114形成于氧化物层112上。将氮化物/氧化物层一起图案化以形成硬掩模116。在其它实施例中,其它适合的材料和其组合可用于形成硬掩模116。在此实施例中,沟槽104包括第一侧壁108、第二侧壁110和底表面。举例来说,可采用例如反应离子蚀刻(RIE)等蚀刻技术以形成沟槽104。在此实施例中,栅极电介质106形成于沟槽104的暴露表面上,从而在沟槽104的侧壁108-110和底表面处基本上形成内衬层。栅极电介质106可由任何合适的栅极电介质材料(例如,二氧化硅)形成。栅极电介质106可形成为生长层、沉积层或其组合。
图2以简化的横截面视图示出根据实施例的处于后续制造阶段的示例LDMOS晶体管100。在此阶段,使导电材料沉积以大体上填满沟槽104并且形成栅极区202。进行平坦化操作以使导电材料与114层持平。在此实施例中,平坦化操作可包括化学机械平坦化(CMP)工艺。在其它实施例中,平坦化操作可包括湿式蚀刻工艺。可进行后续蚀刻操作以使导电材料与衬底的顶表面大体上持平,从而形成栅极区202。举例来说,栅极区202可由例如多晶硅材料或金属材料等合适的导电材料形成。在此实施例中,栅极区202被配置并布置成充当示例LDMOS晶体管100的栅极电极。在其它实施例中,栅极区202可由其它导电材料形成。
图3以简化的横截面视图示出根据实施例的处于后续制造阶段的示例LDMOS晶体管100。在此阶段,形成衬底102的平面顶表面306,且形成主体区302和漂移区304。
在图3中所描绘的实施例中,除去衬底102的顶表面处的硬掩模116,从而形成平面顶表面306。在此实施例中,栅极区202与平面顶表面306大体上是平面的。在其它实施例中,栅极区202可从平面顶表面306稍微凹入或稍微凸出。保留在沟槽中的栅极电介质106用以将栅极区202与衬底102隔离。
在此实施例中,主体区302邻近侧壁108形成为衬底102中的P型阱掺杂剂注入区。主体区302可表征为P-(减)主体区。漂移区304邻近侧壁110形成为衬底102中的N型阱掺杂剂注入区。漂移区304可表征为N-(减)漂移区。在一些实施例中,漂移区304可由衬底102的N型外延层形成。
图4以简化的横截面视图示出根据实施例的处于后续制造阶段的示例LDMOS晶体管100。在此阶段,电介质层402形成于衬底102的顶表面处。沉积和图案化形成于衬底102的顶表面处的电介质层402,以覆盖栅极区202以及主体区302和漂移区304的部分。在此实施例中,电介质层402可由电介质材料(例如,氮化硅)形成,所述电介质材料适合于在形成后续工艺结构(例如,源极/漏极区、自对准硅化物层)时充当自对准掩模。可针对最优减小表面场(RESURF)选择电介质层402的尺寸(例如,厚度、宽度、长度)。
图5以简化的横截面视图示出根据实施例的处于后续制造阶段的示例LDMOS晶体管100。在此阶段,形成源极区502和漏极区504,且形成主体连接区506。在形成主体区302和漂移区304之后,注入N型掺杂剂以分别形成源极区502和漏极区504。源极区502和漏极区504可分别表征为N+(加)源极/漏极区。邻近侧壁108形成源极区502,且注入P型掺杂剂以形成主体连接区506,从而允许与主体区302电连接。主体连接区506可表征为P+(加)主体连接区。在此实施例中,主体连接区506邻接源极区502。与侧壁110间隔开横向距离508形成漏极区504。随着横向距离508增大,对应的击穿电压增大。在此实施例中,举例来说,侧壁110与漏极区504之间的横向距离508可在0.5微米至10.0微米的范围内。在一些实施例中,横向距离508可小于0.5微米或大于10.0微米。
图6以简化的横截面视图示出根据实施例的处于后续制造阶段的示例LDMOS晶体管100。在此阶段,在源极区502和漏极区504以及主体连接区506的顶表面处形成自对准硅化物区602。沉积金属薄膜层(例如,钛、铂、钨)并且使所述金属薄膜层与源极区502和漏极区504以及主体连接区506的暴露顶表面反应以形成自对准硅化物区602。自对准硅化物区用以在源极区502和漏极区504以及主体连接区506的顶表面处形成高导电性接触区。在此实施例中,本文所使用的术语自对准硅化物(salicide)还可以指自对准的硅化物(self-aligned silicide)。
图7以简化的横截面视图示出根据实施例的处于后续制造阶段的示例LDMOS晶体管100。在此阶段,示例LDMOS晶体管100包括接触件702-708、电极端710-714和水平场板716。在此实施例中,水平场板716和接触件708一起形成如图7中所描绘的伪L形场板。
在此实施例中,在电介质层402和自对准硅化物区602上方形成层间电介质(ILD)区720。ILD区720可由一系列沉积的氧化物层形成,所述氧化物例如原硅酸四乙酯(TEOS)。举例来说,可以沉积、图案化和蚀刻ILD区720的第一氧化物层以暴露栅极区202、自对准硅化物区602和电介质层402的部分。在图案化和蚀刻第一氧化物层之后,形成接触件702-708。举例来说,接触件702-708可由例如铜、金、银、铝、镍、钨及其合金等任何合适的导电材料形成。接触件702-706分别提供到源极区502和主体连接区506、栅极区202以及漏极区504的导电连接。形成接触件708以使得接触件708的底表面邻接电介质层402的顶表面。在此实施例中,接触件708充当具有第一边缘718的竖直场板部分,所述第一边缘718在侧壁110处与栅极区202的一部分重叠。
在形成接触件702-708之后,沉积、图案化和蚀刻导电层以形成电极端710-714和水平场板716。电极端710-714和水平场板716可由例如铜、金、银、铝、镍、钨和其合金等任何合适的导电材料形成。在此实施例中,源极电极端710借助于接触件702和自对准硅化物区602连接到源极区502和主体连接区506,栅极电极端712借助于接触件704连接到栅极区202,并且漏极电极端714借助于接触件706和自对准硅化物区602连接到漏极区504。
水平场板716直接连接到接触件708,从而形成伪L形场板。水平场板716的一部分与栅极区202与漏极区504之间的下层漂移区304重叠一定重叠距离726。可针对最优RESURF选择重叠距离726。在此实施例中,举例来说,重叠距离726可在横向距离508的40%至60%的范围内。在一些实施例中,重叠距离726可小于横向距离508的40%或大于横向距离508的60%。在此实施例中,场板借助于电介质层402与衬底电隔离。在一些实施例中,举例来说,场板可借助于金属互连层连接到源极电极端710或栅极电极端712。
在图7中所描绘的实施例中,电极端710-714和水平场板716由相同导电层形成。在其它实施例中,电极端710-714和水平场板716可由不同导电层形成。在形成电极端710-714和水平场板716之后,可沉积ILD区720的后续氧化物层(例如TEOS)以覆盖电极端710-714、水平场板716和第一氧化物层的暴露表面。
图8以简化的平面视图示出根据实施例的处于制造阶段的示例LDMOS晶体管100。在图8中所描绘的实施例中,LDMOS晶体管100形成为椭圆形晶体管,所述椭圆形晶体管具有源极区802、漏极区804、栅极区806和电介质层808,分别对应于图7的源极区502、漏极区504、栅极区202和电介质层402。电介质层808示为允许下层细节可见的透明区。在此实施例中,源极区802被栅极区806包围。漏极区804与栅极区806分开形成,且漏极区804以如图7中所描绘的横向距离508包围栅极区806。形成电介质层808,从而覆盖栅极区806、源极区802和漏极区804的部分以及栅极区806与漏极区804之间的漂移区(未示出)。虚线轮廓区域810和812描绘电介质层808中的开口。举例来说,示例接触件814提供到源极、漏极和栅极区802-806的连接。未示出例如电极端和场板等特征。
图9以简化的平面视图示出根据实施例的处于制造阶段的示例LDMOS晶体管100。在图9中所描绘的实施例中,示出图8的LDMOS晶体管100,其中电介质层808为不透明(阴影)区,从而防止下层细节可见。在此实施例中,源极区部分902经由电介质层808的开口812可见,且栅极区904经由电介质层808的开口810可见。
到目前为止应了解,提供了一种基于沟槽的LDMOS晶体管。形成于半导体衬底中的沟槽填充有导电材料以形成栅极区。栅极电介质形成为沟槽中的内衬,从而将栅极区与衬底隔离。源极区邻近沟槽形成于半导体衬底的表面处。漏极区与沟槽间隔开预定距离形成于半导体衬底的表面处。电介质层形成于栅极区上方且在沟槽与漏极区之间的漂移区上方跨越预定距离。场板形成于电介质层的一部分上方。选择场板和电介质层的尺寸以实现较高击穿电压和改进的RonA。
虽然本文中参考具体实施例描述了本发明,但是可以在不脱离如所附权利要求书中所阐述的本发明的范围的情况下进行各种修改和改变。因此,说明书和图式应在说明性而非限制性意义上看待,并且预期所有这些修改都包括在本发明的范围内。并不意图将本文中关于具体实施例所描述的任何益处、优点或针对问题的解决方案理解为任何或所有权利要求的关键、必需或必不可少的特征或要素。
此外,如本文中所使用,术语“一”被限定为一个或大于一个。另外,权利要求书中对例如“至少一个”和“一个或多个”等引导性短语的使用不应被解释为暗示由不定冠词“一”引导的另一权利要求要素将含有此类引导的权利要求要素的任何特定权利要求限制于仅含有一个此类要素的发明,即使是当同一权利要求包括引导性短语“一个或多个”或“至少一个”和例如“一”等不定冠词时也如此。这同样适用于定冠词的使用。
除非另有陈述,否则例如“第一”和“第二”等术语用于任意地区别此类术语所描述的要素。因此,这些术语未必意图指示此类要素的时间上的优先级或其它优先级。

Claims (10)

1.一种晶体管,其特征在于,包括:
沟槽,其形成于半导体衬底中,所述沟槽具有第一侧壁和第二侧壁;
栅极区,其包括填充于所述沟槽中的导电材料;
漂移区,其邻近所述第二侧壁形成于所述半导体衬底中,所述漂移区具有第一导电类型;
漏极区,其形成于所述漂移区中,所述漏极区与所述第二侧壁间隔开第一距离;
电介质层,其形成于所述半导体衬底的顶表面处,覆盖所述栅极区和所述第二侧壁与所述漏极区之间的所述漂移区;以及
场板,其形成于所述电介质层上方,所述场板借助于所述电介质层与所述导电材料和所述漂移区隔离。
2.根据权利要求1所述的晶体管,其特征在于,所述场板的第一边缘与所述栅极区的一部分重叠,并且所述场板的第二边缘在所述漂移区上方延伸第二距离,所述第二距离小于所述第一距离。
3.根据权利要求1所述的晶体管,其特征在于,另外包括安置于所述沟槽的侧壁和底部处的栅极电介质,所述栅极电介质将所述导电材料与所述半导体衬底隔离。
4.根据权利要求1所述的晶体管,其特征在于,另外包括邻近所述第一侧壁形成于所述半导体衬底中的源极区,所述电介质层的一部分与所述源极区重叠。
5.一种方法,其特征在于,包括:
在半导体衬底中蚀刻沟槽,所述沟槽具有第一侧壁和第二侧壁;
用导电材料填充所述沟槽以形成栅极区;
在所述半导体衬底中邻近所述第二侧壁形成漂移区,所述漂移区具有第一导电类型;
在所述漂移区中形成漏极区,所述漏极区与所述第二侧壁间隔开第一距离;
将在所述半导体衬底的顶表面处的电介质层图案化以覆盖所述栅极区和在所述第二侧壁与所述漏极区之间的所述漂移区;以及
在所述电介质层上方形成场板,所述场板借助于所述电介质层与所述导电材料和所述漂移区隔离。
6.根据权利要求5所述的方法,其特征在于,形成所述场板包括:
形成竖直部分,所述竖直部分具有与所述电介质层的顶表面接触的底表面和延伸穿过层间电介质(ILD)的顶表面;以及
形成水平部分,所述水平部分与所述竖直部分的所述顶表面接触,所述水平部分通过所述ILD与所述电介质层间隔开。
7.根据权利要求5所述的方法,其特征在于,另外包括在用所述导电材料填充所述沟槽之前在所述沟槽的侧壁和底部处形成栅极电介质,所述栅极电介质将所述导电材料与所述半导体衬底隔离。
8.根据权利要求5所述的方法,其特征在于,另外包括在所述半导体衬底中邻近所述第一侧壁形成源极区,所述电介质层的一部分与所述源极区重叠。
9.一种晶体管,其特征在于,包括:
沟槽,其形成于半导体衬底中,所述沟槽具有第一侧壁和第二侧壁;
栅极区,其包括填充于所述沟槽中的导电材料;
栅极电介质,其安置于所述沟槽的侧壁和底部处,所述栅极电介质将所述导电材料与所述半导体衬底隔离;
漂移区,其邻近所述第二侧壁形成于所述半导体衬底中,所述漂移区具有第一导电类型;
漏极区,其形成于所述漂移区中,所述漏极区与所述第二侧壁间隔开第一距离;
主体区,其邻近所述第一侧壁形成于所述半导体衬底中,所述主体区具有第二导电类型;
电介质层,其形成于所述半导体衬底的顶表面处,覆盖所述栅极区和所述第二侧壁与所述漏极区之间的所述漂移区;以及
场板,其形成于所述电介质层上方,所述场板借助于所述电介质层与所述导电材料和所述漂移区隔离。
10.根据权利要求9所述的晶体管,其特征在于,所述场板的第一边缘与所述栅极区的一部分重叠,并且所述场板的第二边缘在所述漂移区上方延伸第二距离,所述第二距离小于所述第一距离。
CN202011312930.2A 2019-11-22 2020-11-20 横向扩散金属-氧化物半导体晶体管及其形成方法 Pending CN112838124A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/692,126 2019-11-22
US16/692,126 US11227921B2 (en) 2019-11-22 2019-11-22 Laterally-diffused metal-oxide semiconductor transistor and method therefor

Publications (1)

Publication Number Publication Date
CN112838124A true CN112838124A (zh) 2021-05-25

Family

ID=75923219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011312930.2A Pending CN112838124A (zh) 2019-11-22 2020-11-20 横向扩散金属-氧化物半导体晶体管及其形成方法

Country Status (2)

Country Link
US (2) US11227921B2 (zh)
CN (1) CN112838124A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117276329A (zh) * 2023-11-20 2023-12-22 深圳天狼芯半导体有限公司 一种具有沟槽栅的ldmos及制备方法
CN117457749A (zh) * 2023-12-22 2024-01-26 深圳天狼芯半导体有限公司 一种栅极下方具有P型空间层的SiC LMOS及制备方法
CN117727634A (zh) * 2024-02-08 2024-03-19 粤芯半导体技术股份有限公司 金属氧化物半导体器件及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111092123A (zh) * 2019-12-10 2020-05-01 杰华特微电子(杭州)有限公司 横向双扩散晶体管及其制造方法
US11515416B2 (en) 2020-09-23 2022-11-29 Nxp Usa, Inc. Laterally-diffused metal-oxide semiconductor transistor and method therefor

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0173111B1 (ko) 1988-06-02 1999-02-01 야마무라 가쯔미 트렌치 게이트 mos fet
US5640034A (en) 1992-05-18 1997-06-17 Texas Instruments Incorporated Top-drain trench based resurf DMOS transistor structure
KR100370957B1 (ko) * 2000-07-28 2003-02-06 주식회사 하이닉스반도체 트렌치구조의 폴리실리콘 영역을 구비하는 고전압소자 및그 제조방법
US6552389B2 (en) 2000-12-14 2003-04-22 Kabushiki Kaisha Toshiba Offset-gate-type semiconductor device
US7719054B2 (en) * 2006-05-31 2010-05-18 Advanced Analogic Technologies, Inc. High-voltage lateral DMOS device
US7033891B2 (en) 2002-10-03 2006-04-25 Fairchild Semiconductor Corporation Trench gate laterally diffused MOSFET devices and methods for making such devices
US7576388B1 (en) * 2002-10-03 2009-08-18 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US7737526B2 (en) * 2007-03-28 2010-06-15 Advanced Analogic Technologies, Inc. Isolated trench MOSFET in epi-less semiconductor sustrate
US7719076B2 (en) * 2007-08-10 2010-05-18 United Microelectronics Corp. High-voltage MOS transistor device
US8350327B2 (en) * 2008-08-29 2013-01-08 Taiwan Semiconductor Manufacturing Company, Ltd. High voltage device with reduced leakage
US20130020632A1 (en) * 2011-07-18 2013-01-24 Disney Donald R Lateral transistor with capacitively depleted drift region
US8999769B2 (en) * 2012-07-18 2015-04-07 Globalfoundries Singapore Pte. Ltd. Integration of high voltage trench transistor with low voltage CMOS transistor
US8860136B2 (en) * 2012-12-03 2014-10-14 Infineon Technologies Ag Semiconductor device and method of manufacturing a semiconductor device
US8962402B1 (en) * 2013-08-14 2015-02-24 International Business Machines Corporation Lateral diffusion metal oxide semiconductor (LDMOS) device with tapered drift electrode
US20160211348A1 (en) 2015-01-21 2016-07-21 Maxchip Electronics Corp. Trench lateral diffusion metal oxide semiconductor device and manufacturing method of the same
KR102286013B1 (ko) * 2015-10-07 2021-08-05 에스케이하이닉스 시스템아이씨 주식회사 트랜치 절연 필드플레이트 및 금속 필드플레이트를 갖는 수평형 고전압 집적소자
US9818862B2 (en) * 2016-01-05 2017-11-14 Nxp Usa, Inc. Semiconductor device with floating field plates
US10424646B2 (en) 2017-09-26 2019-09-24 Nxp Usa, Inc. Field-effect transistor and method therefor
US10522677B2 (en) 2017-09-26 2019-12-31 Nxp Usa, Inc. Field-effect transistor and method therefor
US10600911B2 (en) 2017-09-26 2020-03-24 Nxp Usa, Inc. Field-effect transistor and method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117276329A (zh) * 2023-11-20 2023-12-22 深圳天狼芯半导体有限公司 一种具有沟槽栅的ldmos及制备方法
CN117457749A (zh) * 2023-12-22 2024-01-26 深圳天狼芯半导体有限公司 一种栅极下方具有P型空间层的SiC LMOS及制备方法
CN117457749B (zh) * 2023-12-22 2024-04-09 深圳天狼芯半导体有限公司 一种栅极下方具有P型空间层的SiC LMOS及制备方法
CN117727634A (zh) * 2024-02-08 2024-03-19 粤芯半导体技术股份有限公司 金属氧化物半导体器件及其制备方法
CN117727634B (zh) * 2024-02-08 2024-05-07 粤芯半导体技术股份有限公司 金属氧化物半导体器件及其制备方法

Also Published As

Publication number Publication date
US11777002B2 (en) 2023-10-03
US20220093752A1 (en) 2022-03-24
US11227921B2 (en) 2022-01-18
US20210159319A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
US10608092B2 (en) Semiconductor power devices manufactured with self-aligned processes and more reliable electrical contacts
EP3460852B1 (en) Field-effect transistor and method therefor
US8252645B2 (en) Method of manufacturing trenched MOSFETs with embedded Schottky in the same cell
US11777002B2 (en) Laterally-diffused metal-oxide semiconductor transistor and method therefor
US8779510B2 (en) Semiconductor power devices manufactured with self-aligned processes and more reliable electrical contacts
US10600911B2 (en) Field-effect transistor and method therefor
US20070004116A1 (en) Trenched MOSFET termination with tungsten plug structures
US7786528B2 (en) Metal schemes of trench MOSFET for copper bonding
US10424646B2 (en) Field-effect transistor and method therefor
US9991378B2 (en) Trench power semiconductor device
US20170200822A1 (en) Double gate trench power transistor and manufacturing method thereof
US20210234023A1 (en) Lateral trench transistor device
EP3955316A2 (en) Transistor device with buried field electrode connection
US11961907B2 (en) Laterally-diffused metal-oxide semiconductor transistor and method therefor
US11335803B2 (en) Source-down transistor with vertical field plate
CN117995839A (zh) 半导体装置及其形成方法
CN116741797A (zh) 半导体结构以及埋入式场板结构的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination