CN112824921A - 磁共振场飘补偿方法、调节方法、场飘补偿系统以及磁共振系统 - Google Patents

磁共振场飘补偿方法、调节方法、场飘补偿系统以及磁共振系统 Download PDF

Info

Publication number
CN112824921A
CN112824921A CN201911139875.9A CN201911139875A CN112824921A CN 112824921 A CN112824921 A CN 112824921A CN 201911139875 A CN201911139875 A CN 201911139875A CN 112824921 A CN112824921 A CN 112824921A
Authority
CN
China
Prior art keywords
coil
compensation
temperature
field
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911139875.9A
Other languages
English (en)
Other versions
CN112824921B (zh
Inventor
杨绩文
刘曙光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai United Imaging Healthcare Co Ltd
Original Assignee
Shanghai United Imaging Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai United Imaging Healthcare Co Ltd filed Critical Shanghai United Imaging Healthcare Co Ltd
Priority to CN201911139875.9A priority Critical patent/CN112824921B/zh
Publication of CN112824921A publication Critical patent/CN112824921A/zh
Application granted granted Critical
Publication of CN112824921B publication Critical patent/CN112824921B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities

Abstract

本申请提供一种磁共振场飘补偿方法、调节方法、场飘补偿系统以及磁共振系统,场飘温升模型为关于温升与场飘的变化关系模型。通过场飘温升模型可以获得任意时刻温升对应的场飘。根据公式I=‑f(t)/s可以获得补偿电流I。将补偿线圈的电流设置为补偿电流I。此时,补偿电流I为负值,可以理解为补偿电流是由场飘产生的。通过将补偿线圈的电流设置为补偿电流,可以使得补偿线圈产生与场飘大小相同,正负相反的中心频率,从而使得补偿线圈产生的磁场与场飘引起的磁场飘移相抵消,使维持在一个固定的中心频率,进而保持磁共振系统的中心频率的稳定性。

Description

磁共振场飘补偿方法、调节方法、场飘补偿系统以及磁共振 系统
技术领域
本申请涉及磁共振技术领域,特别是涉及一种磁共振场飘补偿方法、调节方法、场飘补偿系统以及磁共振系统。
背景技术
在磁共振系统中,射频脉冲可以激发质子产生共振,当质子的进动频率与射频脉冲的中心频率相同时,就能进行能量交换,低能的质子获得能量进入高能状态,即产生核磁共振现象。射频脉冲的中心频率是磁共振成像中的一个很敏感的参数,如果中心频率不准确会直接导致得到的磁共振图像错位。当磁共振系统在运行序列时,梯度线圈发热会导致磁共振系统中心频率改变,即发生场飘。其中,场飘主要是由于梯度线圈内部的被动匀场材料温度升高后磁性下降而引起的。
传统的磁共振系统场飘解决方法主要是通过在被动匀场材料旁边放置冷却水管以降低温度,或者将匀场材料安装在磁体内壁并在匀场周围布置一些水管以降低匀场材料的温度。但是,随着磁共振系统运行长时间高强度序列时,水冷的冷却能力已经饱和,匀场材料的温度将会继续升高,仍然会存在场飘的问题。
发明内容
基于此,有必要针对传统的磁共振系统场飘解决方法随着磁共振系统长时间运行仍然存在场飘的问题,提供一种无需序列介入,且不会随着磁共振系统运行时间长而导致场飘问题的场飘补偿方法、成像方法、场飘补偿系统以及磁共振系统。
本申请提供一种磁共振场飘补偿方法,应用于磁共振系统,所述磁共振系统包括梯度线圈与补偿线圈。所述磁共振场飘补偿方法包括:
S10,提供场飘温升模型,所述场飘温升模型为关于所述梯度线圈的温度与场飘的关系模型;
S20,获取所述磁共振系统未运行时所述梯度线圈的初始温度;
S30,激发所述磁共振系统,并获取所述梯度线圈在任一时刻的工作温度;
S40,根据所述初始温度与所述工作温度,计算所述工作温度与所述初始温度的温升;
S50,基于所述温升与所述场飘温升模型,获得所述温升对应的场飘;
S60,获取所述补偿线圈的敏感度s,并根据I=-f(t)/s获得补偿电流I,其中,f(t)为所述温升对应的所述场飘;
S70,将所述补偿线圈的电流设置为所述补偿电流I。
在一个实施例中,所述场飘温升模型包括关于所述温升与所述场飘的关系曲线f(t)=k(t)(t-t0),其中,f(t)为所述场飘,t为所述工作温度,t0为所述初始温度,k(t)为系数。
在一个实施例中,所述步骤S10包括:
S110,对所述磁共振系统进行匀场;
S120,所述磁共振系统完成匀场后,放入测试水模进行扫描;
S130,获取所述磁共振系统的初始中心频率与所述梯度线圈的初始温度;
S140,激发所述磁共振系统运行,获取不同时刻的中心频率,并根据所述初始中心频率获取不同时刻对应的场飘;
S150,获取不同时刻的所述梯度线圈的温度,并根据所述初始温度获取不同时刻对应的温升,直至所述梯度线圈的温度稳定;
S160,根据不同时刻的所述场飘与所述温升,获取所述场飘温升模型,其中,所述场飘与所述温升一一对应。
在一个实施例中,在所述步骤S160中,通过最小二乘法或支持向量机算法对不同时刻的所述场飘与所述温升进行曲线拟合,获得所述场飘温升模型。
在一个实施例中,一种磁共振系统调节方法,所述磁共振系统包括磁体和梯度线圈,所述磁体产生主磁场,所述梯度线圈中或者周围设有补偿线圈,所述补偿线圈用于产生局部磁场,所述方法包括:
在所述梯度线圈产生梯度脉冲前,获取所述梯度线圈的初始温度;
在所述梯度线圈产生梯度脉冲后或同时,获取所述梯度线圈的工作温度;
根据所述梯度线圈的初始温度、工作温度确定所述梯度线圈的温升;
根据所述温升,计算所述主磁场的场飘,所述梯度的温度变化与所述主磁场的场飘具有设定关系;
根据所述主磁场的场飘设置所述补偿线圈的参数,以使得所述补偿线圈产生的局部磁场完全或基本补偿所述主磁场的场飘。
在一个实施例中,所述补偿线圈的参数包括补偿线圈的电流或者所述补偿线圈相对于所述梯度线圈的分布。
在一个实施例中,一种场飘补偿系统包括温度监测装置、场飘补偿控制装置以及补偿线圈电源。所述温度监测装置设置于所述磁共振系统的梯度线圈,用于监测所述梯度线圈的温度。所述场飘补偿控制装置与所述温度监测装置连接,用于获取所述梯度线圈的温度,根据所述梯度线圈的温度变化获取场飘,并根据所述场飘获取补偿电流。所述补偿线圈电源与所述场飘补偿控制装置连接,且所述补偿线圈电源与所述磁共振系统的补偿线圈连接,用于将所述补偿线圈的电流设置为所述补偿电流。
在一个实施例中,一种磁共振系统包括磁体、梯度线圈以及补偿线圈。所述磁体环绕形成孔腔并用于产生主磁场。所述梯度线圈设置在所述孔腔内并用于产生形成梯度场的梯度脉冲,所述梯度线圈在产生梯度脉冲前后会产生温升,且所述温升使所述主磁场产生场飘。所述补偿线圈临近所述梯度线圈设置,且通过所述补偿线圈能够产生局部磁场,所述局部磁场能够完全或基本补偿所述主磁场的场飘。
在一个实施例中,所述磁共振系统还包括传感器。所述传感器设置在所述梯度线圈上以用于监测所述梯度线圈的初始温度和/或工作温度,所述温升包括所述梯度脉冲未产生前的初始温度与所述梯度脉冲产生后的工作温度的差值。所述补偿线圈电源与所述补偿线圈电连接用于为所述补偿线圈提供补偿电流,且所述补偿电流根据所述温升确定。
在一个实施例中,所述磁共振系统还包括处理器。所述处理器适用于在梯度脉冲产生后获取主磁场分布图,且通过所述主磁场分布图获取所述主磁场的场飘。
本申请提供一种上述磁共振场飘补偿方法,在所述步骤S10中,所述场飘温升模型为所述场飘随着所述梯度线圈的温度变化而发生变化的变化关系模型。在所述步骤S20中,所述初始温度是指所述磁共振系统未进行序列运行时的所述梯度线圈的温度。在所述步骤S30中,激发所述磁共振系统运行后,由于梯度线圈内部的被动匀场材料温度升高而导致所述梯度线圈发热。从而,梯度线圈发热导致磁共振系统中心频率发生改变,形成场飘。其中,场飘是指某一时刻的中心频率与初始中心频率的变化量。在所述步骤S40中,所述温升为任一时刻的所述梯度线圈的工作温度与所述初始温度的变化量,为正。
在所述步骤S50中,所述场飘温升模型为关于所述温升与所述场飘的变化关系模型。通过所述场飘温升模型可以计算,获得任意时刻所述温升对应的所述场飘。在所述步骤S60中,根据公式据I=-f(t)/s可以获得所述补偿电流I。在所述步骤S70中,将所述补偿线圈的电流设置为所述补偿电流。此时,所述补偿电流I为负值,可以理解为所述补偿电流是由所述场飘产生的。通过将所述补偿线圈的电流设置为所述补偿电流,可以使得所述补偿线圈产生与所述场飘大小相同,正负相反的中心频率,从而使得所述补偿线圈产生的磁场与场飘引起的磁场飘移相抵消。通过所述磁共振场飘补偿方法补偿后的所述磁共振系统的中心频率场飘为0Hz,使得所述磁共振系统维持在一个固定的中心频率,进而保持所述磁共振系统的中心频率的稳定性。
同时,由于所述补偿线圈的所述补偿电流,会根据所述梯度线圈的温度进行独立的自动调节,无需序列介入,可以减少序列的复杂度,且不会额外增加扫描时间,从而提高了所述磁共振系统的工作效率。
附图说明
图1为本申请提供的磁共振场飘补偿方法流程结构示意图;
图2为本申请提供的一个实施例中场飘温升模型的曲线示意图;
图3为本申请提供的场飘补偿系统的整体原理框图;
图4为本申请提供的场飘补偿系统的具体原理框图;
图5为本申请提供的磁共振系统硬件结构示意图;
图6a为一个实施例中补偿线圈的位置结构示意图,图6b为另一个实施例中补偿线圈的位置结构示意图;
图7为本申请提供的补偿线圈的整体结构示意图;
图8为本申请提供的磁共振成像方法流程示意图。
附图标记说明
场飘补偿系统10、温度监测装置110、场飘补偿控制装置120、数据处理模块121、电源控制模块122、补偿线圈电源130、梯度线圈1、补偿线圈2、磁体100、梯度组件200、射频组件300、谱仪系统400、计算机系统500。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
本申请涉及一种磁共振系统,该磁共振系统包括磁体和梯度线圈,其中:磁体环绕形成孔腔并用于产生主磁场;梯度线圈,设置在孔腔内并用于产生形成梯度场的梯度脉冲。梯度线圈在产生梯度脉冲前后会产生温升(温度变化),梯度的温升会使主磁场产生场飘(主磁场的中心频率发生偏移/飘移)。或者,在磁共振系统运行时时,由于病人对背景磁场的影响、磁性介质温度的影响,主磁场的中心频率也会有一定的飘移。为了补偿上述梯度的温使主磁场产生的场飘,本申请在临近梯度线圈的位置设置补偿线圈,通过该补偿线圈能够产生局部磁场,且局部磁场能够完全或基本补偿所述主磁场的场飘。
在一个实施例中,磁共振系统主磁场可以由如下表达式描述:
Figure BDA0002280614930000061
其中,
Figure BDA0002280614930000062
是主磁场的中心频率,
Figure BDA0002280614930000063
等是一阶及以上的谐波(Harmonics)系数。主磁场的场飘发生时,主磁场的中心频率和一阶及以上的谐波系数都会发生变化,而主磁场的中心频率影响最大。本发明实施例的技术方案用来解决主磁场的中心频率
Figure BDA0002280614930000064
场飘的问题。
在一个实施例中,在梯度线圈上设置有传感器,该传感器用于监测梯度线圈的初始温度或工作温度,梯度线圈的温升为梯度脉冲未产生前的初始温度与梯度脉冲产生后的工作温度的差值。补偿线圈电连接有补偿线圈电源,该补偿线圈电源用于为补偿线圈提供补偿电流,且补偿电流根据梯度的温升确定。
在一个实施例中,磁共振系统包括处理器,该处理器适用于在梯度脉冲产生后获取主磁场分布图,且通过主磁场分布图获取主磁场的场飘。
与上述磁共振系统相对应的,本申请提出一种磁共振系统调节方法,该方法包括:获取主磁场的场飘;根据主磁场的场飘设置补偿线圈的参数,以使得所述补偿线圈产生的局部磁场完全或基本补偿所述主磁场的场飘。可选地,补偿线圈的参数可包括补偿线圈的电流或者所述补偿线圈相对于梯度线圈的分布。
在一个实施例中,主磁场的场飘通过监测梯度线圈的温度确定:在梯度线圈产生梯度脉冲前,获取梯度线圈的初始温度;在梯度线圈产生梯度脉冲后或同时,获取梯度线圈的工作温度;根据梯度线圈的初始温度、工作温度确定梯度线圈的温度升;根据所述温升,计算主磁场的场飘,梯度的温度变化与主磁场的场飘具有设定关系。
在一个实施例中,主磁场的场飘通过获取相位图确定:正式扫描前,采集患者的相位图;根据相位图计算当前磁场中心频率;根据当前磁场中心频率与预设的磁场中心频率差值,确定主磁场的场飘。
请参见图1,本申请提供一种磁共振场飘补偿方法,应用于磁共振系统,所述磁共振系统包括梯度线圈与补偿线圈。所述磁共振场飘补偿方法包括:
S10,提供场飘温升模型,所述场飘温升模型为关于所述梯度线圈的温度与场飘的关系模型;
S20,获取所述磁共振系统未运行时所述梯度线圈的初始温度;
S30,激发所述磁共振系统,并获取所述梯度线圈在任一时刻的工作温度;
S40,根据所述初始温度与所述工作温度,计算所述工作温度与所述初始温度的温升;
S50,基于所述温升与所述场飘温升模型,获得所述温升对应的场飘;
S60,获取所述补偿线圈的敏感度s,并根据I=-f(t)/s获得补偿电流I,其中,f(t)为所述温升对应的所述场飘;
S70,将所述补偿线圈的电流设置为所述补偿电流I。
所述磁共振系统包括梯度线圈与补偿线圈。所述补偿线圈又称为A00线圈,所述补偿线圈可以设置在所述梯度线圈的内部,比如所述梯度线圈的主线圈与次线圈之间。
在所述步骤S10中,所述场飘温升模型为所述场飘随着所述梯度线圈的温度变化而发生变化的变化关系模型。在所述步骤S20中,所述初始温度是指所述磁共振系统未进行序列运行时的所述梯度线圈的温度。在所述步骤S30中,激发所述磁共振系统运行后,由于梯度线圈内部的被动匀场材料温度升高而导致所述梯度线圈发热。从而,梯度线圈发热导致磁共振系统中心频率发生改变,形成场飘。其中,场飘是指某一时刻的中心频率与初始中心频率的变化量。在所述步骤S40中,所述温升为任一时刻的所述梯度线圈的工作温度与所述初始温度的变化量,为正。
在所述步骤S50中,所述场飘温升模型为关于所述温升与所述场飘的变化关系模型。通过所述场飘温升模型可以计算,获得任意时刻所述温升对应的所述场飘。在所述步骤S60中,根据公式据I=-f(t)/s可以获得所述补偿电流I。其中,敏感度s为当线圈通1安培电流时,测量线圈产生的磁场,此即为线圈的敏感度。在所述步骤S70中,将所述补偿线圈的电流设置为所述补偿电流。此时,所述补偿电流I为负值,可以理解为所述补偿电流是由所述场飘产生的。通过将所述补偿线圈的电流设置为所述补偿电流,可以使得所述补偿线圈产生与所述场飘大小相同,正负相反的中心频率,从而使得所述补偿线圈产生的磁场与场飘引起的磁场飘移相抵消。通过所述磁共振场飘补偿方法补偿后的所述磁共振系统的中心频率场飘为0Hz,使得所述磁共振系统维持在一个固定的中心频率,进而保持所述磁共振系统的中心频率的稳定性。
同时,由于所述补偿线圈的所述补偿电流,会根据所述梯度线圈的温度进行独立的自动调节,无需序列介入,可以减少序列的复杂度,且不会额外增加扫描时间,从而提高了所述磁共振系统的工作效率。
请参见图2,在一个实施例中,所述场飘温升模型包括关于所述温升与所述场飘的关系曲线f(t)=k(t)(t-t0),其中,f(t)为所述场飘,t为所述工作温度,t0为所述初始温度,k(t)为系数。
所述场飘温升模型为关于所述温升与所述场飘的关系曲线,t0为所述梯度线圈的所述初始温度,t为所述梯度线圈在任一时刻的工作温度。在所述场飘温升模型中,在某一时刻获取所述工作温度,并将所述工作温度与所述初始温度作比较,获得在某一时刻对应的温升。通过所述场飘温升模型,获得所述温升对应的所述场飘,即可获知在某一时刻所述场飘为多少。
具体地,所述温升与所述场飘的关系曲线(所述场飘温升模型)可以根据所述磁共振系统的运行时的温升、场飘参数进行曲线拟合获得。对于每一个不同的所述磁共振系统可以对应着不同的所述场飘温升模型,但仍然满足关于所述温升与所述场飘的关系曲线f(t)=k(t)(t-t0)关系。因此,在通过所述磁共振场飘补偿方法进行场飘补偿时,可以针对每一个不同的所述磁共振系统进行更加准确地场飘补偿,获得更加准确地磁共振图像。
请参见图2,在一个实施例中,所述步骤S10包括:
S110,对所述磁共振系统进行匀场;
S120,所述磁共振系统完成匀场后,放入测试水模进行扫描;
S130,获取所述磁共振系统的初始中心频率与所述梯度线圈的初始温度;
S140,激发所述磁共振系统运行,获取不同时刻的中心频率,并根据所述初始中心频率获取不同时刻对应的场飘;
S150,获取不同时刻的所述梯度线圈的温度,并根据所述初始温度获取不同时刻对应的温升,直至所述梯度线圈的温度稳定;
S160,根据不同时刻的所述场飘与所述温升,获取所述场飘温升模型,其中,所述场飘与所述温升一一对应。
所述磁共振系统可以在装机场地进行匀场,完成匀场后放入测试水模进行扫描。在所述步骤S120中,所述测试水模包括水模体和盛装于所述水模体中的溶液,溶液包括水和溶于所述水中的有机溶质。在所述步骤S130中,所述初始中心频率和所述初始温度为所述磁共振系统未运行高功率序列时进行检测的,用以作为初始参考数据。在所述步骤S140中,激发所述磁共振系统运行高功率的序列,间隔一定时间进行检测,间隔时间可以为2分钟~6分钟。从而可以获取不同时刻对应的中心频率,并与所述初始中心频率对比,获得不同时刻对应的所述场飘。在所述步骤S150中,根据不同时刻的所述梯度线圈的温度,并与所述初始温度对比,获得不同时刻对应的所述温升。在所述步骤S160中,所述场飘与所述温升一一对应,可以理解为在某一时刻对应的所述场飘与所述温升。
根据所述S110至所述步骤S160可以模拟出所述磁共振系统的实际运行时,磁共振系统中心频率和梯度线圈温度变化关系,获得任一时刻对应的所述场飘与所述温升。从而,通过所述S110至所述步骤S160更加准确地获取所述磁共振系统在运行时所述场飘与所述温升的形成一一对应关系,构建所述场飘温升模型。
在一个实施例中,在所述步骤S160中,通过最小二乘法对不同时刻的所述场飘与所述温升进行曲线拟合,获得所述场飘温升模型。
在所述步骤S160中,通过最小二乘法对多个时刻对应的所述场飘与所述温升参数进行曲线拟合,可以寻找较为匹配的曲线,更好的体现出所述场飘与所述温升的变化关系,进而更加准确地拟合出所述场飘温升模型。
在一个实施例中,在所述步骤S160中,通过支持向量机算法对不同时刻的所述场飘与所述温升进行曲线拟合,获得所述场飘温升模型。
支持向量机算法可以解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够应用到函数拟合等问题中。通过支持向量机算法,利用少量的所述场飘与所述温升数据(小样本),就可以进行曲线拟合,获得更加准确地所述场飘温升模型。其中,对不同时刻的所述场飘与所述温升进行曲线拟合获得所述场飘温升模型时,可以采用matlab软件、c/c++软件等进行非线性曲线拟合。
在一个实施例中,所述磁共振场飘补偿方法还包括:
S80,在所述磁共振系统运行过程中,间隔3~8分钟执行所述步骤S30至所述步骤S70一次,直至所述磁共振系统运行停止。
在所述步骤S80中,在所述磁共振系统运行过程中,可以间隔几分钟就执行所述步骤S30至所述步骤S70一次,进而对所述磁共振系统进行实时在线场飘补偿,以使得通过所述磁共振系统获得的磁共振图像更加准确。
请参见图2,在一个实施例中,通过所述磁共振场飘补偿方法对所述磁共振系统进行场飘补偿。在某一时刻所述温升为1度,此时,根据所述场飘温升模型可以获知所述场飘为79HZ。假设所述补偿线圈的敏感度为0.5Hz/mA,则根据公式I=-f/s计算获得所述补偿电流为-158mA。根据所述补偿电流-158mA给所述补偿线圈设置-158mA电流,可以使得所述补偿线圈产生与所述场飘大小相同,正负相反的中心频率,从而使得所述补偿线圈产生的磁场与场飘引起的磁场飘移相抵消。通过所述磁共振场飘补偿方法补偿后的所述磁共振系统的中心频率场飘为0Hz,使得所述磁共振系统维持在一个固定的中心频率,进而保持所述磁共振系统的中心频率的稳定性。
在一个实施例中,一种磁共振系统成像方法包括如上述实施例中任一项所述的磁共振场飘补偿方法。
所述磁共振系统成像方法通过所述的磁共振场飘补偿方法可以使得最终获得的磁共振图像更加准确地反应被测目标的扫描部位。
在一个实施例中,一种场飘补偿系统10包括温度监测装置110、场飘补偿控制装置120以及补偿线圈电源130。所述温度监测装置110设置于所述磁共振系统的梯度线圈1,用于监测所述梯度线圈的温度。所述场飘补偿控制装置120与所述温度监测装置110连接,用于获取所述梯度线圈的温度,根据所述梯度线圈的温度变化获取场飘,并根据所述场飘获取补偿电流。所述补偿线圈电源130与所述场飘补偿控制装置120连接。所述补偿线圈电源130与所述磁共振系统的补偿线圈连接,用于将所述补偿线圈的电流设置为所述补偿电流。
所述温度监测装置110可以为温度传感器,设置于所述梯度线圈1,用于实时监测所述梯度线圈的温度,并将所述梯度线圈的温度信息发送至所述场飘补偿控制装置120。所述场飘补偿控制装置120设置有所述场飘温升模型,基于所述场飘温升模型和所述梯度线圈的温度,获取对应的所述场飘。所述场飘补偿控制装置120根据所述场飘计算获取所述补偿线圈对应的所述补偿电流,并控制所述补偿线圈电源130设置所述补偿线圈的电流为所述补偿电流,以产生与场飘大小相同,正负相反的中心频率,从而使得所述补偿线圈产生的磁场与场飘引起的磁场飘移相抵消,从而这样便可以保持所述磁共振系统中心频率的稳定性。
所述场飘补偿控制装置120包括但不限于中央处理器(Center Processor Unit,CPU)、嵌入式微控制器(Micro Controller Unit,MCU)、嵌入式微处理器(Micro ProcessorUnit,MPU)、嵌入式片上系统(System on Chip,SoC)。所述补偿线圈电源130控制输入端与所述场飘补偿控制装置120连接,用于接收所述场飘补偿控制装置120发送的电流指令。所述补偿线圈电源130输出控制端与所述补偿线圈连接,用于控制调节所述补偿线圈的电流为所述补偿电流,进而通过改变所述补偿线圈产生的磁场对所述磁共振系统进行场飘补偿。
同时,由于所述场飘补偿系统10独立于所述磁共振系统,并不依赖所述磁共振系统中任何的器件。因此,所述补偿线圈的所述补偿电流会根据所述梯度线圈的温度完全独立的自动调节,无需序列介入,可以减少序列的复杂度,且不会额外增加扫描时间。
在一个实施例中,所述场飘补偿控制装置120包括数据处理模块121与电源控制模块122。所述数据处理模块121与所述温度监测装置110连接,用于获取所述梯度线圈的温度,根据所述梯度线圈的温度变化计算所述场飘,并根据所述场飘计算所述补偿电流。所述电源控制模块122与所述数据处理模块121连接,用于获取所述补偿电流。所述电源控制模块122与所述补偿线圈电源130连接,用于根据所述补偿电流控制所述补偿线圈电源130,所述补偿线圈电源130控制所述补偿线圈的电流设置为所述补偿电流。
所述温度监测装置110为温度传感器,实时监测所述梯度线圈的温度,并实时反馈到所述数据处理模块121。所述数据处理模块121设置有所述场飘温升模型。所述数据处理模块121获得所述温升,并基于所述场飘温升模型获得所述温升对应的所述场飘。所述数据处理模块121根据所述场飘计算获得所述补偿电流,并将所述补偿电流信息传输至所述电源控制模块122。所述电源控制模块122根据所述补偿电流控制所述补偿线圈电源130,进而将所述补偿线圈的电流设置为所述补偿电流。
其中,所述数据处理模块121包括但不限于中央处理器(Center Processor Unit,CPU)、嵌入式微控制器(Micro Controller Unit,MCU)、嵌入式微处理器(Micro ProcessorUnit,MPU)、嵌入式片上系统(System on Chip,SoC)。所述电源控制模块122包括但不限于中央处理器(Center Processor Unit,CPU)、嵌入式微控制器(Micro Controller Unit,MCU)、嵌入式微处理器(Micro Processor Unit,MPU)、嵌入式片上系统(System on Chip,SoC)。或者,所述数据处理模块121与所述电源控制模块122可以集中集成在一个微控制单元上。
如图5所示,磁共振系统硬件主要包括:磁体100、梯度组件200、射频组件300、谱仪系统400以及计算机系统500等其他辅助系统,其中,磁体100用于产生主磁场,梯度组件200主要包含梯度电流放大器(AMP)、梯度线圈;射频组件300主要包括射频发射模块和射频接收模块;谱仪系统400主要包括脉冲序列发生器、梯度波形发生器、发射机和接收机等,而计算机系统500用于控制系统运行和最终成像,其成像的大体过程为:计算机系统500存储和发送需要执行的扫描序列(scan sequence)的指令,脉冲序列发生器根据扫描序列指令对梯度波形发生器和发射机进行控制,梯度波形发生器输出具有预定时序和波形的梯度脉冲信号,该信号经过Gx、Gy和Gz梯度电流放大器,再通过梯度组件200中的三个独立通道Gx、Gy、Gz,每个梯度放大器激发梯度线圈组中对应的一个梯度线圈,产生用于生成相应空间编码信号的梯度场,以对磁共振信号进行空间定位;谱仪系统400中的脉冲序列发生器还执行扫描序列,输出包括射频发射的射频脉冲的计时、强度、形状等数据以及射频接收的计时和数据采集窗口的长度到发射机,同时发射机将相应射频脉冲发送至射频组件300中的体发射线圈产生B1场,在B1场作用下病人体内被激发的原子核发出的信号被射频组件300中的接收线圈感知到,然后通过发送/接收开关传输到前置放大器,放大的磁共振信号经过解调、过滤、AD转换等数字化处理,然后传输到计算机系统500的存储模组。当存储模组获取一组原始的k-空间数据后,扫描结束。原始的k-空间数据被重新整理成与每个将被重建的图像对应的单独的k-空间数据组,每个k-空间数据组被输入到阵列处理器,进行图像重建后结合磁共振信号,形成一组图像数据。在上述成像过程中,射频脉冲、梯度场和信号采集时刻等相关各参数的设置及其在时序上的排列成为MRI脉冲序列。
上述磁共振成像系统在运行MRI脉冲序列时,梯度线圈发热会导致磁共振系统中心频率(例如,1.5T的中心频率约64MHz;3.0T的中心频率约128MHz)改变,即发生场飘。为解决上述问题,本申请的梯度组件200中还设置有补偿线圈。如图6a所示,梯度线圈包括设置在内层的主线圈、设置在外层的次线圈(屏蔽线圈),补偿线圈设置在两者之间。如图6b所示,补偿线圈设置在梯度线圈的外侧。补偿线圈的参数可调节,以使得补偿线圈产生的局部磁场完全或基本补偿主磁场的场飘。
在一个实施例中,补偿线圈的参数为补偿线圈的电流。
根据主磁场的场飘设置补偿线圈的电流,以使得所述补偿线圈产生的局部磁场完全或基本补偿所述主磁场的场飘。
在一个实施例中,补偿线圈的参数为补偿线圈被激发的分布。例如,根据场飘确定被激发的补偿线圈:磁体中心区域的主磁场受温度影响较大,被激发的补偿线圈数量多于磁体两侧区域的被激发的补偿线圈数量。
请参见图7,在一个实施例中,补偿线圈沿着超导磁体形成的孔径的轴向方向并排设置,且在中间位置的补偿线圈分布密集,两端的补偿线圈分布稀疏。超导磁体形成的主磁场的成像视野主要位于孔径的中间位置,该部分对于成像的影响最大,磁场均匀性对于成像效果具有决定性。本申请中在中间位置密集设置补偿线圈,可有效提高磁场均匀性。
请参见图8,在一个实施例中,一种磁共振成像方法包括:
初始化计时器,判断计时是否超出中心频率调整周期;
若计时超出中心频率调整周期,则采集患者相位图,并根据相位图计算当前磁场中心频率;
根据当前磁场中心频率计算场飘,并根据场飘设置补偿线圈的通电电流;
当根据场飘设置补偿线圈的通电电流后,重置计时器;
若计时超出中心频率调整周期,则运行正常的图像扫描序列;
当图像扫描序列运行完成后,更新计时器。
其中,根据当前磁场中心频率计算场飘,并根据场飘设置补偿线圈的通电电流,步骤包括:当计算获得场飘后,根据上述实施例中的所述磁共振场飘补偿方法,获取所述补偿线圈的敏感度s,并根据I=-f(t)/s获得补偿电流I。并且,将补偿线圈的电流设置为补偿电流I。此时,通过将补偿线圈的电流设置为补偿电流I,可以使得补偿线圈产生的局部磁场完全或基本补偿磁场的场飘,从而保持磁共振系统工作的稳定性。
在另一实施例中,场飘可还可通过如下方式获取:获取患者未执行扫描时,患者所处的扫描视野内的初始相位图;将初始相位图与患者相位图差值运算,获取差值图;根据差值图中像素的灰度值统计值,获取场飘。例如,差值图中灰度值为零的点即对应当前磁场中心频率与预设的磁场中心频率相等;差值图中灰度值越大,则当前磁场中心频率与预设的磁场中心频率偏差越大。本实施例的场飘获取方法,不仅可得到由于梯度温升导致的场飘,还可得到由于病人对背景磁场的影响、磁性介质温度的影响等多种因素对主磁场场飘的影响,自适应性更强。另一方面,考虑到磁共振系统使用一段时间后,局部区域主磁场中心频率下降,有可能会超出系统允许的带宽,本申请实施例采用补偿线圈对主磁场中心频率进行补偿,无需对磁共振系统主磁体重新升场,仅需要调整补偿线圈的电流即可,从而减小系统的维护成本。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种磁共振场飘补偿方法,应用于磁共振系统,所述磁共振系统包括梯度线圈与补偿线圈,其特征在于,包括:
S10,提供场飘温升模型,所述场飘温升模型为关于所述梯度线圈的温度与场飘的关系模型;
S20,获取所述磁共振系统未运行时所述梯度线圈的初始温度;
S30,激发所述磁共振系统,并获取所述梯度线圈在任一时刻的工作温度;
S40,根据所述初始温度与所述工作温度,计算所述工作温度与所述初始温度的温升;
S50,基于所述温升与所述场飘温升模型,获得所述温升对应的场飘;
S60,获取所述补偿线圈的敏感度s,并根据I=-f(t)/s获得补偿电流I,其中,f(t)为所述温升对应的所述场飘;
S70,将所述补偿线圈的电流设置为所述补偿电流I。
2.如权利要求1所述的磁共振场飘补偿方法,其特征在于,所述场飘温升模型包括关于所述温升与所述场飘的关系曲线f(t)=k(t)(t-t0),其中,f(t)为所述场飘,t为所述工作温度,t0为所述初始温度,k(t)为系数。
3.如权利要求2所述的磁共振场飘补偿方法,其特征在于,所述步骤S10包括:
S110,对所述磁共振系统进行匀场;
S120,所述磁共振系统完成匀场后,放入测试水模进行扫描;
S130,获取所述磁共振系统的初始中心频率与所述梯度线圈的初始温度;
S140,激发所述磁共振系统运行,获取不同时刻的中心频率,并根据所述初始中心频率获取不同时刻对应的场飘;
S150,获取不同时刻的所述梯度线圈的温度,并根据所述初始温度获取不同时刻对应的温升,直至所述梯度线圈的温度稳定;
S160,根据不同时刻的所述场飘与所述温升,获取所述场飘温升模型,其中,所述场飘与所述温升一一对应。
4.如权利要求3所述的磁共振场飘补偿方法,其特征在于,在所述步骤S160中,通过最小二乘法或支持向量机算法对不同时刻的所述场飘与所述温升进行曲线拟合,获得所述场飘温升模型。
5.一种磁共振系统调节方法,所述磁共振系统包括磁体和梯度线圈,所述磁体产生主磁场,所述梯度线圈中或者周围设有补偿线圈,所述补偿线圈用于产生局部磁场,所述方法包括:
在所述梯度线圈产生梯度脉冲前,获取所述梯度线圈的初始温度;
在所述梯度线圈产生梯度脉冲后或同时,获取所述梯度线圈的工作温度;
根据所述梯度线圈的初始温度、工作温度确定所述梯度线圈的温升;
根据所述温升,计算所述主磁场的场飘,所述梯度的温度变化与所述主磁场的场飘具有设定关系;
根据所述主磁场的场飘设置所述补偿线圈的参数,以使得所述补偿线圈产生的局部磁场完全或基本补偿所述主磁场的场飘。
6.如权利要求5所述的磁共振系统调节方法,其特征在于,所述补偿线圈的参数包括补偿线圈的电流或者所述补偿线圈相对于所述梯度线圈的分布。
7.一种场飘补偿系统,其特征在于,包括:
温度监测装置(10),设置于所述磁共振系统的梯度线圈,用于监测所述梯度线圈的温度;
场飘补偿控制装置(20),与所述温度监测装置(10)连接,用于获取所述梯度线圈的温度,根据所述梯度线圈的温度变化获取场飘,并根据所述场飘获取补偿电流;
补偿线圈电源(30),与所述场飘补偿控制装置(20)连接,且所述补偿线圈电源(30)与所述磁共振系统的补偿线圈连接,用于将所述补偿线圈的电流设置为所述补偿电流。
8.一种磁共振系统,其特征在于,包括:
磁体,环绕形成孔腔并用于产生主磁场;
梯度线圈,设置在所述孔腔内并用于产生形成梯度场的梯度脉冲,所述梯度线圈在产生梯度脉冲前后会产生温升,且所述温升使所述主磁场产生场飘;
补偿线圈,临近所述梯度线圈设置,且通过所述补偿线圈能够产生局部磁场,所述局部磁场能够完全或基本补偿所述主磁场的场飘。
9.如权利要求8所述的磁共振系统,其特征在于,还包括:
传感器,设置在所述梯度线圈上以用于监测所述梯度线圈的初始温度和/或工作温度,所述温升包括所述梯度脉冲未产生前的初始温度与所述梯度脉冲产生后的工作温度的差值;
补偿线圈电源,与所述补偿线圈电连接用于为所述补偿线圈提供补偿电流,且所述补偿电流根据所述温升确定。
10.如权利要求8所述的磁共振系统,其特征在于,还包括:
处理器,适用于在梯度脉冲产生后获取主磁场分布图,且通过所述主磁场分布图获取所述主磁场的场飘。
CN201911139875.9A 2019-11-20 2019-11-20 磁共振场飘补偿方法、调节方法、场飘补偿系统以及磁共振系统 Active CN112824921B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911139875.9A CN112824921B (zh) 2019-11-20 2019-11-20 磁共振场飘补偿方法、调节方法、场飘补偿系统以及磁共振系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911139875.9A CN112824921B (zh) 2019-11-20 2019-11-20 磁共振场飘补偿方法、调节方法、场飘补偿系统以及磁共振系统

Publications (2)

Publication Number Publication Date
CN112824921A true CN112824921A (zh) 2021-05-21
CN112824921B CN112824921B (zh) 2022-12-20

Family

ID=75906888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911139875.9A Active CN112824921B (zh) 2019-11-20 2019-11-20 磁共振场飘补偿方法、调节方法、场飘补偿系统以及磁共振系统

Country Status (1)

Country Link
CN (1) CN112824921B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114236439A (zh) * 2021-11-09 2022-03-25 深圳市联影高端医疗装备创新研究院 线圈定位方法、装置、磁共振设备及存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303620A (ja) * 1994-05-12 1995-11-21 Ge Yokogawa Medical Syst Ltd 静磁場ドリフト補正コイル及び静磁場ドリフト補正方法
CN1572243A (zh) * 2003-05-28 2005-02-02 Ge医药系统环球科技公司 具有均匀磁场的成像系统
US20110046472A1 (en) * 2009-08-19 2011-02-24 Rita Schmidt Techniques for temperature measurement and corrections in long-term magnetic resonance thermometry
CN102445676A (zh) * 2010-10-05 2012-05-09 通用电气公司 对梯度线圈工作感应的磁场漂移进行建模的系统及方法
CN102866369A (zh) * 2011-12-12 2013-01-09 中国科学院深圳先进技术研究院 磁共振的主磁场漂移矫正方法和系统
CN102866373A (zh) * 2011-12-12 2013-01-09 中国科学院深圳先进技术研究院 磁共振温度成像中温度测量的矫正方法和系统
CN104224179A (zh) * 2014-09-10 2014-12-24 中国科学院电工研究所 一种磁共振成像系统的磁场稳定方法和装置
CN106896334A (zh) * 2017-04-18 2017-06-27 清华大学 一种预先评估mr下有源植入物周围组织温度的方法和磁共振成像系统
CN108845279A (zh) * 2018-05-03 2018-11-20 厦门大学 一种永磁低场小型化核磁共振波谱仪场频联锁系统及方法
CN109407022A (zh) * 2018-10-25 2019-03-01 上海联影医疗科技有限公司 磁场漂移的控制方法、装置和存储介质
CN109938704A (zh) * 2017-12-20 2019-06-28 深圳先进技术研究院 磁共振温度成像方法与装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303620A (ja) * 1994-05-12 1995-11-21 Ge Yokogawa Medical Syst Ltd 静磁場ドリフト補正コイル及び静磁場ドリフト補正方法
CN1572243A (zh) * 2003-05-28 2005-02-02 Ge医药系统环球科技公司 具有均匀磁场的成像系统
US20110046472A1 (en) * 2009-08-19 2011-02-24 Rita Schmidt Techniques for temperature measurement and corrections in long-term magnetic resonance thermometry
CN102445676A (zh) * 2010-10-05 2012-05-09 通用电气公司 对梯度线圈工作感应的磁场漂移进行建模的系统及方法
CN102866369A (zh) * 2011-12-12 2013-01-09 中国科学院深圳先进技术研究院 磁共振的主磁场漂移矫正方法和系统
CN102866373A (zh) * 2011-12-12 2013-01-09 中国科学院深圳先进技术研究院 磁共振温度成像中温度测量的矫正方法和系统
CN104224179A (zh) * 2014-09-10 2014-12-24 中国科学院电工研究所 一种磁共振成像系统的磁场稳定方法和装置
CN106896334A (zh) * 2017-04-18 2017-06-27 清华大学 一种预先评估mr下有源植入物周围组织温度的方法和磁共振成像系统
CN109938704A (zh) * 2017-12-20 2019-06-28 深圳先进技术研究院 磁共振温度成像方法与装置
CN108845279A (zh) * 2018-05-03 2018-11-20 厦门大学 一种永磁低场小型化核磁共振波谱仪场频联锁系统及方法
CN109407022A (zh) * 2018-10-25 2019-03-01 上海联影医疗科技有限公司 磁场漂移的控制方法、装置和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W. DENIS MARKIEWICZ 等: "A Decade of Experience With the UltraWide-Bore 900-MHz NMR Magnet", 《IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114236439A (zh) * 2021-11-09 2022-03-25 深圳市联影高端医疗装备创新研究院 线圈定位方法、装置、磁共振设备及存储介质

Also Published As

Publication number Publication date
CN112824921B (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
US10718846B2 (en) Method and system for measuring and calibrating imaging magnetic field in magnetic resonance apparatus
US8427154B2 (en) Method and apparatus for magnetic resonance guided high intensity focused ultrasound focusing under simultaneous temperature monitoring
JP5826251B2 (ja) 非選択的調整rfパルスによって磁気共鳴画像法におけるb1不均一性を補償するための方法および装置
US7706856B2 (en) System and method for predictive thermal output control of a medical device
US10048332B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
US8229542B2 (en) Method for correction of image artifacts during acquisition of magnetic resonance imaging data
US20070279060A1 (en) Dynamic Shimset Calibration for Bo Offset
US7906964B2 (en) Method and system for determining acquisition parameters associated with magnetic resonance imaging for a particular measurement time
Aghaeifar et al. A 32‐channel multi‐coil setup optimized for human brain shimming at 9.4 T
US8362773B2 (en) System and method for modeling gradient coil operation induced magnetic field drift
US20200116807A1 (en) Method And Control Unit For Compensation Of Eddy Current Induced Magnetic Fields In Magnetic Resonance Imaging
US6825663B2 (en) Magnetic resonance apparatus and operating method therefor for actively regulating heating in the apparatus
US9726734B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
CN112824921B (zh) 磁共振场飘补偿方法、调节方法、场飘补偿系统以及磁共振系统
US10330756B2 (en) Method and apparatus for eddy current field compensation in magnetic resonance tomography
US11079452B2 (en) Systems and methods for magnetic resonance thermometry using balanced steady state free precession
EP2635914A1 (en) Method of characterizing an rf transmit chain
US4857847A (en) Method and system for magnetic resonance imaging
US20170090000A1 (en) Method and apparatus for detecting dynamic magnetic field distributions
JP2001276017A (ja) ナビゲータエコーによる情報を用いた磁気共鳴画像アーティファクトの修正
KR20140142157A (ko) 이동식 자기 공명 단층 촬영 시스템을 조작하기 위한 방법
US9709643B2 (en) Method and apparatus for SAR reduction using B0 specific RF excitation
US10353042B2 (en) MRI apparatus
JP5595759B2 (ja) 磁気共鳴イメージング装置
JPH08592A (ja) Mr装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant