CN112831639B - 一种屈服强度≥700MPa奥氏体不锈钢的生产方法 - Google Patents

一种屈服强度≥700MPa奥氏体不锈钢的生产方法 Download PDF

Info

Publication number
CN112831639B
CN112831639B CN202011619935.XA CN202011619935A CN112831639B CN 112831639 B CN112831639 B CN 112831639B CN 202011619935 A CN202011619935 A CN 202011619935A CN 112831639 B CN112831639 B CN 112831639B
Authority
CN
China
Prior art keywords
stainless steel
nitriding
yield strength
austenitic stainless
700mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011619935.XA
Other languages
English (en)
Other versions
CN112831639A (zh
Inventor
万响亮
柯睿
胡丞杨
甘晓龙
吴开明
赵杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202011619935.XA priority Critical patent/CN112831639B/zh
Publication of CN112831639A publication Critical patent/CN112831639A/zh
Application granted granted Critical
Publication of CN112831639B publication Critical patent/CN112831639B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一种屈服强度≥700MPa奥氏体不锈钢的生产方法:对不锈钢热轧板在室温下冷轧,轧制道次不低于3道次;渗氮退火,渗氮温度在643~765℃;进行冷却,在冷却速度为3~24℃/s下冷却至室温。本发明不仅金相组织为全奥氏体,且不锈钢板厚度在0.93~1.09mm,屈服强度在700~973MPa,抗拉强度在995~1186MPa,延伸率在23.5~46.5%。

Description

一种屈服强度≥700MPa奥氏体不锈钢的生产方法
技术领域
本发明涉及不锈钢的生产方法,具体涉及一种屈服强度≥700MPa奥氏体不锈钢的生产方法。
背景技术
Cr-Ni系奥氏体不锈钢占世界不锈钢总产量的70%以上,该钢具有良好的耐腐蚀性能和高的塑韧性。然而,其晶粒为粗大的面心立方结构,导致形变过程中极易屈服,屈服强度仅为200-300MPa。随着镍资源消耗加剧及镍价格长期处于高位,开发Cr-Mn系的奥氏体不锈钢来减少镍消耗已经被广泛使用。此外,开发超高强度高塑性的奥氏体不锈钢,通过减薄厚度来替代低强度级别的厚钢板,也已成为发展趋势。如何提高Cr-Mn系奥氏体不锈钢强度的同时保持良好的塑性成为现在开发奥氏体不锈钢的热点。
目前,常规方法在提高不锈钢强度的同时会损害塑韧性。奥氏体不锈钢中增加氮含量能通过间隙原子固溶强化提高强度,且对塑性损害较小或者不损害塑性。然而氮在奥氏体不锈钢冶炼时难以添加,且不锈钢中渗氮时氮元素在奥氏体结构中扩散较慢,常规含氮奥氏体不锈钢中氮含量通常仅为0.5%,含氮奥氏体不锈钢强度小于450MPa。晶粒细化也是一种能有效提高强度的同时保持塑性不变或极少损害塑性的方法,其中大压下冷轧结合退火工艺能有效细化奥氏体不锈钢晶粒。前人提出利用冷轧使奥氏体转变为形变马氏体,继续冷变形使形变马氏体由板条状变为胞状结构,随后在合理的退火温度和时间作用下形变马氏体通过扩散或者切变机制逆转变为超细奥氏体晶粒,这种超细无缺陷等轴晶结构的奥氏体不锈钢具有高的强度和塑性。然而,冷轧奥氏体不锈钢在退火过程中发生相逆转变同时也在发生晶粒长大,当马氏体结构还未完全消除时部分奥氏体晶粒就已经长大到微米级,导致该方法获得的具有全奥氏体结构的细晶不锈钢屈服强度难以超过700MPa。如何制备超强度(屈服强度在700-1000MPa)和高塑性(延伸率在20%-50%)的全奥氏体结构不锈钢难度极大。
中国专利公开号为CN110923430A的文献中,公开了《一种具有低马氏体含量的高强度和高塑性304奥氏体不锈钢的制备方法》。该文献中介绍了对粗晶304不锈钢进行小角度循环往复扭转变形处理,从而在304不锈钢的原始粗晶结构中引入梯度分布的位错和纳米孪晶变形微结构,同时在材料表层的马氏体组织体积含量低于7%。处理后的不锈钢实施例中屈服强度和延伸率分别为306-442MPa和53.7-66.8%。但是该工艺制备的不锈钢会有部分应变诱导马氏体组织,不能算全奥氏体结构;且该工艺制备的不锈钢屈服强度最大仅为442MPa,远小于本发明制备的屈服强度大于700MPa的全奥氏体结构不锈钢。
中国专利公开号为CN106574351A的文献中,公开了一种《高强度奥氏体不锈钢及其制备方法》。该文献中介绍了对奥氏体不锈钢进行三次冷轧-退火工艺处理,不小于50%的压下量进行冷轧,随后在700-1050℃保温1-400s后,制备了晶粒尺寸小于7微米的奥氏体不锈钢。该方法制备的不锈钢屈服强度为477-566MPa,抗拉强度为802-886MPa,延伸率为25-40%。该工艺虽然能制备全奥氏体结构的细晶不锈钢,但是细晶强化仅能将屈服强度提高到566MPa,难以得到屈服强度大于700MPa的全奥氏体结构不锈钢。
发明内容
本发明的目的在于解决现有技术存在的强度级别与不锈钢为全奥氏体组织不能同时满足要求,且强度级别低的不足,提供一种厚度在0.93~1.09mm,屈服强度在700~973MPa,抗拉强度在995~1186MPa,延伸率在23.5~46.5%的全奥氏体不锈钢的生产方法。
实现上述目的的措施:
一种屈服强度≥700MPa奥氏体不锈钢的生产方法,其步骤:
1)对不锈钢热轧板在室温下进行冷轧,轧制道次不低于3道次,轧制至0.93~1.09mm厚度;每道次压下率控制在25~35%;
2)进行渗氮退火,渗氮温度控制在643~765℃,渗氮时间在22~903s,渗氮气氛为10%NH3+60%N2+30%H2混合气,混合气流量在1.6~2.2L/min;
3)进行冷却,在冷却速度为3~24℃/s下冷却至室温。
优选地:所述渗氮温度控制在643~702℃,渗氮时间在126~903s,混合气流量在1.8~2.0L/min。
优选地:所述冷却速度为8~21℃/s。
本发明主要工艺的机理及作用
本发明之所以控制冷轧每道次压下率在25~35%,是由于若每道次压下率过小,难以得到由大量形变马氏体构成的冷轧板,导致后续退火过程中氮原子渗入量较低,且退火后难以得到超细晶粒的奥氏体不锈钢;若每道次压下率过大,易损伤设备;若每道次压下率不均衡,易导致冷轧板中产生的形变马氏体分布不均,在后续退火过程中不锈钢组织的部分区域易残留马氏体结构或者奥氏体晶粒粗大。
本发明之所以进行渗氮,且控制渗氮温度控制在643~765℃,渗氮时间在22~903s,渗氮气氛为10%NH3+60%N2+30%H2混合气,混合气流量在1.6~2.2L/min,优选地渗氮温度控制在643~702℃,渗氮时间在126~903s,混合气流量在1.8~2.0L/min,是由于若渗氮退火采用低的温度,使得钢中氮的扩散系数较小,难以获得较高的渗氮量;同时低的退火温度不会使马氏体逆转变为奥氏体结构。若渗氮退火采用高的温度,可导致马氏体结构快速切变为奥氏体组织,随后奥氏体晶粒迅速长大粗化;且奥氏体中氮扩散系数太小,导致氮难以渗入到钢中。若渗氮退火采用短的时间,马氏体难以充分通过逆相变获得全奥氏体组织。若渗氮退火采用长的时间,极易导致通过逆相变获得全奥氏体晶粒迅速粗化。这都不利于得到组织为超细全奥氏体晶粒的高氮不锈钢。若渗氮退火气氛中NH3的体积百分含量小于10%,难以达到最佳渗氮效果;若渗氮退火气氛中NH3的体积百分含量大于10%,渗氮效果变化幅度不大,且不经济环保。这都不利于得到高的氮含量和超细奥氏体结构。
本发明与现有技术相比,其特点:不仅金相组织为全奥氏体,且不锈钢板厚度在0.93~1.09mm,屈服强度在700~973MPa,抗拉强度在995~1186MPa,延伸率在23.5~46.5%。
附图说明
图1为不锈钢经本发明渗氮退火后的实施例的应力应变曲线图;
图2为不锈钢经本发明渗氮退火后的组织形貌图。
具体实施方式
下面结合具体实施例对本发明进行进一步描述:
表1为本发明各实施例及对比例工艺主要参数控制列表;
表2为本发明各实施例及对比例力学性能检测情况列表。
本发明各实施例均按照以下步骤生产:
1)对不锈钢热轧板在室温下进行冷轧,轧制道次不低于3道次,轧制至0.93~1.09mm厚度;每道次压下率控制在25~35%;
2)进行渗氮,渗氮温度控制在643~765℃,渗氮时间在22~903s,渗氮气氛为10%NH3+60%N2+30%H2混合气,混合气流量在1.6~2.2L/min;
3)进行冷却,在冷却速度为3~24℃/s下冷却至室温。
表1本发明各实施例及对比例工艺主要参数控制列表
Figure BDA0002875884210000041
表2本发明各实施例及对比例力学性能检测情况列表
Figure BDA0002875884210000051
由上述表2可以看出,本发明实施例中的奥氏体不锈钢热轧板坯经过一系列轧制热处理,由本发明实施例1-6中产品相对于不同渗氮退火温度的对比例1和对比例2,在屈服强度、抗拉强度方面均具有良好的表现,尤其是屈服强度、抗拉强度等明显高于对比例,本发明实施例1-6中产品的屈服强度为701-973MPa,抗拉强度为995-1186MPa,延伸率为23.5-46.5%,成品厚度为0.93-1.09mm。
本发明的实施例仅为最佳例举,并非对技术方案的限定性实施。

Claims (1)

1.一种屈服强度≥700MPa奥氏体不锈钢的生产方法,其步骤:
1)对不锈钢热轧板在室温下进行冷轧,轧制道次不低于3道次,轧制至0.93~1.09mm厚度;每道次压下率控制在25~35% ;
2)进行渗氮退火,渗氮温度控制在643~691℃,渗氮时间在126~168s,渗氮气氛为10%NH3+60%N2+30%H2混合气 ,混合气流量在1.6~2.2L/min;
3)进行冷却,在冷却速度为3~24℃/s下冷却至室温。
CN202011619935.XA 2020-12-31 2020-12-31 一种屈服强度≥700MPa奥氏体不锈钢的生产方法 Active CN112831639B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011619935.XA CN112831639B (zh) 2020-12-31 2020-12-31 一种屈服强度≥700MPa奥氏体不锈钢的生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011619935.XA CN112831639B (zh) 2020-12-31 2020-12-31 一种屈服强度≥700MPa奥氏体不锈钢的生产方法

Publications (2)

Publication Number Publication Date
CN112831639A CN112831639A (zh) 2021-05-25
CN112831639B true CN112831639B (zh) 2022-11-11

Family

ID=75925757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011619935.XA Active CN112831639B (zh) 2020-12-31 2020-12-31 一种屈服强度≥700MPa奥氏体不锈钢的生产方法

Country Status (1)

Country Link
CN (1) CN112831639B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113957220A (zh) * 2021-09-07 2022-01-21 材谷金带(佛山)金属复合材料有限公司 一种耐高温磨损的高锰奥氏体钢板生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1091780A (zh) * 1993-03-01 1994-09-07 大同酸素株式会社 氮化不锈钢产品
JPH0978224A (ja) * 1995-09-08 1997-03-25 Kagoshima Pref Gov オーステナイト系ステンレス鋼表面の窒化処理方法
JP2000169952A (ja) * 1998-12-04 2000-06-20 Sumitomo Metal Ind Ltd 耐孔食性に優れたオーステナイト系ステンレス鋼板の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3139359A (en) * 1961-06-12 1964-06-30 Jones & Laughlin Steel Corp Method of producing high strength thin steel
DE4333917C2 (de) * 1993-10-05 1994-06-23 Hans Prof Dr Ing Berns Randaufsticken zur Erzeugung einer hochfesten austenitischen Randschicht in nichtrostenden Stählen
CN101648334A (zh) * 2008-08-15 2010-02-17 宝山钢铁股份有限公司 一种表面性能优良的奥氏体不锈钢冷轧板制造技术
DE102014116929B3 (de) * 2014-11-19 2015-11-05 Thyssenkrupp Ag Verfahren zur Herstellung eines aufgestickten Verpackungsstahls, kaltgewalztes Stahlflachprodukt und Vorrichtung zum rekristallisierenden Glühen und Aufsticken eines Stahlflachprodukts
CN106167849B (zh) * 2016-06-17 2018-05-04 浙江大学 一种高强高韧全奥氏体不锈钢的加工方法
CN106048409A (zh) * 2016-06-27 2016-10-26 武汉科技大学 一种提高301ln奥氏体不锈钢力学性能的方法
CN106637058B (zh) * 2016-12-21 2019-06-25 机械科学研究总院青岛分院有限公司 一种奥氏体不锈钢的低温气体渗氮方法
CN110241364B (zh) * 2019-07-19 2021-03-26 东北大学 一种高强塑纳米/亚微米晶冷轧304不锈钢带及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1091780A (zh) * 1993-03-01 1994-09-07 大同酸素株式会社 氮化不锈钢产品
JPH0978224A (ja) * 1995-09-08 1997-03-25 Kagoshima Pref Gov オーステナイト系ステンレス鋼表面の窒化処理方法
JP2000169952A (ja) * 1998-12-04 2000-06-20 Sumitomo Metal Ind Ltd 耐孔食性に優れたオーステナイト系ステンレス鋼板の製造方法

Also Published As

Publication number Publication date
CN112831639A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
CN104328360B (zh) 双相孪生诱导塑性超高强度汽车钢板及其制备工艺
WO2018076965A1 (zh) 一种抗拉强度在1500MPa以上且成形性优良的冷轧高强钢及其制造方法
CN114891961A (zh) 冷轧热处理钢板
RU2001119981A (ru) Высокопрочные трехфазные стали с превосходной вязкостью при криогенных температурах
EP4159886A1 (en) Ultrahigh-strength dual-phase steel and manufacturing method therefor
JP4189133B2 (ja) 普通低炭素鋼を低ひずみ加工・焼鈍して得られる超微細結晶粒組織を有する高強度・高延性鋼板およびその製造方法
CN110343970B (zh) 一种具较低Mn含量的热轧高强塑积中锰钢及其制备方法
CN105925896B (zh) 一种1000MPa级高强度高塑性热轧钢板及其制造方法
CN110408861B (zh) 一种具较低Mn含量的冷轧高强塑积中锰钢及其制备方法
EP4317512A1 (en) Low-carbon, low-alloy and high-formability dual-phase steel having tensile strength of greater than or equal to 590 mpa, hot-dip galvanized dual-phase steel, and manufacturing method therefor
WO2009008548A1 (ja) 降伏強度が低く、材質変動の小さい高強度冷延鋼板の製造方法
CN115404382B (zh) 一种高强高塑性钛合金及其制备方法
CN115181916A (zh) 1280MPa级别低碳低合金超高强度热镀锌双相钢及快速热处理热镀锌制造方法
CN112831639B (zh) 一种屈服强度≥700MPa奥氏体不锈钢的生产方法
CN112831640B (zh) 一种屈服强度≥980MPa奥氏体不锈钢的生产方法
CN115522126B (zh) 一种具有良好耐磨性能的中锰钢及生产方法
CN108411200B (zh) 一种高加工硬化率热轧q&p钢板及其制备方法
CN112662932B (zh) 一种twip钢及其制备方法
CN112662931B (zh) 一种同时提高奥氏体钢强度和塑性的方法及其产品
CN111647803B (zh) 一种含铜高强钢及其制备方法
Zhao et al. Microstructure evolution and mechanical properties of 1 000 MPa cold rolled dual-phase steel
CN115537677B (zh) 一种具有双峰组织高强高塑奥氏体高锰钢及生产方法
CN113814269B (zh) 细化低碳贝氏体钢中m-a组元的轧制工艺
CN116574978B (zh) 一种多阶段热处理细晶压力容器钢板及其制造方法
CN115216595B (zh) 一种冷轧复相钢及其退火方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant