CN112824372A - 铜催化烯烃的不对称环丙烷化方法及其应用 - Google Patents

铜催化烯烃的不对称环丙烷化方法及其应用 Download PDF

Info

Publication number
CN112824372A
CN112824372A CN201911147622.6A CN201911147622A CN112824372A CN 112824372 A CN112824372 A CN 112824372A CN 201911147622 A CN201911147622 A CN 201911147622A CN 112824372 A CN112824372 A CN 112824372A
Authority
CN
China
Prior art keywords
copper
chiral
phenyl
alkyl
cyclopropanation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911147622.6A
Other languages
English (en)
Inventor
胡向平
刘振婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201911147622.6A priority Critical patent/CN112824372A/zh
Publication of CN112824372A publication Critical patent/CN112824372A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C67/347Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by addition to unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/189Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms containing both nitrogen and phosphorus as complexing atoms, including e.g. phosphino moieties, in one at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/324Cyclisations via conversion of C-C multiple to single or less multiple bonds, e.g. cycloadditions
    • B01J2231/325Cyclopropanations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0225Complexes comprising pentahapto-cyclopentadienyl analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0261Complexes comprising ligands with non-tetrahedral chirality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种铜催化烯烃的不对称环丙烷化方法及其应用。方法采用的铜催化剂是由金属铜前驱体与手性P,N,N‑配体在反应介质中原位生成的。本发明具有催化剂廉价、配体制备简单、高活性、高选择性、反应条件温和、操作简便等特点,且可实现连续操作,适用于大规模工业化生产中。本发明所述方法同样适用于杀虫剂拟除虫菊酯类农药的重要中间体—手性第一菊酸的不对称合成中,可达到80%收率,85%对映选择性,且可应用于工业化制备中。

Description

铜催化烯烃的不对称环丙烷化方法及其应用
技术领域
本发明属于有机合成领域,具体涉及铜/手性P,N,N-配体催化烯烃的不对称环丙烷化反应,还涉及该方法在手性拟除虫菊酯杀虫剂关键中间体—手性第一菊酸的不对称合成中的应用。
背景技术
环丙烷结构广泛存在于具有重要生物活性的碳环和杂环化合物中,如手性拟除虫菊酯杀虫剂。另外,环丙烷也是一类非常重要的合成中间体,例如通过开环或扩环策略合成中环化合物和官能团化的分子等[(a)R.Faust,Angew.Chem.Int.Ed.2001,40,2251-2253;(b)H.Staudinger,L.Ruzicka,Helv.Chim.Acta 1924,7,177-235;(c)J.Pietruszka,Chem.Rev.2003,103,1051-1070;(d)L.A.Wessjohann,W.Brandt,T.Thiemann,Chem.Rev.2003,103,1625-1647;(e)P.Tang,Y.Qin,Synthesis 2012,44,2969-2984;(f)D.Y.-K.Chen,R.H.Pouwer,J.-A.Richard,Chem.Soc.Rev.2012,41,4631-4642;(g)C.Ebner,E.M.Carreira,Chem.Rev.2017,117,11651-11679;(h)F.
Figure BDA0002282647250000011
Chem.Biodiversity 2014,11,1734-1751.]。因此,环丙烷化合物的合成一直是化学家们关注的热点,现已发展了多种方法合成该骨架结构,如Simmons-Smith环丙烷化反应、过渡金属催化的重氮化合物分解反应以及Michael加成引发的环化反应等,但直接对映选择性地构建环丙烷结构仍然是一个巨大的挑战[(a)H.Lebel,J.-F.Marcoux,C.Molinaro,A.B.Charette,Chem.Rev.2003,103,977-1050;(b)H.Pellissier,Tetrahedron 2008,64,7041-7095;(c)G.Bartoli,G.Bencivenni,R.Dalpozzo,Synthesis 2014,46,979-1029;(d)W.A.Donaldson,Tetrahedron 2001,57,8589-9627.]。在诸多合成手性环丙烷结构的方法中,过渡金属催化的不对称环丙烷化反应无疑为一种最直接、有效的策略,具有条件温和、应用范围广、立体选择性高等优点,配体主要为席夫碱、半咕啉、双噁唑啉和联吡啶等含氮配体[(a)R.E.Lowenthal,S.Masamune,Tetrahedron Lett.1991,32,7373-7376;(b)K.Ito,T.Katsuki,Synlett 1993,638-640;(c)H.Suematsu,S.Kanchiku,T.Uchida,T.Katsuki,J.Am.Chem.Soc.2008,130,10327-10337;(d)H.M.L.Davies,M.G.Coleman,D.L.Ventura,Org.Lett.2007,9,4971-4974.]。但是,该方法也存在有诸多局限性,例如反应底物范围窄、选择性低、工业化应用困难等。因此,寻找新的催化体系高选择性地实现烯烃的不对称环丙烷化反应也成为亟待解决的难题。发明人所在课题组多年来一直致力于手性配体的设计开发,以及在不对称催化反应中的应用研究,利用自主发展的手性P,N,N-配体和过渡金属铜形成的手性催化剂,成功实现了烯烃的不对称环丙烷化反应,并成功应用于拟除虫菊酯类农药的重要中间体—手性第一菊酸的工业化生产中。
发明内容
本发明针对现有技术存在的不足,提供一种铜/手性P,N,N-配体催化烯烃不对称环丙烷化的方法,该方法具有催化剂廉价易制备、高活性、高立体选择、绿色简便等优点。
本发明的技术方案具体步骤如下:
(1)手性铜催化剂的制备:氮气保护下,将铜盐与手性P,N,N-配体在反应介质中搅拌0.5~2小时原位配位制得手性铜催化剂;
(2)烯烃的不对称环丙烷化反应:将底物烯烃溶于反应介质中,加入到上述搅拌好的手性铜催化剂溶液中,加入新活化的
Figure BDA0002282647250000021
分子筛,20~100℃下搅拌0.5~2小时后,将重氮化合物用注射泵缓慢加入,6~10小时滴加完毕,继续反应2~24小时。反应完毕,过滤,减压浓缩至基本无溶剂,硅胶柱层析分离,减压浓缩,真空干燥即得到烯烃环丙烷化产物。
本发明所述环丙烷化产物(I)具有以下结构:
Figure BDA0002282647250000031
式中:R1,R2,R3为H,C1~C40的烷基、C3~C12的环烷基或带有取代基的C3~C12环烷基、苯基及取代苯基、苄基及取代苄基、含一个或两个以上氧、硫、氮原子的五元或六元杂环芳香基团、酯基中的一种或两种以上;C3~C12环烷基上的取代基、苯基上的取代基、和苄基上的取代基分别为C1~C40烷基、C1~C40的烷氧基、卤素、硝基、酯基、或氰基中的一种或两种以上,取代基个数为1~5个。R4为C1~C10的烷基羧酸酯、C1~C10烷基碳酸酯、C1~C10烷基磺酸酯、C1~C10烷基磷酸酯,苯基羧酸酯及取代苯基羧酸酯、苯基碳酸酯及取代苯基碳酸酯、苯基磺酸酯及取代苯基磺酸酯或苯基磷酸酯及取代苯基磷酸酯中的一种或两种以上;取代苯基上的取代基为C1~C40烷基、C1~C40的烷氧基、卤素、硝基、酯基、或氰基中的一种或两种以上,取代基个数为1~5个。
本发明所述烯烃(II)具有以下结构:
Figure BDA0002282647250000032
式中:R1,R2为与结构式I中R1,R2相同基团。
本发明所述重氮化合物(III)具有以下结构:
Figure BDA0002282647250000033
式中:R3,R4为与结构式I中R3,R4相同基团。
所述铜盐为Cu(OAc)2·H2O、CuSO4·H2O、Cu(OAc)2、CuSO4、Cu(OTf)2、CuCl2、CuOAc、CuCl、CuI、CuClO4、CuOTf·0.5C6H6、Cu(CH3CN)4BF4或Cu(CH3CN)4ClO4中的至少一种,优选为CuOTf·0.5C6H6
所述手性P,N,N-配体具有以下结构:
Figure BDA0002282647250000041
式中:R5,R6为H,C1~C10内的烷基,C3~C8内的环烷基,苯基及取代苯基,苄基及取代苄基;取代苯基或取代苄基上的取代基为C1~C40烷基、C1~C40的烷氧基、卤素、硝基、酯基、或氰基中的一种或两种以上,取代基个数为1~5个;R7,R8为H,卤素,烷基和环烷基,苯基及取代苯基,烷氧基,苯氧基,酰基、硝基;R9为C1~C40的烷基和C3~C12的环烷基,苯基及取代苯基,萘基及取代萘基,含一个或二个以上氧、硫、氮原子中的一种或两种以上的五元或六元杂环芳香基团;取代苯基或取代萘基上的取代基为C1~C40烷基、C1~C40的烷氧基、卤素、硝基、酯基、或氰基中的一种或两种以上,取代基个数为1~5个。
所述反应介质为甲醇、乙醇、甲苯、苯、二甲苯、二氯甲烷、1,2-二氯乙烷、乙醚、四氢呋喃、二甲基亚砜或N,N-二甲基甲酰胺中的至少一种,优选为甲醇、乙醇或四氢呋喃中的至少一种,优选为1,2-二氯乙烷。
所述手性P,N,N-配体与铜盐的摩尔比为1~5:1;
所述铜催化剂与烯烃的摩尔比为0.01~100%:1;
所述反应温度为20~100℃;
所述反应时间为1~24小时。
为实现上述目的,本发明的技术方案如下:
Figure BDA0002282647250000051
本发明的有益效果:
本发明具有催化剂廉价、配体制备简单、催化剂活性高、反应条件温和、操作简便、选择性高等优点,且可实现连续操作,适于工业化生产。本发明所述方法同样适用于杀虫剂拟除虫菊酯关键中间体—手性第一菊酸的合成中,可达到80%收率,85%对映选择性,且可应用于工业生产中。
Figure BDA0002282647250000052
具体实施方式
下面的实施例将对本发明予以进一步的说明,但并不因此而限制本发明。核磁共振是通过Bruker核磁共振仪测定,高效液相色谱(HPLC)是通过Agilent1100系列高效液相色谱测定。
实施例1
铜催化烯烃的不对称环丙烷化反应:氮气保护下,将金属铜前驱体CuOTf·0.5C6H6(5mol%)和手性P,N,N-配体L-1-1(5.5mol%)置于25mL休郎克管中,加入1mL二氯乙烷,室温搅拌2h原位配位制得手性铜催化剂。将底物顺式-β-甲基苯乙烯II-1溶于1mL二氯乙烷中,加入到上述搅拌好的手性铜催化剂溶液中,加入新活化的
Figure BDA0002282647250000053
分子筛,60℃下搅拌0.5小时后,将重氮化合物III-1用注射泵缓慢加入,8小时滴加完毕,继续反应10小时。反应完毕,过滤,减压浓缩至基本无溶剂,硅胶柱层析分离,减压浓缩,真空干燥即得环丙烷化产物I-1,收率95%,dr>19:1,91%ee。产物核磁共振氢谱和高效液相色谱检测数据为:1H NMR(300MHz,CDCl3):δ7.38-7.33(m,2H),7.29-7.26(m,3H),7.06(brs,3H),2.97(dd,J=9.6Hz,5.1Hz,1H),2.18(s,6H),2.13(t,J=4.8Hz,1H),2.05-1.96(m,1H),1.02(d,J=6.3Hz,3H).HPLC(Chiralcel OJ-H,n-hexane/i-PrOH=98/2,0.5mL/min,230nm,40℃):tR(minor)=13.0min,tR(major)=15.1min.
I-1,II-1,III-1,L-1-1的结构式如下:
Figure BDA0002282647250000061
实施例2
L-1-2作为配体反应生成产物I-1
将实施例1中的配体L-1-1用配体L-1-2代替,其余同实施例1。反应得到化合物I-1,87%收率,dr=16:1,75%ee。
L-1-2的结构式如下:
Figure BDA0002282647250000062
实施例3
L-1-3作为配体反应生成产物I-1
将实施例1中的配体L-1-1用配体L-1-3代替,其余同实施例1。反应得到化合物I-1,50%收率,dr=16:1,70%ee。
L-1-3的结构式如下:
Figure BDA0002282647250000071
实施例4
L-1-4作为配体反应生成产物I-1
将实施例1中的配体L-1-1用配体L-1-4代替,其余同实施例1。反应得到化合物I-1,32%收率,dr=16:1,17%ee。
L-1-4的结构式如下:
Figure BDA0002282647250000072
实施例5
L-2-1作为配体反应生成产物I-1
将实施例1中的配体L-1-1用配体L-2-1代替,其余同实施例1。反应得到化合物I-1,94%收率,dr=19:1,90%ee。
L-2-1的结构式如下:
Figure BDA0002282647250000073
实施例6
Cu(OTf)2和L-1-1催化反应生成产物I-1
将实施例1中CuOTf·0.5C6H6用Cu(OTf)2代替,其余同实施例1。反应得到化合物I-1,95%收率,dr=19:1,90%ee。
实施例7
将实施例1中二氯乙烷用二氯甲烷代替,反应温度为40℃,其余同实施例1。反应得到化合物I-1,84%收率,dr>19:1,85%ee。
实施例8
将实施例1中反应温度降为40℃,其余同实施例1。反应得到化合物I-1,87%收率,dr=19:1,88%ee。
实施例9
II-2作为底物反应生成产物I-2
将实施例1中的顺式-β-甲基苯乙烯II-1替换为顺式-β-甲基-(4-甲基苯基)乙烯II-2,其余同实施例1,得到化合物I-2,收率90%,dr=19:1,92%ee。产物核磁共振氢谱和高效液相色谱检测数据为:1H NMR(300MHz,CDCl3):δ7.15(brs,4H),7.05(brs,3H),2.92(dd,J=10.0Hz,4.8Hz,1H),2.35(s,3H),2.17(s,6H),2.09(t,J=4.8Hz,1H),2.01-1.93(m,1H),1.01(d,J=6.4Hz,3H).HPLC(Chiralcel OJ-H,n-hexane/i-PrOH=99/1,0.3mL/min,230nm,40℃):tR(minor)=27.1min,tR(major)=31.2min.
I-2,II-2的结构式如下:
Figure BDA0002282647250000081
实施例10
II-3作为底物反应生成产物I-3
将实施例1中的顺式-β-甲基苯乙烯II-1替换为顺式-β-甲基-(4-氯苯基)乙烯II-3,其余同实施例1,得到化合物I-3,收率87%,dr>19:1,94%ee。产物核磁共振氢谱和高效液相色谱检测数据为:1H NMR(300MHz,CDCl3):δ7.15(brs,4H),7.05(brs,3H),2.92(dd,J=10.0Hz,4.8Hz,1H),2.35(s,3H),2.17(s,6H),2.09(t,J=4.8Hz,1H),2.01-1.93(m,1H),1.01(d,J=6.4Hz,3H).HPLC(Chiralcel OD-H,n-hexane/i-PrOH=99/1,0.3mL/min,230nm,40℃):tR(minor)=10.7min,tR(major)=11.4min.
I-3,II-3的结构式如下:
Figure BDA0002282647250000091
实施例11
II-4作为底物反应生成产物I-4
将实施例1中的顺式-β-甲基苯乙烯II-1替换为反式-β-甲基苯乙烯II-4,其余同实施例1,得到化合物I-4,收率89%,dr>19:1,96%ee。产物核磁共振氢谱和高效液相色谱检测数据为:1H NMR(300MHz,CDCl3):δ7.33-7.29(m,2H),7.24-7.20(m,1H),7.16-7.13(m,2H),7.08-7.02(m,3H),2.56(dd,J=7.2Hz,4.8Hz,1H),2.34(dd,J=5.6Hz,4.8Hz,1H),2.17(s,6H),1.90-1.82(m,1H),1.44(d,J=6.4Hz,3H).HPLC(Chiralcel AD-H,n-hexane/i-PrOH=99/1,0.5mL/min,254nm,40℃):tR(minor)=13.5min,tR(major)=14.4min.
I-4,II-4的结构式如下:
Figure BDA0002282647250000092
实施例12
II-5作为底物反应生成产物I-5
将实施例1中的顺式-β-甲基苯乙烯II-1替换为反式-β-甲基-(4-甲基苯基)乙烯II-5,其余同实施例1,得到化合物I-5,收率94%,dr>19:1,96%ee。产物核磁共振氢谱和高效液相色谱检测数据为:1H NMR(300MHz,CDCl3):δ7.14-7.12(m,2H),7.08-7.04(m,5H),2.53(dd,J=6.0Hz,5.2Hz,1H),2.34(s,3H),2.30(dd,J=8.8Hz,4.8Hz,1H),2.17(s,6H),1.88-1.80(m,1H),1.43(d,J=6.4Hz,3H).HPLC(Chiralcel AD-H,n-hexane/i-PrOH=98/2,0.5mL/min,254nm,40℃):tR(minor)=9.3min,tR(major)=10.0min.
I-5,II-5的结构式如下:
Figure BDA0002282647250000101
实施例13
II-6,III-2作为底物反应生成产物I-6
氮气保护下,将金属铜前驱体CuOTf·0.5C6H6(5mol%)和手性P,N,N-配体L-1-1(5.5mol%)置于25mL休郎克管中,加入1mL二氯乙烷,室温搅拌2h原位配位制得手性铜催化剂。将底物八碳烯(2,5-二甲基-2,4-己二烯)II-6溶于1mL二氯乙烷中,加入到上述搅拌好的手性铜催化剂溶液中,加入新活化的
Figure BDA0002282647250000102
分子筛,60℃下搅拌0.5小时后,将重氮乙酸乙酯III-2用注射泵缓慢加入,8小时滴加完毕,继续反应10小时。反应完毕,过滤,减压浓缩至基本无溶剂,硅胶柱层析分离,减压浓缩,真空干燥即得环丙烷化产物I-6,收率80%,dr=9:1,85%ee。
I-6,II-6,III-2的结构式如下:
Figure BDA0002282647250000111
实施例14
III-3作为底物反应生成产物I-7
氮气保护下,将金属铜前驱体CuOTf·0.5C6H6(5mol%)和手性P,N,N-配体L-1-1(5.5mol%)置于25mL休郎克管中,加入1mL二氯乙烷,室温搅拌2h原位配位制得手性铜催化剂。将底物八碳烯(2,5-二甲基-2,4-己二烯)II-6溶于1mL二氯乙烷中,加入到上述搅拌好的手性铜催化剂溶液中,加入新活化的
Figure BDA0002282647250000113
分子筛,60℃下搅拌0.5小时后,将重氮乙酸叔丁酯III-3用注射泵缓慢加入,8小时滴加完毕,继续反应10小时。反应完毕,过滤,减压浓缩至基本无溶剂,硅胶柱层析分离,减压浓缩,真空干燥即得环丙烷化产物I-7,收率85%,dr=10:1,85%ee。
I-7,III-3的结构式如下:
Figure BDA0002282647250000112

Claims (9)

1.一种铜催化烯烃的不对称环丙烷化方法,其特征在于:在反应介质中,一定的温度下,在铜/手性P,N,N-配体催化作用下,底物烯烃和重氮化合物发生不对称环丙烷化反应,高选择性地得到环丙烷化产物。
2.根据权利要求1所述的铜催化烯烃的不对称环丙烷化方法,其特征在于:
该方法的具体步骤如下:
(1)手性铜催化剂的制备:氮气保护下,将铜盐与手性P,N,N-配体在反应介质中搅拌0.5~2小时原位配位制得手性铜催化剂;
(2)烯烃的不对称环丙烷化反应:将底物烯烃溶于反应介质中,加入到上述搅拌好的手性铜催化剂溶液中,加入新活化的
Figure FDA0002282647240000012
分子筛,20~100℃下搅拌0.5~2小时后,将重氮化合物用注射泵缓慢加入,6~10小时滴加完毕,继续反应2~24小时;反应完毕,过滤,减压浓缩至基本无溶剂,硅胶柱层析分离,减压浓缩,真空干燥即得到烯烃环丙烷化产物。
3.根据权利要求1或2所述的铜催化烯烃的不对称环丙烷化方法,其特征在于:
所述环丙烷化产物(I)具有以下结构:
Figure FDA0002282647240000011
式中:R1,R2,R3为H,C1~C40的烷基、C3~C12的环烷基或带有取代基的C3~C12环烷基、苯基及取代苯基、苄基及取代苄基、含一个或两个以上氧、硫、氮原子的五元或六元杂环芳香基团、酯基中的一种或两种以上;C3~C12环烷基上的取代基、苯基上的取代基、和苄基上的取代基分别为C1~C40烷基、C1~C40的烷氧基、卤素、硝基、酯基、或氰基中的一种或两种以上,取代基个数为1~5个。R4为C1~C10的烷基羧酸酯、C1~C10烷基碳酸酯、C1~C10烷基磺酸酯、C1~C10烷基磷酸酯,苯基羧酸酯及取代苯基羧酸酯、苯基碳酸酯及取代苯基碳酸酯、苯基磺酸酯及取代苯基磺酸酯或苯基磷酸酯及取代苯基磷酸酯中的一种或两种以上;取代苯基上的取代基为C1~C40烷基、C1~C40的烷氧基、卤素、硝基、酯基、或氰基中的一种或两种以上,取代基个数为1~5个。
4.根据权利要求1或2所述的铜催化烯烃的不对称环丙烷化方法,其特征在于:
所述烯烃(II)具有以下结构:
Figure FDA0002282647240000021
式中:R1,R2为与结构式I中R1,R2相同基团;
所述重氮化合物(III)具有以下结构:
Figure FDA0002282647240000022
式中:R3,R4为与结构式I中R3,R4相同基团。
5.根据权利要求1或2所述的铜催化烯烃的不对称环丙烷化方法,其特征在于:
所述铜盐为Cu(OAc)2·H2O、CuSO4·H2O、Cu(OAc)2、CuSO4、Cu(OTf)2、CuCl2、CuOAc、CuCl、CuI、CuClO4、CuOTf·0.5C6H6、Cu(CH3CN)4BF4或Cu(CH3CN)4ClO4中的至少一种。
6.根据权利要求1或2所述的铜催化烯烃的不对称环丙烷化方法,其特征在于:
所述手性P,N,N-配体具有以下结构:
Figure FDA0002282647240000031
式中:R5,R6为H,C1~C10内的烷基,C3~C8内的环烷基,苯基及取代苯基,苄基及取代苄基;取代苯基或取代苄基上的取代基为C1~C40烷基、C1~C40的烷氧基、卤素、硝基、酯基、或氰基中的一种或两种以上,取代基个数为1~5个;R7,R8为H,卤素,烷基和环烷基,苯基及取代苯基,烷氧基,苯氧基,酰基、硝基;R9为C1~C40的烷基和C3~C12的环烷基,苯基及取代苯基,萘基及取代萘基,含一个或二个以上氧、硫、氮原子中的一种或两种以上的五元或六元杂环芳香基团;取代苯基或取代萘基上的取代基为C1~C40烷基、C1~C40的烷氧基、卤素、硝基、酯基、或氰基中的一种或两种以上,取代基个数为1~5个。
7.根据权利要求1或2所述的铜催化烯烃的不对称环丙烷化方法,其特征在于:
所述反应介质为甲醇、乙醇、甲苯、苯、二甲苯、二氯甲烷、1,2-二氯乙烷、乙醚、四氢呋喃、二甲基亚砜或N,N-二甲基甲酰胺中的至少一种。
8.根据权利要求1或2所述的铜催化烯烃的不对称环丙烷化方法,其特征在于:
所述手性P,N,N-配体与铜盐的摩尔比为1~5:1;
所述手性铜催化剂与烯烃的摩尔比为0.01~100%:1。
9.一种如权利要求1所述的铜催化烯烃的不对称环丙烷化反应的应用,其特征在于:催化体系可用于拟除虫菊酯杀虫剂的关键中间体—手性第一菊酸的不对称合成中。
CN201911147622.6A 2019-11-21 2019-11-21 铜催化烯烃的不对称环丙烷化方法及其应用 Pending CN112824372A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911147622.6A CN112824372A (zh) 2019-11-21 2019-11-21 铜催化烯烃的不对称环丙烷化方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911147622.6A CN112824372A (zh) 2019-11-21 2019-11-21 铜催化烯烃的不对称环丙烷化方法及其应用

Publications (1)

Publication Number Publication Date
CN112824372A true CN112824372A (zh) 2021-05-21

Family

ID=75907554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911147622.6A Pending CN112824372A (zh) 2019-11-21 2019-11-21 铜催化烯烃的不对称环丙烷化方法及其应用

Country Status (1)

Country Link
CN (1) CN112824372A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735675A (zh) * 2021-09-06 2021-12-03 天津大学 一种铜类催化剂催化多环烯烃的环丙烷化的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109692708A (zh) * 2017-10-24 2019-04-30 沈阳中化农药化工研发有限公司 一种不对称环丙化催化剂及其应用
CN109851504A (zh) * 2017-11-30 2019-06-07 中国科学院大连化学物理研究所 一种手性苯并环状β-酮酯类化合物的合成方法
CN110343040A (zh) * 2018-04-02 2019-10-18 中国科学院大连化学物理研究所 一种制备手性反式第一菊酸的方法
CN110467527A (zh) * 2018-05-09 2019-11-19 中国科学院大连化学物理研究所 一种制备反式右旋菊酸的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109692708A (zh) * 2017-10-24 2019-04-30 沈阳中化农药化工研发有限公司 一种不对称环丙化催化剂及其应用
CN109851504A (zh) * 2017-11-30 2019-06-07 中国科学院大连化学物理研究所 一种手性苯并环状β-酮酯类化合物的合成方法
CN110343040A (zh) * 2018-04-02 2019-10-18 中国科学院大连化学物理研究所 一种制备手性反式第一菊酸的方法
CN110467527A (zh) * 2018-05-09 2019-11-19 中国科学院大连化学物理研究所 一种制备反式右旋菊酸的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUICONG DAI, ET AL.: "Efficient P,N,N-type ligands for Ru(II)-catalyzed asymmetric cyclopropanations", 《JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735675A (zh) * 2021-09-06 2021-12-03 天津大学 一种铜类催化剂催化多环烯烃的环丙烷化的方法

Similar Documents

Publication Publication Date Title
Durka et al. Lightening diazo compounds?
Shen et al. Carbohydrate-derived alcohols as organocatalysts in enantioselective aldol reactions of isatins with ketones
Wang et al. Self-assembled proline-amino thioureas as efficient organocatalysts for the asymmetric Michael addition of aldehydes to nitroolefins
Genoni et al. Stereoselective metal-free catalytic synthesis of chiral trifluoromethyl aryl and alkyl amines
WO2015024403A1 (zh) 一种氮杂卡宾类钯催化剂及其制备方法和应用
CN111909016B (zh) 2’-羟基-α,β-不饱和酮与双烯体环加成反应合成光学活性环己烯类化合物的方法
CN108516937B (zh) 一种可见光引发需氧Salan-铜催化剂制备手性α-羟基-β-酮酸酯化合物的方法
Durmaz et al. Calixarene-derived chiral tertiary amine–thiourea organocatalyzed asymmetric Michael additions of acetyl acetone and dimethyl malonate to nitroolefins
EP1308435A2 (en) Process for producing optically active amino alcohols
CN112521333A (zh) 一种手性2,3-二取代四氢喹啉衍生物的合成方法
Liu et al. Discovery of chiral catalysts by asymmetric activation for highly enantioselective diethylzinc addition to imines: using racemic and achiral diimines as effective activators
Ji et al. Enantioselective nitroaldol reaction catalyzed by chiral C1-tetrahydro-1, 1′-bisisoquinoline–copper (I) complexes
CN112279779A (zh) 一种手性芳基肟醚化合物的制备方法
CN112824372A (zh) 铜催化烯烃的不对称环丙烷化方法及其应用
CN108059591B (zh) 一种手性α-氟-β-乙炔基酮化合物的催化不对称合成方法
CN111848322B (zh) 一种轴手性氧化吲哚取代的苯乙烯类化合物及其拆分方法与应用
CN112824412B (zh) 手性1′H-螺[吲哚啉-3,4′-吡喃并[2,3-c]吡唑]-2-酮类化合物
Wang et al. Asymmetric addition of 1-ethynylcyclohexene to both aromatic and heteroaromatic ketones catalyzed by a chiral Schiff base–zinc complex
Sun et al. Ni (II)/tBu-SMI-PHOX catalyzed enantioselective addition of arylboronic acids to cyclic N-sulfonyl aldimines
CN108101755B (zh) 一种制备手性4-(2-炔丙基)苯酚类化合物的方法
CN114516814B (zh) 一种手性季碳α-氨基酸酯类化合物的催化不对称制备方法
CN111825509B (zh) 一种手性3,4,4-三取代吡咯烷酮类化合物的催化不对称合成方法
CN110372514B (zh) 一种催化不对称Michael加成反应的方法及其催化剂
Yu et al. L‐Proline‐based Phosphamides as a New Kind of Organocatalyst for Asymmetric Direct Aldol Reactions
Yang et al. A zinc/PyBisulidine catalyzed asymmetric Mannich reaction of N-tosyl imines with 3-acyloxy-2-oxindoles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210521

RJ01 Rejection of invention patent application after publication