CN112819388B - 一种基于乘客需求重识别的长距离优先票额分配方法 - Google Patents

一种基于乘客需求重识别的长距离优先票额分配方法 Download PDF

Info

Publication number
CN112819388B
CN112819388B CN202110259339.3A CN202110259339A CN112819388B CN 112819388 B CN112819388 B CN 112819388B CN 202110259339 A CN202110259339 A CN 202110259339A CN 112819388 B CN112819388 B CN 112819388B
Authority
CN
China
Prior art keywords
passenger
ticket
train
seat
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110259339.3A
Other languages
English (en)
Other versions
CN112819388A (zh
Inventor
孙湛博
刘帆洨
陈莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202110259339.3A priority Critical patent/CN112819388B/zh
Publication of CN112819388A publication Critical patent/CN112819388A/zh
Application granted granted Critical
Publication of CN112819388B publication Critical patent/CN112819388B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供一种基于乘客需求重识别的长距离优先票额分配方法。该方法包括:获取目标列车的相关数据;建立余票更新机制;将乘客购票数据分为确定性意愿的乘客购票数据和非确定性意愿的乘客购票数据;确定与列车席位等级相关性高的特征;基于确定性意愿的乘客购票数据构建用于识别乘客的潜在购票需求的支持向量机模型;用所构建的支持向量机模型识别每位非确定性意愿的乘客的潜在购票需求;按长距离优先原则规定票额分配的优先级别;基于乘客的潜在购票需求数据并结合所规定的票额分配的优先级别,对目标列车运行的每个OD区间进行票额分配。采用该方法不仅能够在最大程度上满足乘客需求,同时还能够提高列车的上座率,增加铁路公司的收入。

Description

一种基于乘客需求重识别的长距离优先票额分配方法
技术领域
本发明涉及一种基于乘客需求重识别的长距离优先票额分配方法,属于铁路运输领域。
背景技术
高速铁路在我国交通运输系统中扮演着重要的角色,2019年运输的乘客比例占所有运输方式的 64.1%,但是即便如此,很少线路能够既满足乘客的需求又达到铁路期望的收入水平。要解决该问题,一般有两种方法:一种是调整价格策略,另一种则是合理规划利用列车的运输能力。前者要在我国实施并不容易,因为铁路票价由政府调控,受外界的影响太小,所以合理利用列车的运输能力就成了一个重要的研究方向,在合理分配列车能力的时候不仅要有优化方法同时要充分考虑旅客的需求才能实现双赢。
乘客的潜在购票需求在某种程度上可以根据购票行为来确定,但是有些乘客的购票行为并不能反映其潜在购票需求,因为部分乘客发生购票行为时受到了一些限制条件(如某种类型的票已经售罄)。因此,针对这类不能反映乘客真实需求的购票行为,我们设计了一种识别其真实需求的方法,并且在识别乘客真实需求的基础上提出了一种对区间票额分配进行优化的方法。
发明内容
本发明的发明目的:针对非确定性意愿的乘客购票需求进行需求重新识别,并且基于乘客的潜在购票需求运用长距离优先票额分配的优化方法对每个区间进行票额分配,在满足乘客需求的同时提高列车的上座率,增加铁路公司的收入,实现双赢。
本发明为实现其发明目的所采取的技术方案:一种基于乘客需求重识别的长距离优先票额分配方法,所述方法包括以下步骤:
S1、获取目标列车的相关数据,并对目标列车的相关数据进行处理;
S2、建立余票更新机制;
S3、根据乘客购票行为及各等级列车席位的余票情况,将乘客的购票意愿分为确定性意愿和非确定性意愿,因此将乘客购票数据分为确定性意愿的乘客购票数据(即通过乘客的购票行为能够确定乘客的潜在购票需求的乘客购票数据)和非确定性意愿的乘客购票数据(即通过乘客的购票行为无法确定乘客的潜在购票需求的乘客数据);
所述确定性意愿:在各等级列车席位的余票数量都能够满足乘客需求的情况下,若乘客选择购买其中一种等级列车席位的车票,则认定乘客的购票行为与其潜在购票需求是一致的,此时通过乘客的购票行为能够确定乘客的潜在购票需求,将这种情况下的乘客购票意愿称为确定性意愿;
所述非确定性意愿:在不同等级列车席位中有一种以上等级列车席位的余票数量不能够满足乘客需求的情况下,若乘客选择购买其中一种等级列车席位余票数量能够满足乘客需求的车票,则认定乘客的购票行为与其潜在购票需求之间的关系是不确定的,此时通过乘客的购票行为无法确定乘客的潜在购票需求,将这种情况下的乘客购票意愿称为非确定性意愿;
S4、对经过步骤S1处理后的所述目标列车的相关数据进行特征提取,得到与列车席位等级相关性高的特征;
S5、基于所述确定性意愿的乘客购票数据构建用于识别乘客潜在购票需求的支持向量机模型;
S6、用所构建的用于识别乘客潜在购票需求的支持向量机模型对输入的每位乘客的购票数据进行分析并划分列车席位需求等级,进而识别出每位非确定性意愿的乘客的潜在购票需求;
S7、将目标列车运行的每个OD区间按照运行距离从长到短进行排序,并规定票额分配的优先级别为按照运行距离从长到短逐级递减;(目标列车运行的OD区间的距离越长,在进行票额分配的时候该区间享有越高的优先级,即以长距离优先为分配原则。)
S8、基于乘客的潜在购票需求数据并结合步骤S7所规定的票额分配的优先级别,对目标列车运行的每个OD区间进行票额分配;所述乘客的潜在购票需求数据是由所述确定性意愿的乘客和所述非确定性意愿的乘客的潜在购票需求数据组成。
进一步,所述目标列车的相关数据包括:目标列车的发车日期,目标列车的席位等级分布,目标列车各等级席位的定员,目标列车运行的OD区间,目标列车运行的OD区间的距离,乘客购票提前天数,乘客的购票渠道,乘客所购车票的起点站,乘客所购车票的终点站,乘客所购车票的起点站和终点站所在城市的行政等级,乘客购票数量,乘客所购车票的席位等级。
进一步,所述步骤S2,建立余票更新机制,具体包括:
用c表示目标列车席位等级编号,i表示不同OD区间的起点站编号,j表示不同OD区间的终点站编号;用矩阵
Figure BDA0002969109350000021
描述目标列车运行在OD区间(i,j)的c等级列车席位的余票数量;用
Figure BDA0002969109350000022
表示乘客购买起点站为i、终点站为j,且列车席位等级为c的车票数量;设置各等级列车席位的余票数量的初始值为目标列车对应等级席位的定员;当发生乘客购票行为并且购票行为成立时,所涉及的列车运行的OD 区间对应等级的列车席位的余票数量立即更新,具体步骤包括:
S2-1、初始化矩阵
Figure BDA0002969109350000023
S2-2、乘客要购买
Figure BDA0002969109350000024
张车票,若
Figure BDA0002969109350000025
则售卖出满足乘客需求的车票给乘客,此时乘客的购票行为成立;若
Figure BDA0002969109350000026
则拒绝售卖车票给乘客,此时乘客的购票行为不成立;
S2-3、一旦发生售票行为,立即更新矩阵
Figure BDA0002969109350000027
S2-4、判断更新后的矩阵
Figure BDA0002969109350000031
Figure BDA0002969109350000032
则返回步骤S2-2继续执行,否则终止售票。
进一步,所述步骤S4,对经过步骤S1处理后的所述目标列车的相关数据进行特征提取,得到与列车席位等级相关性高的特征,具体包括:
判断列车席位等级与其余特征之间的关系,并分别计算出列车席位等级与任一其余特征之间的相关系数,依据计算出的相关系数提取与列车席位等级相关性高的特征;所述其余特征是指不包括列车席位等级在内的经过步骤S1处理后的所述目标列车的相关数据;
计算相关系数的公式为:
Figure BDA0002969109350000033
公式中,rm表示列车席位等级与任一其余特征之间的相关系数;n表示样本容量,k≤n;y表示列车席位等级;xm表示任一其余特征。
进一步,所述步骤S5和所述步骤S6,具体包括:
定义已购票乘客样本数据集、训练集、测试集,如下:
所述已购票乘客样本数据集是由所述确定性意愿的乘客购票数据和所述非确定性意愿的乘客购票数据共同组成,记为
Figure BDA00029691093500000310
所述训练集是由所述确定性意愿的乘客购票数据组成,记为S,用于进行数据分析并构建用于识别乘客潜在购票需求的支持向量机模型;
所述测试集是由所述非确定性意愿的乘客购票数据组成,记为T,用于测试所构建的用于识别乘客潜在购票需求的支持向量机模型在实际应用中的预测表现情况,同时识别出每位所述非确定性意愿的乘客的潜在购票需求;
Figure BDA0002969109350000034
其中N表示乘客提前购买的车票总数;
Figure BDA0002969109350000035
其中,
Figure BDA0002969109350000036
为任一子训练集,表示第h次购票信息对应的数据;
Figure BDA0002969109350000037
表示第h次购票的属性特征,且
Figure BDA0002969109350000038
yh表示对应属性条件下实际购票的列车席位等级的标签,且yh∈{0,1},其中数值0和1代表两种不同的列车席位等级; h=1,2,...,l;l代表子训练集的总量;
因此,
Figure BDA0002969109350000039
采用所述训练集构造特征空间中的超平面:基于所述训练集获得的信息,根据列车席位等级种类将特征空间分为两种,用于描述所述超平面的函数表达式为f(x)=ωx+b,ω为所述超平面的法向量, b为所述超平面的一个变量;
基于所述训练集,求解得到ω和b的最优解可以用于解决如下优化问题:
Figure BDA0002969109350000041
Figure BDA0002969109350000042
0≤αs≤C,s=1,2,...,l,
式中,α=(α1,α2,...,αl)T是拉格朗日乘子向量;K是内核函数;C是手动设置的惩罚因子;Xs和Xt是任一两个子训练集的输入,ys和yt分别是对应的两个子训练集的标签,ys∈{0,1},yt∈{0,1};
基于上述优化问题求解得到ω和b的最优解,分别用
Figure BDA0002969109350000043
Figure BDA0002969109350000044
表示,如下:
Figure BDA0002969109350000045
Figure BDA0002969109350000046
Figure BDA0002969109350000047
非线性分类器函数的表达式为
Figure BDA0002969109350000048
进一步,所述与列车席位等级相关性高的特征包括:目标列车运行的OD区间,目标列车运行的 OD区间的距离,乘客购票提前天数,乘客所购车票的起点站,乘客所购车票的终点站,乘客所购车票的起点站和终点站所在城市的行政等级。
进一步,所述步骤S8,基于乘客的潜在购票需求数据并结合步骤S7所规定的票额分配的优先级别,对目标列车运行的每个OD区间进行票额分配,具体包括:假定在目标列车运行的同一OD区间内,除无座以外的各等级列车席位的票价逐级递减,且一等级列车席位的票价高于其他等级列车席位的票价,无座的票价不高于其他等级列车席位的票价;
S8-1、对潜在购票需求为一等级列车席位的乘客按照步骤S7所规定的票额分配的优先级别进行票额分配;若潜在购票需求为一等级列车席位的乘客需求量超出目标列车一等级列车席位的定员,则将超出部分的潜在购票需求为一等级列车席位的乘客需求视为潜在购票需求为次等级列车席位;
S8-2、对潜在购票需求为次等级列车席位以及视为潜在购票需求为次等级列车席位的乘客按照步骤S7所规定的票额分配的优先级别进行票额分配;若潜在购票需求为次等级列车席位以及视为潜在购票需求为次等级列车席位的乘客需求量超出目标列车次等级列车席位的定员,则将超出部分的潜在购票需求为次等级列车席位以及视为潜在购票需求为次等级列车席位的乘客需求视为潜在购票需求为次等级列车席位的下一等级列车席位;
S8-3、按照步骤S8-2的分配规律依次对除无座以外的各等级列车席位存在潜在购票需求的乘客进行票额分配;
S8-4、对除无座以外的各等级列车席位存在潜在购票需求的乘客进行票额分配完成后,若还存在乘客的潜在购票需求没有被满足(即乘客总的潜在购票需求大于目标列车除无座以外的各等级列车席位的定员之和),则潜在购票需求没有被满足的这部分乘客只能选择购买该次目标列车的无座车票。
进一步,所述步骤S8的票额分配过程中还包括步骤:对目标列车运行的每个OD区间设置各等级列车席位的票额分配最小阈值;当存在任一OD区间的任一等级列车席位的乘客需求量没有达到该 OD区间该等级列车席位的票额分配最小阈值时,该OD区间没有被分配的该等级列车席位将分配给比该OD区间距离长且包含该OD区间在内的其余长距离OD区间。
(各等级列车席位的票额分配最小阈值是根据每个OD区间的特征来确定的,旨在尽量满足乘客的需求又不至于造成列车能力的浪费,并且所有OD区间的各等级列车席位的票额分配最小阈值之和小于目标列车各等级列车席位的定员之和。因为列车的每个停站点都有其存在的意义,所以在列车运行的每个OD区间均存在乘客需求,为了既能够满足乘客需求又能够增加售票收入,在考虑长距离优先分配的同时还要考虑每个区间存在的基本乘客需求。因此,对目标列车运行的每个OD区间设置各等级列车席位的票额分配最小阈值,以满足每个OD区间的基本需求。但是,在有的情况下可能某一 OD区间的乘客需求量很小,未达到该OD区间的某一等级列车席位的票额分配最小阈值,那么在该情况下就会有多余的该等级列车席位,为了不浪费列车能力,提高列车的上座率,在进行票额分配的时候将余留出来的这部分席位分配给包含该区间的更长运行区间,以减少列车能力的浪费。)
与现有技术相比,本发明具有的有益效果:
(1)本发明是一种基于乘客的潜在购票需求的区间票额分配方法。其中,识别乘客的潜在购票需求:首先通过数据处理将其按照确定需求和不确定需求进行分类(分为确定性意愿的乘客购票数据和非确定性意愿的乘客购票数据),然后经过一系列特征处理和提取,最后构建用于识别乘客潜在购票需求的支持向量机模型,并利用该支持向量机模型识别隐藏在不确定需求(即非确定性意愿)背后的潜在购票需求。
(2)由本发明方法得到的乘客的潜在购票需求数据能够为区间票额分配提供更可靠的依据。
(3)本发明对所获得数据进行特征提取,分析各特征与列车席位等级的相关性,并且确定了与列车席位等级高度相关的特征,这为针对各区间进行不同等级列车席位的票额分配提供了强有力的依据。
(4)本发明建立的余票更新机制,有助于相关管理人员了解票额出售的实时状态,同时方便乘客实时查阅不同预售天数下不同列车席位等级的票额剩余情况,通过对大量数据的分析,可以得出乘客的购票规律。
(5)本发明是在需求重识别的基础上进行长距离优先的票额分配(即在票额分配时优先考虑长途旅客的需求),通过该方法进行票额分配的结果与根据列车运行数据得到的分配结果相比较,铁路公司的收入得到了提升,上座率相较于最初的分配结果也得到了提升。采用该方法不仅能够在最大程度上满足乘客需求,同时还能够提高列车的上座率,增加铁路公司的收入,实现双赢。
下面通过具体实施方式及附图对本发明作进一步详细说明,但并不意味着对本发明保护范围的限制。
附图说明
图1为本发明实施例的余票更新流程图。
图2为本发明实施例列车席位等级与其余特征之间的相关性分析图。
图3为本发明实施例六个相关性较高的特征的贡献情况图。
图4为本发明实施例通过交叉验证得到的拟合轮廓图。
图5为本发明实施例对一等座中的非确定性意愿的预测结果图。
图6为本发明实施例对二等座中的非确定性意愿的预测结果图。
图7为本发明实施例采用本例票额分配方法与初始票额分配方法所得分配结果在列车收入方面的对比图。
图8为本发明实施例采用本例票额分配方法与初始票额分配方法所得分配结果在列车上座率方面的对比图。
具体实施方式
实施例
本例给出的一种基于乘客需求重识别的长距离优先票额分配方法是基于乘客的潜在购票需求数据进行票额分配的。
本例所涉及的数据来自编号为D2818的列车(即目标列车),该列车服务18个站点,但本例所采用的数据仅涉及其中12个站点;另外,本例只考虑该列车席位等级为一等座和二等座的情况。因此,用c表示目标列车席位等级编号,且c∈{1,2};用i表示不同OD区间的起点站编号,j表示不同OD区间的终点站编号;用矩阵
Figure BDA0002969109350000061
描述目标列车运行在OD区间(i,j)的c等级列车席位的余票数量;用
Figure BDA0002969109350000062
表示乘客购买起点站为i、终点站为j,且列车席位等级为c的车票数量;设置各等级列车席位的余票数量的初始值为目标列车对应等级席位的定员;当发生乘客购票行为并且购票行为成立时,所涉及的列车运行的OD区间对应等级的列车席位的余票数量立即更新。现按步骤对本例进行具体描述如下:
S1、获取目标列车的相关数据,并对目标列车的相关数据进行处理。
本例目标列车的相关数据包括:目标列车的发车日期,目标列车的席位等级分布,目标列车各等级席位的定员,目标列车运行的OD区间,目标列车运行的OD区间的距离,乘客购票提前天数,乘客的购票渠道,乘客所购车票的起点站,乘客所购车票的终点站,乘客所购车票的起点站和终点站所在城市的行政等级,乘客购票数量,乘客所购车票的席位等级。
对已获得的数据进行梳理,明确始发站、终点站及经停站,然后确定各个站所在城市的行政等级,用以下公式计算所涉及的不同行政等级组合的OD区间:
Figure BDA0002969109350000071
其中,
Figure BDA0002969109350000072
为总的组合数,n为涉及的行政等级,m为每个OD区间涉及的城市数量。
S2、建立余票更新机制,具体包括:
S2-1、初始化矩阵
Figure BDA0002969109350000073
S2-2、乘客要购买
Figure BDA0002969109350000074
张车票,若
Figure BDA0002969109350000075
则售卖出满足乘客需求的车票给乘客,此时乘客的购票行为成立;若
Figure BDA0002969109350000076
则拒绝售卖车票给乘客,此时乘客的购票行为不成立;
S2-3、一旦发生售票行为,立即更新矩阵
Figure BDA0002969109350000077
S2-4、判断更新后的矩阵
Figure BDA0002969109350000078
Figure BDA0002969109350000079
则返回步骤S2-2继续执行,否则终止售票。
图1为本例的余票更新流程图。首先,对一等座和二等座的余票矩阵初始化,列车一等座和二等座的余票数量的初始值均为该列车对应等级席位总数(在流程最初的时候因为还没有车票被售出,初始化时即所有运行区间的余票数量均为列车相对席位的定员);然后,当有票售出时,比较对应的余票数量与乘客所购票数的大小,如果对应的余票数量大于乘客所购票数,则乘客的购票行为成立,同时更新对应的矩阵;最后,判断更新后的余票数量是否大于0,若大于0则继续执行售票流程,否则终止售票。
S3、根据乘客购票行为及各等级列车席位的余票情况,将乘客的购票意愿分为确定性意愿和非确定性意愿,因此将乘客购票数据分为确定性意愿的乘客购票数据和非确定性意愿的乘客购票数据。
确定性意愿:在各等级列车席位的余票数量都能够满足乘客需求的情况下,若乘客选择购买其中一种等级列车席位的车票,则认定乘客的购票行为与其潜在购票需求是一致的,此时通过乘客的购票行为能够确定乘客的潜在购票需求,将这种情况下的乘客购票意愿称为确定性意愿。
非确定性意愿:在不同等级列车席位中有一种以上等级列车席位的余票数量不能够满足乘客需求的情况下,若乘客选择购买其中一种等级列车席位余票数量能够满足乘客需求的车票,则认定乘客的购票行为与其潜在购票需求之间的关系是不确定的,此时通过乘客的购票行为无法确定乘客的潜在购票需求,将这种情况下的乘客购票意愿称为非确定性意愿。
表1为根据乘客购票行为及各等级列车席位的余票情况来判断乘客的购票意愿是确定性意愿还是非确定性意愿。如表中编号为1和2所示,在一等座和二等座的余票数量都能够满足乘客需求的情况下,乘客选择购买其中一种等级列车席位的车票,此时乘客的购票行为均能反映其潜购票需求,此时将乘客的购票意愿为确定性意愿;但是,如表中编号为3和4所示,在一等座和二等座中有一种等级列车席位的余票数量不能够满足乘客需求的情况下,乘客选择购买其中一种等级列车席位的车票,此时我们就无法判断该乘客的购票行为是否反映了其潜在购票需求,此时将乘客的购票意愿为非确定性意愿。
表1根据乘客购票行为及各等级列车席位的余票情况来判断乘客的购票意愿情况
Figure BDA0002969109350000081
S4、对经过步骤S1处理后的目标列车的相关数据进行特征提取,得到与列车席位等级相关性高的特征,具体包括:
判断列车席位等级与其余特征之间的关系,并分别计算出列车席位等级与任一其余特征之间的相关系数,依据计算出的相关系数提取与列车席位等级相关性高的特征;其余特征是指不包括列车席位等级在内的经过步骤S1处理后的目标列车的相关数据;
计算相关系数的公式为:
Figure BDA0002969109350000082
公式中,rm表示列车席位等级与任一其余特征之间的相关系数;n表示样本容量,k≤n;y表示列车席位等级;xm表示任一其余特征。
本例与列车席位等级相关性高的特征包括:目标列车运行的OD区间,目标列车运行的OD区间的距离,乘客购票提前天数,乘客所购车票的起点站,乘客所购车票的终点站,乘客所购车票的起点站和终点站所在城市的行政等级。
图2是本例的列车席位等级与其余特征之间的相关性分析图。通过图2可以发现:起点站(即乘客所购车票的起点站)、终点站(即乘客所购车票的终点站)、OD区间(即目标列车运行所经过的各个OD区间)、OD区间距离(即目标列车运行所经过的各个OD区间的距离)、行政等级(即乘客所购车票的起点站和终点站所在城市的行政等级)以及购票提前天数(即乘客购票提前天数),这六个特征都与列车席位等级之间存在较高的相关性。
表2是对图2中展示的与列车席位等级相关度较高的六个特征以及列车席位等级的解释,包括各个特征值的取值范围,以及各个特征所属类型。
表2与列车席位等级相关度较高的特征以及列车席位等级的解释
Figure BDA0002969109350000091
Figure BDA0002969109350000101
图3是本例的六个相关性较高的特征的贡献情况图,即给出了起点站(即乘客所购车票的起点站)、终点站(即乘客所购车票的终点站)、OD区间(即目标列车运行所经过的各个的OD区间)、OD区间距离(即目标列车运行所经过的各个OD区间的距离)、行政等级(即乘客所购车票的起点站和终点站所在城市的行政等级)以及购票提前天数(即乘客购票提前天数),这六个相关性较高的特征的贡献值。为了避免反常样本的干扰,在整个过程中,我们都对数据进行了清洗。从图3中可以看出,购票提前天数及OD区间的贡献值相较其他特征来说都很小,所以我们进一步将这两种特征从所提取的六个特征中剔除。
S5、基于确定性意愿的乘客购票数据构建用于识别乘客潜在购票需求的支持向量机模型。
S6、用所构建的用于识别乘客潜在购票需求的支持向量机模型对输入的每位乘客的购票数据进行分析并划分列车席位需求等级,进而识别出每位非确定性意愿的乘客的潜在购票需求。
本例步骤S5和步骤S6,具体包括:
定义已购票乘客样本数据集、训练集、测试集,如下:
已购票乘客样本数据集是由确定性意愿的乘客购票数据和非确定性意愿的乘客购票数据共同组成,记为
Figure BDA0002969109350000107
训练集是由确定性意愿的乘客购票数据组成,记为S,用于进行数据分析并构建用于识别乘客潜在购票需求的支持向量机模型;
测试集是由非确定性意愿的乘客购票数据组成,记为T,用于测试所构建的用于识别乘客潜在购票需求的支持向量机模型在实际应用中的预测表现情况,同时识别出每位非确定性意愿的乘客的潜在购票需求;
Figure BDA0002969109350000102
其中N表示乘客提前购买的车票总数;
Figure BDA0002969109350000103
其中,
Figure BDA0002969109350000104
为任一子训练集,表示第h次购票信息对应的数据;
Figure BDA0002969109350000105
表示第h次购票的属性特征,且
Figure BDA0002969109350000106
yh表示对应属性条件下实际购票的列车席位等级的标签,且yh∈{0,1},其中数值0和1代表两种不同的列车席位等级; h=1,2,...,l;l代表子训练集的总量;
因此,
Figure BDA0002969109350000119
采用训练集构造特征空间中的超平面:基于训练集获得的信息,根据列车席位等级种类将特征空间分为两种,用于描述超平面的函数表达式为f(x)=ωx+b,ω为该超平面的法向量,b为该超平面的一个变量;
基于训练集,求解得到ω和b的最优解可以用于解决如下优化问题:
Figure BDA0002969109350000111
Figure BDA0002969109350000112
0≤αs≤C,s=1,2,...,l,
式中,α=(α1,α2,...,αl)T是拉格朗日乘子向量;K是内核函数;C是手动设置的惩罚因子;Xs和Xt是任一两个子训练集的输入,ys和yt分别是对应的两个子训练集的标签,ys∈{0,1},yt∈{0,1};
基于上述优化问题求解得到ω和b的最优解,分别用
Figure BDA0002969109350000113
Figure BDA0002969109350000114
表示,如下:
Figure BDA0002969109350000115
Figure BDA0002969109350000116
Figure BDA0002969109350000117
非线性分类器函数的表达式为
Figure BDA0002969109350000118
由前文的分析可知,我们可以将乘客的购票意愿分类为确定性意愿和非确定性意愿。现为了进一步验证所构建的用于识别乘客潜在购票需求的支持向量机模型的有效性,拟用已知的确定性意愿数据进行测试。(补充说明:后文中的训练集和测试集有别于前文所述的,将后文中训练集和测试集记为训练集E和测试集F进行区分。因为前文所述的训练集和测试集是按照确定性意愿和非确定性意愿对数据进行划分,而后文是为了验证模型的有效性,而采用确定性意愿数据来测试,所以是将确定性意愿数据分为训练集E和测试集F。)具体如下:
采集数据为2017年11月21日至11月27日列车运行过程的购票信息,因此数据集以天为单位进行分类。训练集E是由这7天数据中任意6天中的确定性意愿数据组成的,而剩余的1天中的确定性意愿数据则组成测试集F。预测集是由这7天数据中的非确定性意愿数据组成的。为了能够得到更加准确的预测结果,我们通过调整所构建的用于识别乘客潜在购票需求的支持向量机模型的相关参数的取值来获得不同参数下的拟合准确度,从而选择拟合准确度最高的参数组用于预测,得到同等条件下最准确的预测结果。由此,我们对这7天的数据通过调整所构建的用于识别乘客潜在购票需求的支持向量机模型中内核函数K的关键参数值σ和γ进行交叉验证,得到不同参数下的拟合轮廓图,如图4 所示。从图4中可以看出,拟合度最高的可达94%,这也为机器学习模型的参数选取提供了有力的依据。图5是对一等座中的非确定性意愿的预测结果图,表示乘客的潜在购票需求是二等座,但实际购票结果是一等座的分布情况,结果表明这部分乘客通常是长距离或短距离旅程的乘客。图6是对二等座中的非确定性意愿的预测结果图,表示乘客的潜在购票需求是一等座,但实际购票结果是二等座的分布情况,结果表明这部分乘客主要为中长距离或短距离的乘客。从图5和图6的结果可以看出,购买了一等座的乘客有较多人实际想购买二等座;有少部分购买二等座的乘客希望购买一等座,显然该部分乘客即为未被满足的具有更高消费能力的乘客。
同理,乘客购买其他列车席位等级的车票(如无座或商务座)的情况也可以根据本例方式进行,此处不再重复。
S7、将目标列车运行的每个OD区间按照运行距离从长到短进行排序,并规定票额分配的优先级别为按照运行距离从长到短逐级递减。
本例是将12个站点对应的62个OD区间按照区间距离的长短从长到短排序,距离越长的区间具有越高的优先级。
S8、基于乘客的潜在购票需求数据并结合步骤S7所规定的票额分配的优先级别,对目标列车运行的每个OD区间进行票额分配;乘客的潜在购票需求数据是由确定性意愿的乘客和非确定性意愿的乘客的潜在购票需求数据组成。具体包括:
假定在目标列车运行的同一OD区间内,除无座以外的各等级列车席位的票价逐级递减,且一等级列车席位的票价高于其他等级列车席位的票价,无座的票价不高于其他等级列车席位的票价。
S8-1、对潜在购票需求为一等级列车席位的乘客按照步骤S7所规定的票额分配的优先级别进行票额分配;若潜在购票需求为一等级列车席位的乘客需求量超出目标列车一等级列车席位的定员,则将超出部分的潜在购票需求为一等级列车席位的乘客需求视为潜在购票需求为次等级列车席位。
S8-2、对潜在购票需求为次等级列车席位以及视为潜在购票需求为次等级列车席位的乘客按照步骤S7所规定的票额分配的优先级别进行票额分配;若潜在购票需求为次等级列车席位以及视为潜在购票需求为次等级列车席位的乘客需求量超出目标列车次等级列车席位的定员,则将超出部分的潜在购票需求为次等级列车席位以及视为潜在购票需求为次等级列车席位的乘客需求视为潜在购票需求为次等级列车席位的下一等级列车席位。
S8-3、按照步骤S8-2的分配规律依次对除无座以外的各等级列车席位存在潜在购票需求的乘客进行票额分配。
S8-4、对除无座以外的各等级列车席位存在潜在购票需求的乘客进行票额分配完成后,若还存在乘客的潜在购票需求没有被满足,则潜在购票需求没有被满足的这部分乘客只能选择购买该次目标列车的无座车票。
本例步骤S8的票额分配过程中还包括步骤:对目标列车运行的每个OD区间设置各等级列车席位的票额分配最小阈值;当存在任一OD区间的任一等级列车席位的乘客需求量没有达到该OD区间该等级列车席位的票额分配最小阈值时,该OD区间没有被分配的该等级列车席位将分配给比该OD 区间距离长且包含该OD区间在内的其余长距离OD区间。
表3给出了采用本例方法对每个区间进行票额分配的结果。表格中,从左往右第2列数字1~11 对应的是列车运行的OD区间的起点站编号,从上往下第2行数字2~12对应的是列车的OD区间的终点站编号,每一个起点站对应的两行分别为该起点站到终点站一等座和二等座的票额分配的情况,其中上面一行代表的是一等座的票额分配的情况,下面一行代表的是二等座的票额分配的情况。从表格中的内容可以看出,采用本例方法对列车运行的每一OD区间一等座和二等座的票额分配的结果。
表3基于乘客需求重识别的长距离优先票额分配方法对每个区间进行票额分配的结果
Figure BDA0002969109350000131
Figure BDA0002969109350000141
图7给出了采用本例票额分配方法所得的结果与初始票额分配方法的分配结果(最初数据中提取的票额分配结果)在列车收入方面的对比情况。从图7可以看出,采用本例票额分配方法所得的结果与初始票额分配方法的分配结果(最初数据中提取的票额分配结果)在列车收入方面相比较,一等座的收入在原来基础上增加了4.4%,二等座的收入在原来基础上增加了6%。
图8给出了是采用本例票额分配方法所得的结果与初始票额分配方法的分配结果(最初数据中提取的票额分配结果)在列车上座率方面的对比情况。从图8可以看出,采用本例票额分配方法所得的结果与初始票额分配方法的分配结果(最初数据中提取的票额分配结果)在列车上座率方面相比较,列车上座率在原来基础上提升了5.81%。
综上所述,采用本例基于乘客需求重识别的长距离优先票额分配方法对每个区间进行票额分配,不仅能够在最大程度上满足乘客需求,同时还能够提高列车的上座率,增加铁路公司的收入,实现双赢。
上述结合附图对本发明进行了示例性描述,显然本发明的具体实现并不受本文所示的实施例的限制。

Claims (8)

1.一种基于乘客需求重识别的长距离优先票额分配方法,其特征在于,所述方法包括以下步骤:
S1、获取目标列车的相关数据,并对目标列车的相关数据进行处理;
S2、建立余票更新机制;
S3、根据乘客购票行为及各等级列车席位的余票情况,将乘客的购票意愿分为确定性意愿和非确定性意愿,因此将乘客购票数据分为确定性意愿的乘客购票数据和非确定性意愿的乘客购票数据;
所述确定性意愿:在各等级列车席位的余票数量都能够满足乘客需求的情况下,若乘客选择购买其中一种等级列车席位的车票,则认定乘的购票行为与其潜在购票需求是一致的,此时通过乘客的购票行为能够确定乘客的潜在购票需求,将这种情况下的乘客购票意愿称为确定性意愿;
所述非确定性意愿:在不同等级列车席位中有一种以上等级列车席位的余票数量不能够满足乘客需求的情况下,若乘客选择购买其中一种等级列车席位余票数量能够满足乘客需求的车票,则认定乘客的购票行为与其潜在购票需求之间的关系是不确定的,此时通过乘客的购票行为无确定法乘客的潜在购票需求,将这种情况下的乘客购票意愿称为非确定性意愿;
S4、对经过步骤S1处理后的所述目标列车的相关数据进行特征提取,得到与列车席位等级相关性高的特征;
S5、基于所述确定性意愿的乘客购票数据构建用于识别乘客潜在购票需求的支持向量机模型;
S6、用所构建的用于识别乘客潜在购票需求的支持向量机模型对输入的每位乘客的购票数据进行分析并划分列车席位需求等级,进而识别出每位所述非确定性意愿的乘客的潜在购票需求;
S7、将目标列车运行的每个OD区间按照运行距离从长到短进行排序,并规定票额分配的优先级别为按照运行距离从长到短逐级递减;
S8、基于乘客的潜在购票需求数据并结合步骤S7所规定的票额分配的优先级别,对目标列车运行的每个OD区间进行票额分配;所述乘客的潜在购票需求数据是由所述确定性意愿的乘客和所述非确定性意愿的乘客的潜在购票需求数据组成。
2.根据权利要求1所述的一种基于乘客需求重识别的长距离优先票额分配方法,其特征在于,所述目标列车的相关数据包括:目标列车的发车日期,目标列车的席位等级分布,目标列车各等级席位的定员,目标列车运行的OD区间,目标列车运行的OD区间的距离,乘客购票提前天数,乘客的购票渠道,乘客所购车票的起点站,乘客所购车票的终点站,乘客所购车票的起点站和终点站所在城市的行政等级,乘客购票数量,乘客所购车票的席位等级。
3.根据权利要求1所述的一种基于乘客需求重识别的长距离优先票额分配方法,其特征在于,所述步骤S2,建立余票更新机制,具体包括:
用c表示目标列车席位等级编号,i表示不同OD区间的起点站编号,j表示不同OD区间的终点站编号;用矩阵
Figure FDA0002969109340000021
描述目标列车运行在OD区间(i,j)的c等级列车席位的余票数量;用
Figure FDA0002969109340000022
表示乘客购买起点站为i、终点站为j,且列车席位等级为c的车票数量;设置各等级列车席位的余票数量的初始值为目标列车对应等级席位的定员;当发生乘客购票行为并且购票行为成立时,所涉及的列车运行的OD区间对应等级的列车席位的余票数量立即更新,具体步骤包括:
S2-1、初始化矩阵
Figure FDA0002969109340000023
S2-2、乘客要购买
Figure FDA0002969109340000024
张车票,若
Figure FDA0002969109340000025
则售卖出满足乘客需求的车票给乘客,此时乘客的购票行为成立;若
Figure FDA0002969109340000026
则拒绝售卖车票给乘客,此时乘客的购票行为不成立;
S2-3、一旦发生售票行为,立即更新矩阵
Figure FDA0002969109340000027
S2-4、判断更新后的矩阵
Figure FDA0002969109340000028
Figure FDA0002969109340000029
则返回步骤S2-2继续执行,否则终止售票。
4.根据权利要求1所述的一种基于乘客需求重识别的长距离优先票额分配方法,其特征在于,所述步骤S4,对经过步骤S1处理后的所述目标列车的相关数据进行特征提取,得到与列车席位等级相关性高的特征,具体包括:
判断列车席位等级与其余特征之间的关系,并分别计算出列车席位等级与任一其余特征之间的相关系数,依据计算出的相关系数提取与列车席位等级相关性高的特征;所述其余特征是指不包括列车席位等级在内的经过步骤S1处理后的所述目标列车的相关数据;
计算相关系数的公式为:
Figure FDA00029691093400000210
公式中,rm表示列车席位等级与任一其余特征之间的相关系数;n表示样本容量,k≤n;y表示列车席位等级;xm表示任一其余特征。
5.根据权利要求1所述的一种基于乘客需求重识别的长距离优先票额分配方法,其特征在于,所述步骤S5和所述步骤S6,具体包括:
定义已购票乘客样本数据集、训练集、测试集,如下:
所述已购票乘客样本数据集是由所述确定性意愿的乘客购票数据和所述非确定性意愿的乘客购票数据共同组成,记为
Figure FDA00029691093400000211
所述训练集是由所述确定性意愿的乘客购票数据组成,记为S,用于进行数据分析并构建用于识别乘客潜在购票需求的支持向量机模型;
所述测试集是由所述非确定性意愿的乘客购票数据组成,记为T,用于测试所构建的用于识别乘客潜在购票需求的支持向量机模型在实际应用中的预测表现情况,同时识别出每位所述非确定性意愿的乘客的潜在购票需求;
Figure FDA0002969109340000031
其中N表示乘客提前购买的车票总数;
Figure FDA0002969109340000032
其中,
Figure FDA0002969109340000033
为任一子训练集,表示第h次购票信息对应的数据;
Figure FDA0002969109340000034
表示第h次购票的属性特征,且
Figure FDA0002969109340000035
yh表示对应属性条件下实际购票的列车席位等级的标签,且yh∈{0,1},其中数值0和1代表两种不同的列车席位等级;h=1,2,…,l;l代表子训练集的总量;
因此,
Figure FDA0002969109340000036
采用所述训练集构造特征空间中的超平面:基于所述训练集获得的信息,根据列车席位等级种类将特征空间分为两种,用于描述所述超平面的函数表达式为f(x)=ωx+b,ω为所述超平面的法向量,b为所述超平面的一个变量;
基于所述训练集,求解得到ω和b的最优解可以用于解决如下优化问题:
Figure FDA0002969109340000037
Figure FDA0002969109340000038
0≤αs≤C,s=1,2,…,l,
式中,α=(α12,…,αl)T是拉格朗日乘子向量;K是内核函数;C是手动设置的惩罚因子;Xs和Xt是任一两个子训练集的输入,ys和yt分别是对应的两个子训练集的标签,ys∈{0,1},yt∈{0,1};
基于上述优化问题求解得到ω和b的最优解,分别用
Figure FDA0002969109340000039
Figure FDA00029691093400000310
表示,如下:
Figure FDA00029691093400000311
Figure FDA00029691093400000312
Figure FDA00029691093400000313
非线性分类器函数的表达式为
Figure FDA00029691093400000314
6.根据权利要求1或4所述的一种基于乘客需求重识别的长距离优先票额分配方法,其特征在于,所述与列车席位等级相关性高的特征包括:目标列车运行的OD区间,目标列车运行的OD区间的距离,乘客购票提前天数,乘客所购车票的起点站,乘客所购车票的终点站,乘客所购车票的起点站和终点站所在城市的行政等级。
7.根据权利要求1所述的一种基于乘客需求重识别的长距离优先票额分配方法,其特征在于,所述步骤S8,基于乘客的潜在购票需求数据并结合步骤S7所规定的票额分配的优先级别,对目标列车运行的每个OD区间进行票额分配,具体包括:假定在目标列车运行的同一OD区间内,除无座以外的各等级列车席位的票价逐级递减,且一等级列车席位的票价高于其他等级列车席位的票价,无座的票价不高于其他等级列车席位的票价;
S8-1、对潜在购票需求为一等级列车席位的乘客按照步骤S7所规定的票额分配的优先级别进行票额分配;若潜在购票需求为一等级列车席位的乘客需求量超出目标列车一等级列车席位的定员,则将超出部分的潜在购票需求为一等级列车席位的乘客需求视为潜在购票需求为次等级列车席位;
S8-2、对潜在购票需求为次等级列车席位以及视为潜在购票需求为次等级列车席位的乘客按照步骤S7所规定的票额分配的优先级别进行票额分配;若潜在购票需求为次等级列车席位以及视为潜在购票需求为次等级列车席位的乘客需求量超出目标列车次等级列车席位的定员,则将超出部分的潜在购票需求为次等级列车席位以及视为潜在购票需求为次等级列车席位的乘客需求视为潜在购票需求为次等级列车席位的下一等级列车席位;
S8-3、按照步骤S8-2的分配规律依次对除无座以外的各等级列车席位存在潜在购票需求的乘客进行票额分配;
S8-4、对除无座以外的各等级列车席位存在潜在购票需求的乘客进行票额分配完成后,若还存在乘客的潜在购票需求没有被满足,则潜在购票需求没有被满足的这部分乘客只能选择购买该次目标列车的无座车票。
8.根据权利要求7所述的一种基于乘客需求重识别的长距离优先票额分配方法,其特征在于,所述步骤S8的票额分配过程中还包括步骤:对目标列车运行的每个OD区间设置各等级列车席位的票额分配最小阈值;当存在任一OD区间的任一等级列车席位的乘客需求量没有达到该OD区间该等级列车席位的票额分配最小阈值时,该OD区间没有被分配的该等级列车席位将分配给比该OD区间距离长且包含该OD区间在内的其余长距离OD区间。
CN202110259339.3A 2021-03-10 2021-03-10 一种基于乘客需求重识别的长距离优先票额分配方法 Active CN112819388B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110259339.3A CN112819388B (zh) 2021-03-10 2021-03-10 一种基于乘客需求重识别的长距离优先票额分配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110259339.3A CN112819388B (zh) 2021-03-10 2021-03-10 一种基于乘客需求重识别的长距离优先票额分配方法

Publications (2)

Publication Number Publication Date
CN112819388A CN112819388A (zh) 2021-05-18
CN112819388B true CN112819388B (zh) 2022-03-04

Family

ID=75863074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110259339.3A Active CN112819388B (zh) 2021-03-10 2021-03-10 一种基于乘客需求重识别的长距离优先票额分配方法

Country Status (1)

Country Link
CN (1) CN112819388B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088476A2 (en) * 2003-03-27 2004-10-14 University Of Washington Performing predictive pricing based on historical data
CN102867408A (zh) * 2012-09-17 2013-01-09 北京理工大学 一种公交出行路线的选择方法和系统
CN103390204A (zh) * 2013-07-30 2013-11-13 武汉大学 一种车票分配方法及系统
CN103838855A (zh) * 2014-03-17 2014-06-04 广东创能科技有限公司 余票更新的方法
CN104517187A (zh) * 2014-12-22 2015-04-15 中铁程科技有限责任公司 铁路票额分配方法及装置
CN106056242A (zh) * 2016-05-25 2016-10-26 中南大学 基于客流动态分配的高铁列车开行方案评价方法
CN108280564A (zh) * 2017-12-22 2018-07-13 中铁程科技有限责任公司 一种席位分配方法、系统及计算机可读存储介质
CN108491979A (zh) * 2018-04-03 2018-09-04 中南大学 基于等强度分配的高速铁路旅客出行时变需求预测方法
CN109993577A (zh) * 2019-03-25 2019-07-09 上海工程技术大学 一种基于需求转移的可召回舱位控制方法
CN110570128A (zh) * 2019-09-09 2019-12-13 西南交通大学 高速铁路列车多等级票价席位存量嵌套控制方法
CN110648407A (zh) * 2019-10-18 2020-01-03 合肥工业大学 一种列车分段式的座位关联售票方法
CN111598317A (zh) * 2020-05-08 2020-08-28 内蒙古大学 一种铁路定制化列车开行方案生成优化方法
CN112418466A (zh) * 2020-11-18 2021-02-26 合肥工业大学 一种基于票额分配的列车分段式座位售票方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120226575A1 (en) * 2011-03-03 2012-09-06 Brett Ian Goldberg Electronic ticket market

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088476A2 (en) * 2003-03-27 2004-10-14 University Of Washington Performing predictive pricing based on historical data
CN102867408A (zh) * 2012-09-17 2013-01-09 北京理工大学 一种公交出行路线的选择方法和系统
CN103390204A (zh) * 2013-07-30 2013-11-13 武汉大学 一种车票分配方法及系统
CN103838855A (zh) * 2014-03-17 2014-06-04 广东创能科技有限公司 余票更新的方法
CN104517187A (zh) * 2014-12-22 2015-04-15 中铁程科技有限责任公司 铁路票额分配方法及装置
CN106056242A (zh) * 2016-05-25 2016-10-26 中南大学 基于客流动态分配的高铁列车开行方案评价方法
CN108280564A (zh) * 2017-12-22 2018-07-13 中铁程科技有限责任公司 一种席位分配方法、系统及计算机可读存储介质
CN108491979A (zh) * 2018-04-03 2018-09-04 中南大学 基于等强度分配的高速铁路旅客出行时变需求预测方法
CN109993577A (zh) * 2019-03-25 2019-07-09 上海工程技术大学 一种基于需求转移的可召回舱位控制方法
CN110570128A (zh) * 2019-09-09 2019-12-13 西南交通大学 高速铁路列车多等级票价席位存量嵌套控制方法
CN110648407A (zh) * 2019-10-18 2020-01-03 合肥工业大学 一种列车分段式的座位关联售票方法
CN111598317A (zh) * 2020-05-08 2020-08-28 内蒙古大学 一种铁路定制化列车开行方案生成优化方法
CN112418466A (zh) * 2020-11-18 2021-02-26 合肥工业大学 一种基于票额分配的列车分段式座位售票方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
An Analysis of Attributes Impacting Consumer Online Sport Ticket Purchases in a Dual Market Environment;Popp Nels等;《SPORT MARKETING QUARTERLY》;20200930;第29卷(第3期);第177-188页 *
考虑动态购票需求的高速铁路票额分配;宋文波等;《铁道学报》;20190915;第41卷(第9期);第20-27页 *
铁路客运票额动态分配研究;刘帆洨;《中国优秀博士学位论文全文数据库工程科技Ⅱ辑》;20200315;第C033-70页 *
铁路旅客购票需求预测模型研究;刘帆洨等;《交通运输工程与信息学报》;20180618;第16卷(第2期);第50-56页 *

Also Published As

Publication number Publication date
CN112819388A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
CN112949926B (zh) 一种基于乘客需求重识别的收入最大化票额分配方法
Hörcher et al. Crowding cost estimation with large scale smart card and vehicle location data
Rahman et al. Perceived service quality of paratransit in developing countries: A structural equation approach
Echaniz et al. Modelling perceived quality for urban public transport systems using weighted variables and random parameters
CN105931068A (zh) 一种持卡人消费画像的生成方法及装置
Moufad et al. A study framework for assessing the performance of the urban freight transport based on PLS approach
CN105206040B (zh) 一种基于ic卡数据的公交串车预测方法
Tavassoli et al. Modelling passenger waiting time using large-scale automatic fare collection data: An Australian case study
Csonka et al. Service quality analysis and assessment method for European carsharing systems
CN114187120A (zh) 一种车险理赔欺诈风险识别方法及装置
Li et al. Using smart card data trimmed by train schedule to analyze metro passenger route choice with synchronous clustering
Wallimann et al. Do price reductions attract customers in urban public transport? A synthetic control approach
CN112836996B (zh) 一种识别乘客潜在购票需求的方法
Sadrani et al. Designing limited-stop bus services for minimizing operator and user costs under crowding conditions
Tirtha et al. Understanding the factors affecting airport level demand (arrivals and departures) using a novel modeling approach
CN112819388B (zh) 一种基于乘客需求重识别的长距离优先票额分配方法
CN110020666B (zh) 一种基于乘客行为模式的公共交通广告投放方法及系统
JP2023013012A5 (zh)
Sha et al. Modeling airline decisions on route planning using discrete choice models
CN111241162A (zh) 高速铁路成网条件下旅客出行行为分析方法及存储介质
Shen et al. Unveiling the influential factors for customized bus service reopening from naturalistic observations in Shanghai
Khan et al. A dynamic analysis of rail travel demand in Pakistan
CN110796301A (zh) 一种基于ic卡数据的乘客流量预测方法及装置
Urban et al. Modelling the European air transport system: A System Dynamics approach
Yuan et al. A gray prediction method for economic loss of road traffic accidents based on Logistic model.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant