CN112812122A - 一种选择性合成β-吲哚-α,β-不饱和羰基化合物和吡喃并[2,3-b]吲哚的方法 - Google Patents

一种选择性合成β-吲哚-α,β-不饱和羰基化合物和吡喃并[2,3-b]吲哚的方法 Download PDF

Info

Publication number
CN112812122A
CN112812122A CN202011635021.2A CN202011635021A CN112812122A CN 112812122 A CN112812122 A CN 112812122A CN 202011635021 A CN202011635021 A CN 202011635021A CN 112812122 A CN112812122 A CN 112812122A
Authority
CN
China
Prior art keywords
indole
beta
reaction
aryl
pyrano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011635021.2A
Other languages
English (en)
Other versions
CN112812122B (zh
Inventor
吕健
王满
宋然
司雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202011635021.2A priority Critical patent/CN112812122B/zh
Publication of CN112812122A publication Critical patent/CN112812122A/zh
Application granted granted Critical
Publication of CN112812122B publication Critical patent/CN112812122B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/052Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/12Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Indole Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种属于有机合成领域,涉及一种利用不同氧化剂可选择性合成β‑吲哚‑α,β‑不饱和羰基化合物和吡喃并[2,3‑b]吲哚的方法。所述方法为:向反应器中,加入β‑吲哚‑羰基化合物和不同氧化剂,一定温度下搅拌至反应完毕,可选择性的得到β‑吲哚‑α,β‑不饱和羰基化合物和吡喃并[2,3‑b]吲哚衍生物。本发明合成方法具有收率高、底物适用面广,操作简单、反应温度温和、后处理方便等优点。其反应方程式如下:

Description

一种选择性合成β-吲哚-α,β-不饱和羰基化合物和吡喃并[2, 3-b]吲哚的方法
技术领域
本发明公开了属于有机合成技术领域的一种利用不同氧化剂可选择性合成β-吲哚-α,β-不饱和羰基化合物及吡喃并[2,3-b]吲哚的方法。
背景技术
α,β-不饱和羰基化合物是一类重要的有机合成中间体,可以通过手性金属Lewis酸催化,有机小分子催化等策略实现β-位官能化、不对称环化等反应。而目前该类反应大多由β-单取代α,β-不饱和羰基化合物实现的。因此,一种新型的β-双取代α,β-不饱和羰基化合物的合成方法的实现对这些反应的适用性范围研究及新反应的发现具有重大意义。另一方面,吡喃并[2,3-b]吲哚广泛应用于许多天然产物(Org Lett.2013,15,8,2010–2013)、药物(Goldfarb,D.S.US 20090163545,2009)和荧光探针(Org.Lett.2010,12,4122–4125)之中。鉴于吡喃并[2,3-b]吲哚骨架的众多实用性价值以及现有合成方法的转化率较低及适用范围较窄的现象,寻找一种快速、简单、适用性广的构建吡喃并[2,3-b]吲哚骨架的方法也显得尤为重要了。
发明内容
本发明提供了一种利用不同氧化剂可选择性合成β-吲哚-α,β-不饱和羰基化合物和吡喃并[2,3-b]吲哚的方法。
为了实现上述目的,本发明提供了一种利用不同氧化剂可选择性合成β- 吲哚-α,β-不饱和羰基化合物和吡喃并[2,3-b]吲哚的方法,所述β-吲哚-α,β-不饱和羰基化合物和吡喃并[2,3-b]吲哚的结构式分别具有式I和式II所示的结构:
Figure RE-GDA0002976612610000021
其中,R1、R2均为选自饱和烷基、取代烷基、芳基、取代芳基、杂环芳基、酯基中的任意一种;
R3选自氢原子、卤素原子、饱和烷基、取代烷基、芳基、取代芳基、酯基、氰基、硝基、烷氧基中的任意一种;
所述芳基为苯基、噻吩基、呋喃基、吡咯基或萘基;
所述取代烷基、取代芳基的取代基为卤素原子、饱和烷基、芳基、酯基、氰基、硝基、烷氧基中的任意一种;
在反应器中,加入氧化剂1、氧化剂2和β-吲哚-羰基化合物,加入溶剂,反应完毕;体系中加入碳酸钠水溶液淬灭反应,用乙酸乙酯分三次进行萃取,合并有机相,加入无水硫酸钠,过滤,旋转蒸发仪浓缩滤液得到的粗产品,柱层析分离得到产品;其化学过程见反应式III:
Figure RE-GDA0002976612610000022
所述氧化剂1和氧化剂2选自DDQ、TEMPO+BF4 -、CAN、IBX、 PhI(OAc)2、I2中的任意不同的两种;
所述溶剂选自二氯甲烷、三氯甲烷、1,2-二氯乙烷、四氢呋喃、甲苯、乙腈、乙酸乙酯、正己烷中的任意一种。
所述β-吲哚-羰基化合物、氧化剂1与氧化剂2的摩尔比为 1.0:(0.8-1.2):(0-2.0)。
反应时间为1-300min。
反应温度为0-60℃。
在反应后用二氯甲烷和乙酸乙酯的混合溶剂进行柱层析分离。
本发明的有益效果为:本发明提供的选择性合成β-吲哚-α,β-不饱和羰基化合物和吡喃并[2,3-b]吲哚的方法科学合理,可以利用不同氧化剂来选择性的合成各种取代基的β-吲哚-α,β-不饱和羰基化合物和吡喃并[2,3-b]吲哚;而且还具有合成方法简单,产率较高,产品易于纯化等特点。
附图说明
图1为实施例1制备的化合物(2a)的NMR图谱;
图2为实施例2制备的化合物(3a)的NMR图谱;
图3为实施例7制备的化合物(2d)的NMR图谱;
图4为实施例8制备的化合物(3d)的NMR图谱;
具体实施方式
在本文中通过具体实施例对本发明的方法进行说明,但本发明并不局限于此,在本发明的技术构思范围内,进行任何的修改、等同替换和改进等,均应包括在本发明的保护范围之内。
实施例1:
反应方程式如下:
Figure RE-GDA0002976612610000031
将化合物1a(5mmol)和DDQ(5mmol)加入反应器中,加入二氯甲烷50mL,室温下搅拌5分钟。反应完成后,加入碳酸钠水溶液淬灭反应,用乙酸乙酯分三次进行萃取,合并有机相,加入无水硫酸钠干燥溶剂,过滤,旋转蒸发仪浓缩滤液得到的粗产品,用二氯甲烷和乙酸乙酯的体积比30:1的混合溶剂柱层析分离,得到纯2a,产率为89%,Z/E为1:2.73。
2a的核磁数据如下:
1H NMR(500MHz,DMSO)δ11.99(s,1H),11.83(s,0.37H),7.72(s, 0.33H),7.56–7.41(m,7.33H),7.30–7.27(m,3H),7.24(t,J=7.5Hz,1H),7.18– 7.12(m,1.37H),7.05(s,1H),6.90(t,J=7.5Hz,0.37H),6.68(d,J=7.5Hz,0.36H), 6.61(s,0.36H),3.82(q,J=7.0Hz,2H),3.50(q,J=7.0Hz,0.73H),1.14(t,J=7.5 Hz,3H),0.77(t,J=7.5Hz,1.1H)ppm.
13C NMR(125MHz,DMSO)δ185.7,183.9,163.7,156.7,154.6,139.2, 138.5,137.7,137.0,133.0,132.3,130.4,129.6,129.0,128.8,128.6,127.9,126.0, 124.7,122.8,122.3,121.5,120.4,120.1,116.6,114.8,112.9,112.0,61.2,61.0,13.6, 13.2ppm.
实施例2
反应方程式如下:
Figure RE-GDA0002976612610000041
将化合物1a(5mmol)、DDQ(5mmol)和TEMPO+BF4 -(7.5mmol) 加入反应器中,加入二氯甲烷50mL,室温下搅拌30分钟。反应完成后,加入碳酸钠水溶液淬灭反应,用乙酸乙酯分三次进行萃取,合并有机相,加入无水硫酸钠干燥溶剂,过滤,旋转蒸发仪浓缩滤液得到的粗产品,用二氯甲烷和乙酸乙酯的体积比30:1的混合溶剂柱层析分离,得到纯3a,产率为84%。
3a的核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.77–7.75(m,3H),7.71(d,J=8.0Hz,1H), 7.64–7.59(m,4H),7.51(t,J=7.5Hz,1H),7.10(t,J=7.5Hz,1H),4.48(q,J=7.0 Hz,2H),1.45(t,J=7.5Hz,3H)ppm.
13C NMR(125MHz,CDCl3)δ164.2,160.1,153.5,144.3,143.8,135.4, 130.8,130.6,129.2,128.5,124.3,123.2,122.1,119.8,113.2,62.7,14.2ppm.
实施例3
反应方程式如下:
Figure RE-GDA0002976612610000051
将化合物1b(5mmol)和DDQ(5mmol)加入反应器中,加入二氯甲烷50mL,室温下搅拌5分钟。反应完成后,加入碳酸钠水溶液淬灭反应,用乙酸乙酯分三次进行萃取,合并有机相,加入无水硫酸钠干燥溶剂,过滤,旋转蒸发仪浓缩滤液得到的粗产品,用二氯甲烷和乙酸乙酯的体积比30:1的混合溶剂柱层析分离,得到纯2b,产率为92%,Z/E为1:2.56。
2b的核磁数据如下:
1H NMR(500MHz,DMSO)δ11.99(s,1H),11.81(s,0.39H),7.70(s, 0.39H),7.56(d,J=8.0,1H),7.51(d,J=8.2Hz,1H),7.47(d,J=8.2Hz,0.39H), 7.38(d,J=8.0Hz,1H),7.30(s,1H),7.25–7.22(m,3.7H),7.19–7.13(m,3.3H), 6.99(s,1H),6.92(t,J=7.5Hz,0.39H),6.73(d,J=8.0Hz,0.39H),6.63(s,0.39H), 3.43(s,3H),3.09(s,1.17H),2.40(s,3H),2.36(s,1.17H)ppm.
13C NMR(125MHz,DMSO)δ184.9,183.8,164.2,164.1,157.0,154.8, 140.5,137.7,136.9,136.4,135.5,133.0,132.3,129.7,129.2,129.0,128.5,126.1, 124.8,122.8,122.2,121.4,120.2,120.1,120.9,119.6,116.7,114.9,113.0,112.8, 112.1,51.9,51.5,20.9ppm.
实施例4
反应方程式如下:
Figure RE-GDA0002976612610000061
将化合物1b(5mmol)、DDQ(5mmol)和TEMPO+BF4 -(7.5mmol) 加入反应器中,加入二氯甲烷50mL,室温下搅拌30分钟。反应完成后,依次用饱和碳酸钠水溶液、饱和氯化钠水溶液、无水硫酸钠进行处理后旋干反应溶剂,用二氯甲烷和乙酸乙酯的体积比30:1的混合溶剂柱层析,得到纯3b,产率为84%。
3b的核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.84(d,J=7.5Hz,1H),7.72(d,J=7.5Hz, 1H),7.68(d,J=8.0Hz,2H),7.65(s,1H),7.52(t,J=7.5Hz,1H),7.42(d,J= 8.0Hz,2H),7.12(t,J=7.5Hz,1H),4.03(s,3H),2.51(s,3H)ppm.
13C NMR(125MHz,CDCl3)δ164.2,160.6,153.4,143.9,141.1,132.4, 130.7,129.9,128.6,124.1,123.2,122.3,122.0,119.8,113.5,53.2,21.6ppm.
实施例5
反应方程式如下:
Figure RE-GDA0002976612610000062
将化合物1c(5mmol)和DDQ(5mmol)加入反应器中,加入二氯甲烷50mL,室温下搅拌5分钟。反应完成后,加入碳酸钠水溶液淬灭反应,用乙酸乙酯分三次进行萃取,合并有机相,加入无水硫酸钠干燥溶剂,过滤,旋转蒸发仪浓缩滤液得到的粗产品,用二氯甲烷和乙酸乙酯的体积比30:1的混合溶剂柱层析分离,得到纯2c,产率为83%,Z/E为1:3.39。
2c的核磁数据如下:
1H NMR(500MHz,DMSO)δ12.05(s,1H),11.84(s,0.29H),7.74(s, 0.29H),7.61(d,J=7.5Hz,1H),7.55–7.52(m,1.58H),7.48(d,J=8.0Hz,0.29H), 7.34–7.33(m,2H),7.30–7.24(m,4.58H),7.19(t,J=8.0Hz,1H),7.15(t,J=7.5 Hz,0.29H),7.12(s,1H),6.94(t,J=8.0Hz,0.29H),6.72(d,J=8.0Hz,0.29H),6.66 (s,0.29H),3.53(s,3H),3.12(s,0.88H)ppm.
13C NMR(125MHz,DMSO)δ184.7,182.9,164.5,164.0,163.8,163.4, 162.5,161.4,155.7,153.4,137.8,137.0,135.7,134.9,134.8,133.4,132.5,131.7, 131.4,131.3,125.9,124.7,122.9,122.3,121.6,120.2,120.1,116.7,115.7,115.5, 114.9,114.8,114.6,112.9,112.7,112.2,52.1,51.6ppm.
实施例6
反应方程式如下:
Figure RE-GDA0002976612610000071
将化合物1c(5mmol)、DDQ(5mmol)和TEMPO+BF4 -(7.5mmol) 加入反应器中,加入二氯甲烷50mL,室温下搅拌30分钟。反应完成后,加入碳酸钠水溶液淬灭反应,用乙酸乙酯分三次进行萃取,合并有机相,加入无水硫酸钠干燥溶剂,过滤,旋转蒸发仪浓缩滤液得到的粗产品,用二氯甲烷和乙酸乙酯的体积比30:1的混合溶剂柱层析分离,得到纯3c,产率为81%。
3c的核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.79–7.77(m,2H),7.73(t,J=7.0Hz,2H), 7.61(s,1H),7.53(t,J=7.5Hz,1H),7.32(t,J=8.5Hz,2H),7.13(t,J=7.5Hz,1H), 4.03(s,3H)ppm.
13C NMR(125MHz,CDCl3)δ164.0,163.1,162.0,159.5,152.5,143.0, 141.5,130.3,130.0,129.7,123.5,122.0,121.2,121.0,118.9,115.6,115.5,112.2, 52.3ppm.
实施例7
反应方程式如下:
Figure RE-GDA0002976612610000081
将化合物1d(5mmol)和DDQ(5mmol)加入反应器中,加入二氯甲烷50mL,室温下搅拌5分钟。反应完成后,加入碳酸钠水溶液淬灭反应,用乙酸乙酯分三次进行萃取,合并有机相,加入无水硫酸钠干燥溶剂,过滤,旋转蒸发仪浓缩滤液得到的粗产品,用二氯甲烷和乙酸乙酯的体积比30:1的混合溶剂柱层析分离,得到纯2d,产率为80%,Z/E为1:1.5。
2d的核磁数据如下:
1H NMR(500MHz,DMSO)δ11.74(s,1H),11.42(s,0.66H),7.92–7.90 (m,2H),7.88(d,J=8.0Hz,1.32H),7.57–7.40(m,10.30H),7.38–7.34(m,5.30H), 7.27–7.23(m,3H),7.19(t,J=7.5Hz,1H),7.09(t,J=7.5Hz,1H),7.03(t,J=7.5 Hz,0.66H),6.99(s,0.66H),6.81(t,J=7.5Hz,0.66H),6.68(d,J=8.0Hz,0.66H) ppm.
13C NMR(125MHz,DMSO)δ191.5,189.9,151.5,147.9,141.8,140.4, 139.2,138.3,137.4,136.2,132.2,132.1,130.4,129.5,129.2,129.0,128.6,128.5, 128.4,128.3,128.1,127.9,127.7,127.7,126.4,125.0,122.2,121.9,121.3,120.7, 120.2,119.9,119.3,117.1,116.8,112.9,112.5,111.8ppm.
实施例8
反应方程式如下:
Figure RE-GDA0002976612610000091
将化合物1d(5mmol)、DDQ(5mmol)和TEMPO+BF4 -(7.5mmol) 加入反应器中,加入二氯甲烷50mL,室温下搅拌30分钟。反应完成后,依次用饱和碳酸钠水溶液、饱和氯化钠水溶液、无水硫酸钠进行处理后旋干反应溶剂,用二氯甲烷和乙酸乙酯的体积比30:1的混合溶剂柱层析,得到纯3d,产率为80%。
3d的核磁数据如下:
1H NMR(500MHz,CDCl3)δ8.05(d,J=6.5Hz,2H),7.79(d,J=6.5Hz, 2H),7.72(t,J=9.0Hz,2H),7.63–7.58(m,3H),7.52–7.45(m,4H),7.16(s,1H), 7.08(t,J=7.5Hz,1H)ppm.
13C NMR(125MHz,CDCl3)δ163.3,154.0,150.2,144.6,134.5,129.7, 128.9,128.2,127.1,127.1,126.4,124.0,120.6,120.3,119.4,117.3,117.2,102.7 ppm.
由上述实例可以看出,按照本发明所述的利用不同氧化剂可选择性合成β-吲哚-α,β-不饱和羰基化合物和吡喃并[2,3-b]吲哚衍生物。

Claims (7)

1.一种利用不同氧化剂可选择性合成β-吲哚-α,β-不饱和羰基化合物和吡喃并[2,3-b]吲哚衍生物的方法,所述β-吲哚-α,β-不饱和羰基化合物和吡喃并[2,3-b]吲哚的结构式分别具有式I和式II所示的结构:
Figure FDA0002876032560000011
其中,R1、R2均为选自饱和烷基、取代烷基、芳基、取代芳基、杂环芳基、酯基中的任意一种;
R3选自氢原子、卤素原子、饱和烷基、取代烷基、芳基、取代芳基、酯基、氰基、硝基、烷氧基中的任意一种;
所述芳基为苯基、噻吩基、呋喃基、吡咯基或萘基;
所述取代烷基、取代芳基的取代基为卤素原子、饱和烷基、芳基、酯基、氰基、硝基、烷氧基中的任意一种;
该方法包括:在反应器中,加入氧化剂1、氧化剂2和β-吲哚-羰基化合物,加入溶剂,反应完毕;体系中加入碳酸钠水溶液淬灭反应,用乙酸乙酯分三次进行萃取,合并有机相,加入无水硫酸钠干燥溶剂,过滤,旋转蒸发仪浓缩滤液得到的粗产品,柱层析分离得到产品;其化学过程见反应式III:
Figure FDA0002876032560000012
2.根据权利要求1所述的制备方法,其中,所述氧化剂1和氧化剂2选自DDQ、TEMPO+BF4、CAN、IBX、PhI(OAc)2、I2中的任意不同的两种。
3.根据权利要求1所述的制备方法,其中,所述溶剂选自二氯甲烷、三氯甲烷、1,2-二氯乙烷、四氢呋喃、甲苯、乙腈、乙酸乙酯、正己烷中的任意一种。
4.根据权利要求1所述的制备方法,其中,所述β-吲哚-羰基化合物、氧化剂1和氧化剂2的摩尔比为1.0:(0.8-1.2):(0-2.0)。
5.根据权利要求1所述的制备方法,其中,反应时间为1-300min。
6.根据权利要求1所述的制备方法,其中,反应温度为0-60℃
7.根据权利要求1所述的制备方法,其中,用二氯甲烷和乙酸乙酯的混合溶剂进行柱层析分离。
CN202011635021.2A 2020-12-31 2020-12-31 一种选择性合成β-吲哚-α,β-不饱和羰基化合物和吡喃并[2,3-b]吲哚的方法 Active CN112812122B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011635021.2A CN112812122B (zh) 2020-12-31 2020-12-31 一种选择性合成β-吲哚-α,β-不饱和羰基化合物和吡喃并[2,3-b]吲哚的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011635021.2A CN112812122B (zh) 2020-12-31 2020-12-31 一种选择性合成β-吲哚-α,β-不饱和羰基化合物和吡喃并[2,3-b]吲哚的方法

Publications (2)

Publication Number Publication Date
CN112812122A true CN112812122A (zh) 2021-05-18
CN112812122B CN112812122B (zh) 2022-09-06

Family

ID=75856899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011635021.2A Active CN112812122B (zh) 2020-12-31 2020-12-31 一种选择性合成β-吲哚-α,β-不饱和羰基化合物和吡喃并[2,3-b]吲哚的方法

Country Status (1)

Country Link
CN (1) CN112812122B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929616A (zh) * 2021-11-15 2022-01-14 青岛科技大学 一种绿色合成含氧族元素的烷氧胺类化合物的方法
CN115611797A (zh) * 2022-10-31 2023-01-17 青岛科技大学 一种手性γ-吲哚-α-酮酸酯类化合物的不对称合成方法
CN116854622A (zh) * 2023-07-10 2023-10-10 青岛科技大学 一种多取代的2,4-二氢环戊二烯并[b]吲哚类化合物的合成方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MAN WANG ET AL.: "Bioinspired cyclization of in situ generated γ-indolyl β,γ-unsaturated α-keto esters via an oxidative enamine process: facile approaches to pyrano[2,3-b]indoles", 《ORG. CHEM. FRONT.》 *
SHI-KAI XIANG ET AL.: "Csp2–Csp2 bond formation via Lewis acid/ammonium salt cocatalyzed tandem addition and oxidative dehydrogenation strategy: alkenylation of indoles with α,β-unsaturated ketones", 《TETRAHEDRON LETTERS》 *
SHI-KAI XIANG ET AL.: "Morpholine catalyzed direct C3 alkenylation of indoles with α,β-unsaturated aldehydes", 《CHEM.COMMUN》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929616A (zh) * 2021-11-15 2022-01-14 青岛科技大学 一种绿色合成含氧族元素的烷氧胺类化合物的方法
CN113929616B (zh) * 2021-11-15 2024-05-28 青岛科技大学 一种绿色合成含氧族元素的烷氧胺类化合物的方法
CN115611797A (zh) * 2022-10-31 2023-01-17 青岛科技大学 一种手性γ-吲哚-α-酮酸酯类化合物的不对称合成方法
CN115611797B (zh) * 2022-10-31 2024-01-19 青岛科技大学 一种手性γ-吲哚-α-酮酸酯类化合物的不对称合成方法
CN116854622A (zh) * 2023-07-10 2023-10-10 青岛科技大学 一种多取代的2,4-二氢环戊二烯并[b]吲哚类化合物的合成方法

Also Published As

Publication number Publication date
CN112812122B (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
CN112812122B (zh) 一种选择性合成β-吲哚-α,β-不饱和羰基化合物和吡喃并[2,3-b]吲哚的方法
Liang et al. Concise total synthesis of (±)-serotobenine
CN113880750A (zh) 一种手性3-取代-3-芳基氧化吲哚类化合物的合成方法
CN111233795B (zh) 一种手性γ-丁内酯类化合物及其衍生物的制备方法及其应用
Goodall et al. A tandem Diels–Alder/Mannich approach to the synthesis of AE and ABE ring analogues of Delphinium alkaloids
CN109516986B (zh) 2,4,4,8,8-五硝基-2-氮杂金刚烷及其合成方法
CN111620808A (zh) 一种2-醛基吲哚类化合物及其制备方法
Wood et al. Ring closing metathesis strategies towards functionalised 1, 7-annulated 4, 6-dimethoxyindoles
KR102595714B1 (ko) 인돌리노벤조다이아제핀 유도체를 제조하는 방법
CN111116497A (zh) 一种3-甲基喹喔啉-2-(1h)-酮衍生物的制备方法
CN104710417B (zh) 氮杂吲哚类衍生物及其合成方法
Khoury et al. Metal ion-induced self assembly of open-chain tetrapyrrole derivatives: Double stranded dinuclear complexes from 10-oxo-5, 15-biladienes
CN110922369A (zh) 三氟甲基取代的二氢呋喃胺化合物及其制备方法与应用
EP1856124B1 (en) New synthesis of a camptothecin subunit
Wang et al. Synthesis of long-wavelength chlorins by chemical modification for methyl pyropheophorbide-a and their in vitro cell viabilities
CN115197232A (zh) 一种环丙烷稠合的氧桥六环类化合物及其合成方法
CN111393437B (zh) 三取代吲嗪类化合物及其制备方法
CN109384794A (zh) 质子酸催化的一类四环吲哚骨架的合成方法
CN112778191A (zh) 一种可见光介导的合成含吲哚骨架的烯丙醇类化合物的方法
CN110669006A (zh) 茚并异喹啉类化合物及其制备方法
CN112778317A (zh) 一种[1,2,4]三氮唑并[1,5-a]嘧啶类化合物的合成方法
CN111704630A (zh) 3-芳甲酰基萘并异噁唑或3-芳甲酰基蒽并异噁唑衍生物及其合成方法
CN104710412A (zh) 具有抗癌活性的3,4-二(3-吲哚)-2,5-二酮-1-吡咯亚胺硫脲类化合物及其制备方法和应用
CN114181182B (zh) 一种多取代的4h-吡喃类化合物的合成方法
CN115626895B (zh) 一种联芳基桥联八元或九元或十元含氮杂环类化合物及其合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant