CN112801849A - 用于调度线程顺序以改进高速缓存效率的方法和设备 - Google Patents

用于调度线程顺序以改进高速缓存效率的方法和设备 Download PDF

Info

Publication number
CN112801849A
CN112801849A CN202011026462.2A CN202011026462A CN112801849A CN 112801849 A CN112801849 A CN 112801849A CN 202011026462 A CN202011026462 A CN 202011026462A CN 112801849 A CN112801849 A CN 112801849A
Authority
CN
China
Prior art keywords
thread
graphics
dispatch
logic
cache
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011026462.2A
Other languages
English (en)
Inventor
J·德策尔
S·沙尔马
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN112801849A publication Critical patent/CN112801849A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/20Processor architectures; Processor configuration, e.g. pipelining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Program initiating; Program switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • G06F9/4881Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0806Multiuser, multiprocessor or multiprocessing cache systems
    • G06F12/0811Multiuser, multiprocessor or multiprocessing cache systems with multilevel cache hierarchies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0806Multiuser, multiprocessor or multiprocessing cache systems
    • G06F12/084Multiuser, multiprocessor or multiprocessing cache systems with a shared cache
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0875Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches with dedicated cache, e.g. instruction or stack
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30145Instruction analysis, e.g. decoding, instruction word fields
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline, look ahead
    • G06F9/3877Concurrent instruction execution, e.g. pipeline, look ahead using a slave processor, e.g. coprocessor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/5038Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the execution order of a plurality of tasks, e.g. taking priority or time dependency constraints into consideration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogram communication
    • G06F9/544Buffers; Shared memory; Pipes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/60Memory management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2209/00Indexing scheme relating to G06F9/00
    • G06F2209/50Indexing scheme relating to G06F9/50
    • G06F2209/5018Thread allocation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/10Providing a specific technical effect
    • G06F2212/1016Performance improvement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/30Providing cache or TLB in specific location of a processing system
    • G06F2212/302In image processor or graphics adapter
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/45Caching of specific data in cache memory
    • G06F2212/454Vector or matrix data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/45Caching of specific data in cache memory
    • G06F2212/455Image or video data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30076Arrangements for executing specific machine instructions to perform miscellaneous control operations, e.g. NOP
    • G06F9/3009Thread control instructions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Program initiating; Program switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/005General purpose rendering architectures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/50Lighting effects
    • G06T15/80Shading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Image Generation (AREA)

Abstract

公开了用于调度线程顺序以改进高速缓存效率的系统和方法。在一个实施例中,图形处理器包括处理资源以及调度和分派逻辑,该调度和分派逻辑用于将线程调度和分派到处理资源。调度和分派逻辑被配置成接收线程,以基于具有正向线程顺序的正向线程分派来调度和分派线程,并且确定是否要在包括绘制调用或分派的完成或结束的正向线程分派中的至少一部分完成时禁用线程顺序的反转。

Description

用于调度线程顺序以改进高速缓存效率的方法和设备
技术领域
实施例一般涉及数据处理,并且更特别地涉及针对高速缓存效率而调度线程顺序。
背景技术
当前并行图形数据处理包括被开发以对图形数据执行特定操作(诸如例如线性内插、曲面细分、光栅化(rasterization)、纹理映射、深度测试等)的系统和方法。传统上,图形处理器使用固定功能计算单元来处理图形数据;然而,最近,已使图形处理器的部分可编程,使得此类处理器能够支持用于处理顶点和片段数据的更多种多样的操作。
为了进一步增加性能,图形处理器通常实现诸如流水线之类的处理技术,其试图遍及图形流水线的不同部分并行处理尽可能多的图形数据。具有单指令多线程(SIMT)架构的并行图形处理器设计成最大化图形流水线中的并行处理的量。在SIMT架构中,并行线程群组试图尽可能经常一起同步执行程序指令以增加处理效率。SIMT架构的软件和硬件的一般概述能够在Shane Cook,CUDA Programming第3章,第37-51页(2013)中找到。
附图说明
为了在其中能够详细理解本实施例的上述特征的方式,可以通过参考实施例来具有对上面简要概括的实施例的更特定的描述,所述实施例中的一些实施例在附图中示出。然而,要注意的是,附图仅示出了典型的实施例,并且因此不要被认为限制其范围。
图1是根据实施例的处理系统100的框图。
图2A-2D示出了根据实施例的计算系统和图形处理器。
图3A-3C是根据实施例的另外图形处理器和计算加速器架构的框图。
图4是根据一些实施例的图形处理器的图形处理引擎410的框图。
图5A-5B示出了根据实施例的包括在图形处理器核中采用的处理元件阵列的线程执行逻辑500。
图6示出了根据实施例的另外执行单元600。
图7是示出根据一些实施例的图形处理器指令格式700的框图。
图8是根据实施例的图形处理器800的另一实施例的框图。
图9A是示出根据一些实施例的图形处理器命令格式900的框图。
图9B是示出根据实施例的图形处理器命令序列910的框图。
图10示出了根据一些实施例的数据处理系统1000的示例性图形软件架构。
图11A是示出根据实施例的可以用于制造集成电路以执行操作的IP核开发系统1100的框图。
图11B示出了根据一些实施例的集成电路封装组装件1170的截面侧视图。
图11C示出了包括连接到衬底1180(例如基础管芯)的硬件逻辑小芯片(chiplet)的多个单元的封装组装件1190。
图11D示出了根据实施例的包括可互换小芯片1195的封装组装件1194。
图12示出了示例性集成电路并且图13A-13B示出了根据本文中描述的各种实施例的可以使用一个或多个IP核来制作的关联的图形处理器。
图14为消费者示出了访问显示装置的不同区域的数据的顺序。
图15为消费者示出了访问显示装置的数据的顺序。显示装置1500包括象限1510、1520、1530和1540。
图16示出了根据一个实施例的具有用于调度线程顺序以改进高速缓存效率或共享本地存储器效率的示例性操作序列的方法1600。
图17A-17C示出了根据实施例的另外图形多处理器。
具体实施方式
在一些实施例中,图形处理单元(GPU)通信地(communicatively)耦合到主机/处理器核以加速图形操作、机器学习操作、模式分析操作和各种通用GPU(GPGPU)功能。GPU可以通过总线或另一互连(例如,高速互连,诸如PCIe或NVLink)通信地耦合到主机处理器/核。在其它实施例中,GPU可以被集成在与核相同的封装或芯片上,并且通过内部处理器总线/互连(即,在封装或芯片内部)通信地耦合到核。不管在其中GPU被连接的方式如何,处理器核都可以以工作描述符中包含的命令/指令序列的形式将工作分配给GPU。GPU然后使用专用电路/逻辑以便高效地处理这些命令/指令。
在以下描述中,阐明了许多特定细节以提供更透彻的理解。然而,对于本领域技术人员将显而易见的是,可以在没有这些特定细节中的一个或多个特定细节的情况下实践本文中描述的实施例。在其它实例中,众所周知的特征没有被描述,以避免使本实施例的细节模糊不清。
系统概述
图1是根据实施例的处理系统100的框图。系统100可以用于单处理器台式电脑系统、多处理器工作站系统或具有大量处理器102或处理器核107的服务器系统中。在一个实施例中,系统100是并入片上系统(SoC)集成电路内的处理平台,所述片上系统(SoC)集成电路供在移动、手持式或嵌入式装置中(诸如在带有到局域网或广域网的有线或无线连接性的物联网(IoT)装置内)使用。
在一个实施例中,系统100能够包括以下各项、与以下各项耦合或者被集成在以下各项内:基于服务器的游戏平台;游戏控制台,包括游戏和媒体控制台;移动游戏控制台、手持式游戏控制台或在线游戏控制台。在一些实施例中,系统100是以下各项的一部分:移动电话、智能电话、平板计算装置或移动互联网连接的装置,诸如带有低内部存储容量的膝上型电脑。处理系统100还能够包括以下各项、与以下各项耦合或者被集成在以下各项内:可穿戴装置,诸如智能手表可穿戴装置;智能眼镜或服装,其用增强现实(AR)或虚拟现实(VR)特征来被增强以提供视觉、音频或触觉输出以补充现实世界视觉、音频或触觉体验或者以其它方式提供文本、音频、图形、视频、全息图像或视频、或者触觉反馈;其它增强现实(AR)装置;或者其它虚拟现实(VR)装置。在一些实施例中,处理系统100包括电视或机顶盒装置,或者是电视或机顶盒装置的一部分。在一个实施例中,系统100能够包括以下各项、与以下各项耦合或者被集成在以下各项内:自动驾驶交通工具,诸如公共汽车、牵引车拖车、汽车、摩托车或电动自行车、飞机或滑翔机(或其任何组合)。自动驾驶交通工具可以使用系统100来处理在交通工具周围感测到的环境。
在一些实施例中,一个或多个处理器102各自包括一个或多个处理器核107以处理指令,所述指令在被执行时,执行用于系统或用户软件的操作。在一些实施例中,一个或多个处理器核107中的至少一个处理器核被配置成处理特定指令集109。在一些实施例中,指令集109可以促进复杂指令集计算(CISC)、精简指令集计算(RISC)或经由超长指令字(VLIW)的计算。一个或多个处理器核107可以处理不同指令集109,所述指令集109可以包括用来促进对其它指令集的仿真的指令。处理器核107还可以包括其它处理装置,诸如数字信号处理器(DSP)。
在一些实施例中,处理器102包括高速缓冲存储器104。取决于架构,处理器102能够具有单个内部高速缓存或多个级别的内部高速缓存。在一些实施例中,在处理器102的各种组件之间共享高速缓冲存储器。在一些实施例中,处理器102还使用外部高速缓存(例如,3级(L3)高速缓存或末级高速缓存(LLC))(未示出),其可以在使用已知高速缓存一致性技术的处理器核107之间被共享。寄存器堆106能够另外被包括在处理器102中,并且可以包括用于存储不同类型的数据的不同类型的寄存器(例如,整数寄存器、浮点寄存器、状态寄存器和指令指针寄存器)。一些寄存器可以是通用寄存器,而其它寄存器可以特定于处理器102的设计。
在一些实施例中,一个或多个处理器102与一个或多个接口总线110耦合,以在处理器102与在系统100中的其它组件之间传送通信信号,诸如地址、数据或控制信号。接口总线110在一个实施例中能够是处理器总线,诸如某一版本的直接媒体接口(DMI)总线。然而,处理器总线不限于DMI总线,并且可以包括一个或多个外设组件互连总线(例如,PCI、PCIexpress)、存储器总线或其它类型的接口总线。在一个实施例中,(一个或多个)处理器102包括集成存储器控制器116和平台控制器集线器130。存储器控制器116促进在存储器装置与系统100的其它组件之间的通信,而平台控制器集线器(PCH)130经由本地I/O总线提供到I/O装置的连接。
存储器装置120能够是动态随机存取存储器(DRAM)装置、静态随机存取存储器(SRAM)装置、闪速存储器装置、相变存储器装置或具有适合性能以充当进程存储器的某一其它存储器装置。在一个实施例中,存储器装置120能够作为用于系统100的系统存储器进行操作,以存储数据122和指令121以便在一个或多个处理器102执行应用或进程时使用。存储器控制器116还与可选的外部图形处理器118耦合,所述外部图形处理器118可以与处理器102中的一个或多个图形处理器108进行通信以执行图形和媒体操作。在一些实施例中,可以由加速器112协助图形、媒体和/或计算操作,所述加速器112是能够被配置成执行专门的一组图形、媒体或计算操作的协处理器。例如,在一个实施例中,加速器112是用来优化机器学习或计算操作的矩阵乘法加速器。在一个实施例中,加速器112是光线追踪加速器,其能够被用来与图形处理器108协同执行光线追踪操作。在一个实施例中,可以使用外部加速器119来替代加速器112或与加速器112协同。
在一些实施例中,显示装置111能够连接到(一个或多个)处理器102。显示装置111能够是如在移动电子装置或膝上型装置中的内部显示装置或者经由显示接口(例如,DisplayPort等)附连的外部显示装置中的一个或多个。在一个实施例中,显示装置111能够是头戴式显示器(HMD),诸如供在虚拟现实(VR)应用或增强现实(AR)应用中使用的立体显示装置。
在一些实施例中,平台控制器集线器130使得外设能经由高速I/O总线连接到存储器装置120和处理器102。I/O外设包括但不限于音频控制器146、网络控制器134、固件接口128、无线收发器126、触摸传感器125、数据存储装置124(例如,非易失性存储器、易失性存储器、硬盘驱动器、闪速存储器、NAND、3D NAND、3D XPoint等)。数据存储装置124能够经由存储接口(例如,SATA)或经由诸如外设组件互连总线(例如,PCI、PCI express)的外设总线进行连接。触摸传感器125能够包括触摸屏传感器、压力传感器或指纹传感器。无线收发器126能够是Wi-Fi收发器、蓝牙收发器或诸如3G、4G、5G或长期演进(LTE)收发器之类的移动网络收发器。固件接口128使得能够与系统固件通信,并且能够是例如统一可扩展固件接口(UEFI)。网络控制器134可实现到有线网络的网络连接。在一些实施例中,高性能网络控制器(未示出)与接口总线110耦合。音频控制器146在一个实施例中是多通道高清晰度音频控制器。在一个实施例中,系统100包括用于将传统(例如,个人系统2(PS/2))装置耦合到系统的可选的传统I/O控制器140。平台控制器集线器130还能够连接到一个或多个通用串行总线(USB)控制器142连接输入装置,诸如键盘和鼠标143组合、拍摄装置(camera)144或其它USB输入装置。
将领会的是,示出的系统100是示例性的并且不是限制性的,因为以不同方式配置的其它类型的数据处理系统也可以被使用。例如,存储器控制器116和平台控制器集线器130的实例可以被集成到分立的外部图形处理器中,诸如外部图形处理器118。在一个实施例中,平台控制器集线器130和/或存储器控制器116可以在一个或多个处理器102的外部。例如,系统100能够包括外部存储器控制器116和平台控制器集线器130,其可以被配置为与(一个或多个)处理器102通信的系统芯片组内的存储器控制器集线器和外设控制器集线器。
例如,能够使用电路板(“滑板(sled)”),在所述滑板上放置诸如CPU、存储器和其它组件之类的组件,其被设计用于增加的热性能。在一些实施例中,诸如处理器的处理组件位于滑板的顶侧上,而诸如DIMM的近存储器位于滑板的底侧上。作为通过此设计提供的增强的空气流动的结果,组件可以以比在典型系统中更高的频率和功率水平进行操作,由此增加性能。此外,滑板被配置成与机架中的功率和数据通信缆线盲配对,从而增强它们被快速移除、升级、重新安装和/或替换的能力。类似地,位于滑板上的各个组件(诸如处理器、加速器、存储器和数据存储驱动器)被配置成由于它们与彼此增加的间距而容易被升级。在说明性实施例中,组件另外包括硬件证明特征以证实其确实性(authenticity)。
数据中心能够利用单个网络架构(“组构(fabric)”),所述单个网络架构支持包括以太网和全路径(Omni-Path)的多个其它网络架构。滑板能够经由光纤被耦合到交换机,所述光纤提供比典型双绞线缆线(例如,类别5、类别5e、类别6等)更高的带宽和更低的时延。由于高带宽、低时延互连和网络架构,数据中心可以使用在物理上解聚的池资源(诸如存储器、加速器(例如,GPU、图形加速器、FPGA、ASIC、神经网络和/或人工智能加速器等)以及数据存储驱动器),并且在按需基础上将它们提供到计算资源(例如,处理器),使得计算资源能访问池化资源(pooled resource),如同池化资源是本地的一样。
功率供应器或功率源能够提供电压和/或电流到本文中描述的系统100或者任何组件或系统。在一个示例中,功率供应器包括用来插入到墙上插座的AC到DC(交流电到直流电)适配器。此类AC电力能够是可再生能源(例如,太阳能)功率源。在一个示例中,功率源包括DC功率源,诸如外部AC到DC转换器。在一个示例中,功率源或功率供应器包括无线充电硬件以经由接近充电场进行充电。在一个示例中,功率源能够包括内部电池、交流电供应器、基于运动的功率供应器、太阳能供应器或燃料电池源。
图2A-2D图示了由本文中描述的实施例提供的计算系统和图形处理器。与本文中任何其它附图的元件具有相同参考标号(或名称)的图2A-2D的元件能够以与本文中其它地方所描述的方式类似的任何方式操作或起作用,但不限于这样。
图2A是具有一个或多个处理器核202A-202N、集成存储器控制器214和集成图形处理器208的处理器200的实施例的框图。处理器200能够包括另外的核,所述另外的核多达并且包括由虚线框表示的另外的核202N。处理器核202A-202N中的每个处理器核包括一个或多个内部高速缓存单元204A-204N。在一些实施例中,每个处理器核还可以访问一个或多个共享高速缓存单元206。内部高速缓存单元204A-204N和共享高速缓存单元206表示处理器200内的高速缓冲存储器层级。高速缓冲存储器层级可以包括在每个处理器核内的至少一级的指令和数据高速缓存,以及一级或多级的共享中间级高速缓存,诸如2级(L2)、3级(L3)、4级(L4)或其它级的高速缓存,其中在外部存储器前的最高级的高速缓存被分类为LLC。在一些实施例中,高速缓存一致性逻辑维持各种高速缓存单元206与204A-204N之间的一致性。
在一些实施例中,处理器200还可以包括一组一个或多个总线控制器单元216和系统代理核210。一个或多个总线控制器单元216管理一组外设总线,诸如一个或多个PCI或PCI express总线。系统代理核210提供用于各种处理器组件的管理功能性。在一些实施例中,系统代理核210包括一个或多个集成存储器控制器214以管理对各种外部存储器装置(未示出)的访问。
在一些实施例中,处理器核202A-202N中的一个或多个处理器核包括对同时多线程的支持。在此类实施例中,系统代理核210包括用于在多线程的处理期间协调和操作核202A-202N的组件。系统代理核210可以另外包括功率控制单元(PCU),所述功率控制单元(PCU)包括用来调节处理器核202A-202N和图形处理器208的功率状态的逻辑和组件。
在一些实施例中,处理器200另外包括用来执行图形处理操作的图形处理器208。在一些实施例中,图形处理器208与一组共享高速缓存单元206和包括一个或多个集成存储器控制器214的系统代理核210耦合。在一些实施例中,系统代理核210还包括用来驱动到一个或多个耦合的显示器的图形处理器输出的显示控制器211。在一些实施例中,显示控制器211还可以是经由至少一个互连与图形处理器耦合的单独模块,或者可以被集成在图形处理器208内。
在一些实施例中,基于环的互连单元212被用来耦合处理器200的内部组件。然而,可以使用备选互连单元,诸如点对点互连、交换互连或其它技术,包括本领域中公知的技术。在一些实施例中,图形处理器208经由I/O链路213与环形互连212耦合。
示例性I/O链路213表示多个种类的I/O互连中的至少一个,包括促进在各种处理器组件与诸如eDRAM模块的高性能嵌入式存储器模块218之间的通信的封装上I/O互连。在一些实施例中,处理器核202A-202N中的每个处理器核和图形处理器208能够使用嵌入式存储器模块218作为共享末级高速缓存。
在一些实施例中,处理器核202A-202N是执行相同指令集架构的同质核。在另一实施例中,处理器核202A-202N在指令集架构(ISA)方面是异质的,其中处理器核202A-202N中的一个或多个处理器核执行第一指令集,而其它核中的至少一个核执行第一指令集的子集或不同指令集。在一个实施例中,处理器核202A-202N在微架构方面是异质的,其中具有相对较高功耗的一个或多个核与具有较低功耗的一个或多个功率核耦合。在一个实施例中,处理器核202A-202N在计算能力方面是异质的。另外,处理器200能够在一个或多个芯片上被实现,或者被实现为除其它组件外还具有图示的组件的SoC集成电路。
图2B是根据本文中描述的一些实施例的图形处理器核219的硬件逻辑的框图。与本文中任何其它附图的元件具有相同参考标号(或名称)的图2B的元件能够以与本文中其它地方所描述的方式类似的任何方式操作或起作用,但不限于这样。有时被称为核切片(core slice)的图形处理器核219能够是模块化图形处理器内的一个或多个图形核。图形处理器核219是一个图形核切片的示例,并且如本文中所述的图形处理器可以基于目标功率和性能包络而包括多个图形核切片。每个图形处理器核219能够包括与也称为子切片的多个子核221A-221F耦合的固定功能块230,所述多个子核221A-221F包括通用和固定功能逻辑的模块化块。
在一些实施例中,固定功能块230包括几何/固定功能流水线231,所述几何/固定功能流水线231能够例如在更低性能/或更低功率图形处理器实现中由图形处理器核219中的所有子核共享。在各种实施例中,几何/固定功能流水线231包括3D固定功能流水线(例如,下文所述的如图3和图4中的3D流水线312)、视频前端单元、线程派生器(threadspawner)和线程分派器(thread dispatcher)以及管理统一返回缓冲器(unified returnbuffer)(例如,如下文所述的在图4中的统一返回缓冲器418)的统一返回缓冲器管理器。
在一个实施例中,固定功能块230还包括图形SoC接口232、图形微控制器233和媒体流水线234。图形SoC接口232提供图形处理器核219与片上系统集成电路内的其它处理器核之间的接口。图形微控制器233是可编程子处理器,其可配置成管理图形处理器核219的各种功能,包括线程分派、调度和抢占(pre-emption)。媒体流水线234(例如,图3和图4的媒体流水线316)包括用来促进多媒体数据(包括图像和视频数据)的解码、编码、预处理和/或后处理的逻辑。媒体流水线234经由对子核221A-221F内的计算或采样逻辑的请求来实现媒体操作。
在一个实施例中,SoC接口232使得图形处理器核219能够与通用应用处理器核(例如,CPU)和/或SoC内的其它组件(包括存储器层级元件,诸如共享末级高速缓冲存储器、系统RAM和/或嵌入式片上或封装上DRAM)进行通信。SoC接口232还可实现与SoC内的固定功能装置(诸如拍摄装置成像流水线)的通信,并且实现全局存储器原子的使用和/或实现全局存储器原子,可以在图形处理器核219与SoC内的CPU之间共享所述全局存储器原子。SoC接口232还可实现用于图形处理器核219的功率管理控制,并且实现图形核219的时钟域与SoC内的其它时钟域之间的接口。在一个实施例中,SoC接口232使得能够接收来自命令流转化器(command streamer)和全局线程分派器的命令缓冲器,所述命令缓冲器被配置成向图形处理器内的一个或多个图形核中的每个图形核提供命令和指令。命令和指令能够在要执行媒体操作时被分派到媒体流水线234,或者在要执行图形处理操作时被分派到几何和固定功能流水线(例如,几何和固定功能流水线231、几何和固定功能流水线237)。
图形微控制器233能够被配置成执行用于图形处理器核219的各种调度和管理任务。在一个实施例中,图形微控制器233能够在子核221A-221F内的执行单元(EU)阵列222A-222F、224A-224F内的各种图形并行引擎上执行图形和/或计算工作负载调度。在此调度模型中,在包括图形处理器核219的SoC的CPU核上执行的主机软件能够提交工作负载给多个图形处理器门铃(graphic processor doorbell)之一,这调取在适当图形引擎上的调度操作。调度操作包括确定接下来要运行哪个工作负载,向命令流转化器提交工作负载,对在引擎上运行的现有工作负载进行抢占,监测工作负载的进展,以及在工作负载完成时通知主机软件。在一个实施例中,图形微控制器233还能够促进图形处理器核219的低功率或空闲状态,从而为图形处理器核219提供独立于操作系统和/或系统上的图形驱动器(driver)软件跨低功率状态转变来对图形处理器核219内的寄存器进行保存和恢复的能力。
图形处理器核219可以具有多于或少于图示的子核221A-221F,多达N个模块化子核。对于每组N个子核,图形处理器核219还能够包括共享功能逻辑235、共享和/或高速缓冲存储器236、几何/固定功能流水线237以及用来加速各种图形和计算处理操作的另外的固定功能逻辑238。共享功能逻辑235能够包括与图4的共享功能逻辑420关联的逻辑单元(例如,采样器、数学和/或线程间通信逻辑),所述逻辑单元能够由图形处理器核219内的每N个子核共享。共享和/或高速缓冲存储器236能够是用于图形处理器核219内的一组N个子核221A-221F的末级高速缓存,并且还能够充当由多个子核可访问的共享存储器。几何/固定功能流水线237能够代替固定功能块230内的几何/固定功能流水线231而被包括,并且能够包括相同或类似的逻辑单元。
在一个实施例中,图形处理器核219包括另外的固定功能逻辑238,其能够包括供图形处理器核219使用的各种固定功能加速逻辑。在一个实施例中,另外的固定功能逻辑238包括供在仅位置着色中使用的另外的几何流水线。在仅位置着色中,存在两个几何流水线:几何/固定功能流水线238、231内的完全几何流水线;以及剔除流水线(cullpipeline),其是可以被包括在另外的固定功能逻辑238内的另外的几何流水线。在一个实施例中,剔除流水线是完全几何流水线的裁减版本。完全流水线和剔除流水线能够执行相同应用的不同实例,每个实例具有单独的上下文。仅位置着色能够隐藏被丢弃三角形的长剔除运行,使得在一些实例中能更早完成着色。例如,并且在一个实施例中,另外的固定功能逻辑238内的剔除流水线逻辑能够执行与主应用并行的位置着色器,并且一般比完全流水线更快生成关键结果,因为剔除流水线仅获取并且着色顶点的位置属性而不向帧缓冲器执行像素的光栅化(rasterization)和渲染。剔除流水线能够使用生成的关键结果来计算用于所有三角形的可见性信息,而不考虑那些三角形是否被剔除。完全流水线(其在此实例中可以被称为重放流水线)能够消耗可见性信息以跳过被剔除的三角形,以仅对最终被传递到光栅化阶段的可见三角形进行着色。
在一个实施例中,另外的固定功能逻辑238还能够包括诸如固定功能矩阵乘法逻辑的机器学习加速逻辑,以用于包括针对机器学习训练或推理的优化的实现。
在每个图形子核221A-221F内包括一组执行资源,其可以用于响应于图形流水线、媒体流水线或着色器程序的请求而执行图形、媒体和计算操作。图形子核221A-221F包括多个EU阵列222A-222F、224A-224F、线程分派和线程间通信(TD/IC)逻辑223A-223F、3D(例如,纹理)采样器225A-225F、媒体采样器206A-206F、着色器处理器227A-227F及共享本地存储器(SLM)228A-228F。EU阵列222A-222F、224A-224F各自包括多个执行单元,所述多个执行单元是能够为图形、媒体或计算操作(包括图形、媒体或计算着色器程序)服务而执行浮点和整数/定点逻辑运算的通用图形处理单元。TD/IC逻辑223A-223F执行用于子核内的执行单元的本地线程分派和线程控制操作,并且促进在子核的执行单元上执行的线程之间的通信。3D采样器225A-225F能够将纹理或其它3D图形有关数据读取到存储器中。3D采样器能够基于配置的样本状态和与给定纹理关联的纹理格式来以不同方式读取纹理数据。媒体采样器206A-206F能够基于与媒体数据关联的类型和格式来执行类似的读取操作。在一个实施例中,每个图形子核221A-221F能够交替包括统一3D和媒体采样器。在子核221A-221F中的每个子核内的执行单元上执行的线程能够利用每个子核内的共享本地存储器228A-228F,以使得在线程群组内执行的线程能使用片上存储器的公共池来执行。
图2C图示了包括布置成多核群组240A-240N的图形处理资源的专用集合的图形处理单元(GPU)239。尽管提供了仅单个多核群组240A的细节,但将领会的是,其它多核群组240B-240N可以被配备有图形处理资源的相同或类似集合。
如所图示的,多核群组240A可以包括图形核243的集合、张量核244的集合和光线追踪核245的集合。调度器/分派器241调度和分派图形线程以便在各种核243、244、245上执行。寄存器堆242的集合存储由核243、244、245在执行图形线程时使用的操作数值。这些寄存器可以包括例如用于存储整数值的整数寄存器、用于存储浮点值的浮点寄存器、用于存储打包数据元素(整数和/或浮点数据元素)的向量寄存器及用于存储张量/矩阵值的贴片寄存器(tile register)。在一个实施例中,贴片寄存器被实现为向量寄存器的组合集合。
一个或多个组合的1级(L1)高速缓存和共享存储器单元247在每个多核群组240A内本地存储图形数据,诸如纹理数据、顶点数据、像素数据、光线数据、包围体数据等。一个或多个纹理单元247还能够被用来执行纹理操作,诸如纹理映射和采样。由多核群组240A-240N的全部或其子集共享的2级(L2)高速缓存253存储用于多个并发图形线程的图形数据和/或指令。如所图示的,L2高速缓存253可以跨多个多核群组240A-240N被共享。一个或多个存储器控制器248将GPU 239耦合到存储器249,所述存储器249可以是系统存储器(例如,DRAM)和/或专用图形存储器(例如,GDDR6存储器)。
输入/输出(I/O)电路250将GPU 239耦合到一个或多个I/O装置252,诸如数字信号处理器(DSP)、网络控制器或用户输入装置。片上互连可以用来将I/O装置252耦合到GPU239和存储器249。I/O电路250的一个或多个I/O存储器管理单元(IOMMU)251将I/O装置252直接耦合到系统存储器249。在一个实施例中,IOMMU 251管理页表的多个集合以将虚拟地址映射到系统存储器249中的物理地址。在此实施例中,I/O装置252、(一个或多个)CPU 246和(一个或多个)GPU 239可以共享相同虚拟地址空间。
在一个实现中,IOMMU 251支持虚拟化。在此情况下,它可以管理页表的第一集合以将客户/图形虚拟地址映射到客户/图形物理地址,并且管理页表的第二集合以将客户/图形物理地址映射到系统/主机物理地址(例如,在系统存储器249内)。页表的第一和第二集合中的每个集合的基址可以被存储在控制寄存器中并且在上下文切换时被换出(例如,使得为新上下文提供对页表的相关集合的访问)。尽管在图2C中未被图示,但核243、244、245和/或多核群组240A-240N中的每个可以包括转换后备缓冲器(TLB)以对客户虚拟到客户物理转换、客户物理到主机物理转换以及客户虚拟到主机物理转换进行高速缓存。
在一个实施例中,CPU 246、GPU 239和I/O装置252被集成在单个半导体芯片和/或芯片封装上。图示的存储器249可以被集成在相同芯片上,或者可以经由芯片外(off-chip)接口被耦合到存储器控制器248。在一个实现中,存储器249包括GDDR6存储器,所述GDDR6存储器共享与其它物理系统级存储器相同的虚拟地址空间,虽然本发明的根本原理不限于此特定实现。
在一个实施例中,张量核244包括特别设计成执行矩阵运算的多个执行单元,所述矩阵运算是用来执行深度学习操作的基本计算操作。例如,同时矩阵乘法运算可以被用于神经网络训练和推理。张量核244可以使用各种操作数精度来执行矩阵处理,所述各种操作数精度包括单精度浮点(例如,32位)、半精度浮点(例如,16位)、整数字(16位)、字节(8位)和半字节(4位)。在一个实施例中,神经网络实现提取每个经渲染的场景的特征,潜在地组合来自多个帧的细节以构造高质量的最终图像。
在深度学习实现中,可以调度并行矩阵乘法工作以用于在张量核244上执行。神经网络的训练特别要求大量矩阵点积运算。为处理N x N x N矩阵相乘的内积公式,张量核244可以包括至少N个点积处理元件。在矩阵相乘开始前,一个完整矩阵被加载到贴片寄存器,并且在N个循环的每个循环,第二矩阵的至少一列被加载。在每个循环,存在被处理的N个点积。
取决于特定实现,可以以不同精度存储矩阵元素,所述不同精度包括16位字、8位字节(例如,INT8)和4位半字节(例如,INT4)。可以为张量核244指定不同精度模式以确保最高效的精度被用于不同工作负载(例如,诸如能够容许量化到字节和半字节的推理工作负载)。
在一个实施例中,光线追踪核245对于实时光线追踪和非实时光线追踪实现二者加速光线追踪操作。特别地,光线追踪核245包括光线遍历/交叉电路,以用于使用包围体层级(BVH)来执行光线遍历并且标识封围在BVH体之内的图元与光线之间的交叉。光线追踪核245还可以包括用于执行深度测试和剔除(例如,使用Z缓冲器或类似布置)的电路。在一个实现中,光线追踪核245与本文中描述的图像去噪技术协同来执行遍历和交叉操作,其至少一部分可以在张量核244上执行。例如,在一个实施例中,张量核244实现深度学习神经网络以执行由光线追踪核245生成的帧的去噪。然而,(一个或多个)CPU 246、图形核243和/或光线追踪核245还可以实现去噪和/或深度学习算法的全部或一部分。
另外,如上所述,可以采用用来去噪的分布式方法,其中GPU 239在通过网络或高速互连耦合到其它计算装置的计算装置中。在该实施例中,互连的计算装置共享神经网络学习/训练数据来改进整个系统学习对不同类型的图像帧和/或不同的图形应用执行去噪所用的速度。
在一个实施例中,光线追踪核245处理所有BVH遍历和光线-图元交叉,从而使图形核243免于以每光线的数千个指令而过载。在一个实施例中,每个光线追踪核245包括用于执行包围盒测试(例如,以用于遍历操作)的专用电路的第一集合和用于执行光线-三角形交叉测试(例如,对已遍历的光线进行交叉)的专用电路的第二集合。因此,在一个实施例中,多核群组240A能够仅仅启动光线探头,并且光线追踪核245独立执行光线遍历和交叉并且将命中数据(例如,命中、无命中、多个命中等)返回到线程上下文。在光线追踪核245执行遍历和交叉操作的同时,其它核243、244被释放以执行其它图形或计算工作。
在一个实施例中,每个光线追踪核245包括用来执行BVH测试操作的遍历单元和执行光线-图元交叉测试的交叉单元。交叉单元生成“命中”、“无命中”或“多个命中”响应,并且交叉单元将该响应提供到适当的线程。在遍历和交叉操作期间,其它核(例如,图形核243和张量核244)的执行资源被释放以执行其它形式的图形工作。
在下面描述的一个特定实施例中,使用了混合光栅化/光线追踪方法,其中在图形核243与光线追踪核245之间分布工作。
在一个实施例中,光线追踪核245(和/或其它核243、244)包括对诸如Microsoft的DirectX光线追踪(DXR)之类的光线追踪指令集的硬件支持,所述DXR包括DispatchRays命令以及光线生成、最接近命中、任意命中和未命中着色器,这些使得能够对每个对象指派纹理和着色器的独特集合。可以由光线追踪核245、图形核243和张量核244支持的另一光线追踪平台是Vulkan 1.1.85。然而,注意本发明的根本原理不限于任何特定光线追踪ISA。
一般而言,各种核245、244、243可以支持光线追踪指令集,所述光线追踪指令集包括用于光线生成、最接近命中、任意命中、光线-图元交叉、每图元和层级包围盒构造、未命中、访问及异常(exception)的指令/功能。更具体地说,一个实施例包括用来执行以下功能的光线追踪指令:
光线生成 – 可以对每个像素、样本或其它用户定义的工作指派执行光线生成指令。
最接近命中 – 可以执行最接近命中指令来用场景内的图元来定位光线的最接近交叉点。
任意命中 – 任意命中指令标识场景内的图元与光线之间的多个交叉,潜在地标识新的最接近交叉点。
交叉 – 交叉指令执行光线-图元交叉测试并且输出结果。
每图元包围盒构造 – 此指令围绕给定图元或图元的群组构建包围盒(例如,在构建新的BVH或其它加速数据结构时)。
未命中 – 指示光线未命中场景或场景的指定区域内的所有几何形状。
访问 – 指示光线将遍历的子体(children volume)。
异常 – 包括各种类型的异常处理程序(exception handler)(例如,针对各种错误条件而被调取)。
图2D是根据本文中描述的实施例的能够被配置为图形处理器和/或计算加速器的通用图形处理单元(GPGPU)270的框图。GPGPU 270能够经由一个或多个系统和/或存储器总线与主机处理器(例如,一个或多个CPU 246)和存储器271、272互连。在一个实施例中,存储器271是可以与一个或多个CPU 246共享的系统存储器,而存储器272是专用于GPGPU 270的装置存储器。在一个实施例中,装置存储器272和GPGPU 270内的组件可被映射到一个或多个CPU 246可访问的存储器地址中。可经由存储器控制器268来促进对存储器271和272的访问。在一个实施例中,存储器控制器268包括内部直接存储器存取(DMA)控制器269,或者能够包括逻辑以执行在其它情况下将由DMA控制器执行的操作。
GPGPU 270包括多个高速缓冲存储器,包括L2高速缓存253、L1高速缓存254、指令高速缓存255和共享存储器256,该共享存储器256的至少一部分也可被分区为高速缓冲存储器。GPGPU 270还包括多个计算单元260A-260N。每个计算单元260A-260N包括向量寄存器261、标量寄存器262、向量逻辑单元263和标量逻辑单元264的集合。计算单元260A-260N还能够包括本地共享存储器265和程序计数器266。计算单元260A-260N能够与常量高速缓存267耦合,该常量高速缓存267能够被用来存储常量数据,所述常量数据是在GPGPU 270上执行的内核或着色器程序的运行期间将不改变的数据。在一个实施例中,常量高速缓存267是标量数据高速缓存,并且高速缓存的(cached)数据能够被直接获取到标量寄存器262中。
在操作期间,一个或多个CPU 246能够将命令写入已被映射到可访问地址空间中的GPGPU 270中的寄存器或存储器中。命令处理器257能够从寄存器或存储器读取命令,并且确定在GPGPU 270内将如何处理那些命令。线程分派器258然后能够被用来将线程分派到计算单元260A-260N以执行那些命令。每个计算单元260A-260N能够独立于其它计算单元执行线程。另外,每个计算单元260A-260N能够被独立配置用于有条件的计算,并且能够有条件地输出计算的结果到存储器。在提交的命令完成时,命令处理器257能够中断一个或多个CPU 246。
图3A-3C图示了由本文中描述的实施例提供的另外的图形处理器和计算加速器架构的框图。与本文中任何其它附图的元件具有相同参考标号(或名称)的图3A-3C的元件能够以与本文中其它地方所描述的方式类似的任何方式操作或起作用,但不限于这样。
图3A是图形处理器300的框图,该图形处理器300可以是分立的图形处理单元,或者可以是与多个处理核集成的图形处理器,或诸如但不限于存储器装置或网络接口的其它半导体装置。在一些实施例中,图形处理器经由到图形处理器上的寄存器的存储器映射I/O接口并且利用放置在处理器存储器中的命令进行通信。在一些实施例中,图形处理器300包括用来访问存储器的存储器接口314。存储器接口314能够是到本地存储器、一个或多个内部高速缓存、一个或多个共享外部高速缓存和/或到系统存储器的接口。
在一些实施例中,图形处理器300还包括用来将显示输出数据驱动到显示装置318的显示控制器302。显示控制器302包括用于一个或多个覆盖平面的硬件,以用于显示和组合多个层的视频或用户接口元素。显示装置318能够是内部或外部显示装置。在一个实施例中,显示装置318是头戴式显示装置,诸如虚拟现实(VR)显示装置或增强现实(AR)显示装置。在一些实施例中,图形处理器300包括视频编解码器引擎306以将媒体编码成一种或多种媒体编码格式、从一种或多种媒体编码格式解码媒体或在一种或多种媒体编码格式之间将媒体转码,所述媒体编码格式包括但不限于运动图像专家组(MPEG)格式(诸如MPEG-2)、高级视频编码(AVC)格式(诸如H.264/MPEG-4 AVC)、H.265/HEVC、开放媒体联盟(AOMedia)VP8、VP9、以及电影与电视工程师协会(SMPTE)421M/VC-1和联合图像专家组(JPEG)格式(诸如JPEG)和运动JPEG(MJPEG)格式。
在一些实施例中,图形处理器300包括用来执行二维(2D)光栅化器操作(包括例如位边界块传输)的块图像传输(BLIT)引擎304。然而,在一个实施例中,使用图形处理引擎(GPE)310的一个或多个组件来执行2D图形操作。在一些实施例中,GPE 310是用于执行包括三维(3D)图形操作和媒体操作的图形操作的计算引擎。
在一些实施例中,GPE 310包括用于执行3D操作的3D流水线312,所述3D操作诸如使用作用于3D图元形状(例如,矩形、三角形等)的处理功能来渲染三维图像和场景。3D流水线312包括可编程和固定功能元件,所述可编程和固定功能元件在元件内执行各种任务和/或将执行线程派生(spawn)到3D/媒体子系统315。虽然3D流水线312能够被用来执行媒体操作,但GPE 310的实施例还包括特别用来执行媒体操作(诸如视频后处理和图像增强)的媒体流水线316。
在一些实施例中,媒体流水线316包括固定功能或可编程逻辑单元以代替或者代表视频编解码器引擎306来执行一个或多个专用媒体操作,诸如视频解码加速、视频去交织和视频编码加速。在一些实施例中,媒体流水线316另外包括线程派生单元以派生用于在3D/媒体子系统315上执行的线程。派生的线程在3D/媒体子系统315中包括的一个或多个图形执行单元上执行用于媒体操作的计算。
在一些实施例中,3D/媒体子系统315包括用于执行由3D流水线312和媒体流水线316派生的线程的逻辑。在一个实施例中,流水线将线程执行请求发送到3D/媒体子系统315,所述3D/媒体子系统315包括线程分派逻辑,以用于将各种请求仲裁(arbitrate)并分派到可用线程执行资源。执行资源包括用来处理3D和媒体线程的图形执行单元的阵列。在一些实施例中,3D/媒体子系统315包括用于线程指令和数据的一个或多个内部高速缓存。在一些实施例中,子系统还包括共享存储器,所述共享存储器包括寄存器和可寻址存储器,以在线程之间共享数据和存储输出数据。
图3B图示了根据本文中描述的实施例的具有拼贴(tiled)架构的图形处理器320。在一个实施例中,图形处理器320包括图形处理引擎集群322,所述图形处理引擎集群322在图形引擎贴片310A-310D内具有图3A的图形处理引擎310的多个实例。每个图形引擎贴片310A-310D能够经由一组贴片互连323A-323F而互连。每个图形引擎贴片310A-310D还能够经由存储器互连325A-325D而连接到存储器模块或存储器装置326A-326D。存储器装置326A-326D能够使用任何图形存储器技术。例如,存储器装置326A-326D可以是图形双倍数据速率(GDDR)存储器。存储器装置326A-326D在一个实施例中是高带宽存储器(HBM)模块,其能够与其相应图形引擎贴片310A-310D一起在管芯上。在一个实施例中,存储器装置326A-326D是堆叠存储器装置,其能够被堆叠在其相应图形引擎贴片310A-310D的顶部上。在一个实施例中,如图11B-11D中进一步详细描述的,每个图形引擎贴片310A-310D和关联存储器326A-326D驻留在单独的小芯片上,所述小芯片被接合到基础管芯或基础衬底。
图形处理引擎集群322能够与片上或封装上组构互连324连接。组构互连324可实现在图形引擎贴片310A-310D与诸如视频编解码器306和一个或多个复制引擎304的组件之间的通信。复制引擎304能够被用来将数据移出以下各项、将数据移入以下各项以及在以下各项之间移动数据:存储器装置326A-326D和在图形处理器320外的存储器(例如,系统存储器)。组构互连324还能够被用来互连图形引擎贴片310A-310D。图形处理器320可以可选地包括用来实现与外部显示装置318的连接的显示控制器302。图形处理器还可以被配置为图形或计算加速器。在加速器配置中,可省略显示控制器302和显示装置318。
图形处理器320能够经由主机接口328连接到主机系统。主机接口328可实现在图形处理器320、系统存储器和/或其它系统组件之间的通信。主机接口328能够例如是PCIexpress总线或另一类型的主机系统接口。
图3C图示了根据本文中描述的实施例的计算加速器330。计算加速器330能够包括与图3B的图形处理器320的架构类似性并且被优化用于计算加速。计算引擎集群332能够包括一组计算引擎贴片340A-340D,其包括被优化用于并行或基于向量的通用计算操作的执行逻辑。在一些实施例中,计算引擎贴片340A-340D不包括固定功能图形处理逻辑,虽然在一个实施例中,计算引擎贴片340A-340D中的一个或多个计算引擎贴片能够包括用来执行媒体加速的逻辑。计算引擎贴片340A-340D能够经由存储器互连325A-325D连接到存储器326A-326D。存储器326A-326D和存储器互连325A-325D可以是与在图形处理器320中类似的技术,或者能够是不同的。图形计算引擎贴片340A-340D还能够经由一组贴片互连323A-323F而互连,并且可以与组构互连324连接和/或通过组构互连324而互连。在一个实施例中,计算加速器330包括能够被配置为装置范围高速缓存的大的L3高速缓存336。计算加速器330还能够以与图3B的图形处理器320类似的方式经由主机接口328连接到主机处理器和存储器。
图形处理引擎
图4是根据一些实施例的图形处理器的图形处理引擎410的框图。在一个实施例中,图形处理引擎(GPE)410是图3A中示出的GPE 310的某一版本,并且还可以表示图3B的图形引擎贴片310A-310D。与本文中任何其它附图的元件具有相同参考标号(或名称)的图4的元件能够以与本文中其它地方所描述的方式类似的任何方式操作或起作用,但不限于这样。例如,图示了图3A的3D流水线312和媒体流水线316。媒体流水线316在GPE 410的一些实施例中是可选的,并且可以未被显式地包括在GPE 410内。例如,并且在至少一个实施例中,单独的媒体和/或图像处理器被耦合到GPE 410。
在一些实施例中,GPE 410与提供命令流到3D流水线312和/或媒体流水线316的命令流转化器403耦合,或者包括该命令流转化器403。在一些实施例中,命令流转化器403与存储器耦合,所述存储器能够是系统存储器,或内部高速缓冲存储器和共享高速缓冲存储器中的一个或多个。在一些实施例中,命令流转化器403接收来自存储器的命令,并且将命令发送到3D流水线312和/或媒体流水线316。命令是从环形缓冲器获取的指示,所述环形缓冲器存储用于3D流水线312和媒体流水线316的命令。在一个实施例中,环形缓冲器能够另外包括存储批量的多个命令的批量命令缓冲器。用于3D流水线312的命令还能够包括对在存储器中存储的数据的引用,所述数据诸如但不限于用于3D流水线312的顶点和几何数据和/或用于媒体流水线316的图像数据和存储器对象。3D流水线312和媒体流水线316通过经由相应流水线内的逻辑执行操作或者通过将一个或多个执行线程分派到图形核阵列414来处理命令和数据。在一个实施例中,图形核阵列414包括图形核(例如,(一个或多个)图形核415A、(一个或多个)图形核415B)的一个或多个块,每个块包括一个或多个图形核。每个图形核包括:一组图形执行资源,其包括用来执行图形和计算操作的通用和图形特定执行逻辑;以及固定功能纹理处理和/或机器学习和人工智能加速逻辑。
在各种实施例中,3D流水线312能够包括用来通过处理指令和分派执行线程到图形核阵列414来处理一个或多个着色器程序(诸如顶点着色器、几何着色器、像素着色器、片段着色器、计算着色器或其它着色器程序)的固定功能和可编程逻辑。图形核阵列414提供执行资源的统一块以供在处理这些着色器程序中使用。图形核阵列414的(一个或多个)图形核415A-415B内的多用途执行逻辑(例如,执行单元)包括对各种3D API着色器语言的支持,并且能够执行与多个着色器关联的多个同时执行线程。
在一些实施例中,图形核阵列414包括用来执行媒体功能(诸如视频和/或图像处理)的执行逻辑。在一个实施例中,执行单元包括通用逻辑,该通用逻辑可编程以除图形处理操作外还执行并行通用计算操作。该通用逻辑能够与在图1的(一个或多个)处理器核107或如在图2A中的核202A-202N内的通用逻辑并行或结合地执行处理操作。
由在图形核阵列414上执行的线程生成的输出数据能够将数据输出到统一返回缓冲器(URB)418中的存储器。URB 418能够存储用于多个线程的数据。在一些实施例中,URB418可以被用来在图形核阵列414上执行的不同线程之间发送数据。在一些实施例中,URB418可以另外被用于在图形核阵列上的线程与在共享功能逻辑420内的固定功能逻辑之间的同步。
在一些实施例中,图形核阵列414是可缩放的,使得该阵列包括可变数量的图形核,这些图形核各自基于GPE 410的目标功率和性能水平而具有可变数量的执行单元。在一个实施例中,执行资源是动态可缩放的,使得可以按需要来启用或禁用执行资源。
图形核阵列414与共享功能逻辑420耦合,该共享功能逻辑420包括在图形核阵列中的图形核之间共享的多个资源。在共享功能逻辑420内的共享功能是硬件逻辑单元,所述硬件逻辑单元提供专用补充功能性到图形核阵列414。在各种实施例中,共享功能逻辑420包括但不限于采样器421、数学422和线程间通信(ITC)423逻辑。另外,一些实施例在共享功能逻辑420内实现一个或多个高速缓存425。
至少在其中对给定专用功能的需求不足以包含在图形核心阵列414内的情况下,实现共享功能。该专用功能的单个实例化改为被实现为共享功能逻辑420中的独立实体,并且在图形核阵列414内的执行资源之间共享。在图形核阵列414内共享并且被包括在图形核阵列414内的功能的精确集合跨实施例而变化。在一些实施例中,由图形核阵列414广泛使用的共享功能逻辑420内的特定共享功能可以被包括在图形核阵列414内的共享功能逻辑416内。在各种实施例中,图形核阵列414内的共享功能逻辑416能够包括共享功能逻辑420内的一些或全部逻辑。在一个实施例中,可以在图形核阵列414的共享功能逻辑416内重复共享功能逻辑420内的全部逻辑元件。在一个实施例中,排除了共享功能逻辑420以有利于图形核阵列414内的共享功能逻辑416。
执行单元
图5A-5B图示了根据本文中描述的实施例的包括图形处理器核中采用的处理元件的阵列的线程执行逻辑500。与本文中任何其它附图的元件具有相同参考标号(或名称)的图5A-5B的元件能够以本文中其它地方所描述的方式类似的任何方式操作或起作用,但不限于这样。图5A-5B图示了线程执行逻辑500的概述,该线程执行逻辑500可以代表用图2B的每个子核221A-221F图示的硬件逻辑。图5A代表通用图形处理器内的执行单元,而图5B代表可在计算加速器内使用的执行单元。
如在图5A中所图示的,在一些实施例中,线程执行逻辑500包括着色器处理器502、线程分派器504、指令高速缓存506、包括多个执行单元508A-508N的可缩放执行单元阵列、采样器510、共享本地存储器511、数据高速缓存512和数据端口514。在一个实施例中,可缩放执行单元阵列能够通过基于工作负载的计算要求来启用或禁用一个或多个执行单元(例如,执行单元508A、508B、508C、508D直到508N-1和508N中的任何执行单元)来动态地进行缩放。在一个实施例中,被包括的组件经由链接到组件中的每个组件的互连组构而互连。在一些实施例中,线程执行逻辑500包括通过指令高速缓存506、数据端口514、采样器510和执行单元508A-508N中的一个或多个到存储器(诸如系统存储器或高速缓冲存储器)的一个或多个连接。在一些实施例中,每个执行单元(例如,508A)是独立可编程通用计算单元,其能执行多个同时硬件线程,同时为每个线程并行处理多个数据元素。在各种实施例中,执行单元508A-508N的阵列是可缩放的,以包括任何数量的各个执行单元。
在一些实施例中,执行单元508A-508N主要被用来执行着色器程序。着色器处理器502能够处理各种着色器程序,并且经由线程分派器504分派与着色器程序关联的执行线程。在一个实施例中,线程分派器包括用来对来自图形和媒体流水线的线程发起请求进行仲裁并且在执行单元508A-508N中的一个或多个执行单元上实例化所请求的线程的逻辑。例如,几何流水线能够分派顶点、曲面细分(tessellation)或几何着色器到线程执行逻辑以用于处理。在一些实施例中,线程分派器504还能够处理来自执行的着色器程序的运行时间线程派生请求。
在一些实施例中,执行单元508A-508N支持指令集,所述指令集包括对许多标准3D图形着色器指令的本机支持,使得来自图形库(例如Direct 3D和OpenGL)的着色器程序以最小的转换来执行。执行单元支持顶点和几何处理(例如顶点程序、几何程序、顶点着色器)、像素处理(例如像素着色器、片段着色器)和通用处理(例如计算和媒体着色器)。执行单元508A-508N中的每个执行单元能进行多发布(multi-issue)单指令多数据(SIMD)执行,并且多线程操作在面临更高时延存储器访问时实现高效的执行环境。每个执行单元内的每个硬件线程具有专用高带宽寄存器堆和关联的独立线程状态。执行是对能够进行整数、单精度和双精度浮点运算、SIMD分支能力、逻辑运算、超越运算和其它杂项运算的流水线的每时钟多发布。在等待来自存储器或共享功能之一的数据时,执行单元508A-508N内的依赖性逻辑使等待的线程休眠,直到所请求的数据已返回为止。当等待的线程正在休眠时,硬件资源可以专用于处理其它线程。例如,在与顶点着色器操作关联的延迟期间,执行单元能够执行用于像素着色器、片段着色器或另一类型的着色器程序(包括不同顶点着色器)的操作。各种实施例能够适用于通过作为使用SIMD的备选方案或者附加于使用SIMD来使用单指令多线程(SIMT)来使用执行。对SIMD核或操作的引用也能够适用于SIMT或者适用于与SIMT组合的SIMD。
执行单元508A-508N中的每个执行单元对数据元素的阵列进行操作。数据元素的数量是“执行大小”或用于指令的通道的数量。执行通道是用于指令内的数据元素访问、掩蔽(masking)和流控制的执行的逻辑单元。通道的数量可以独立于用于特定图形处理器的物理算术逻辑单元(ALU)或浮点单元(FPU)的数量。在一些实施例中,执行单元508A-508N支持整数和浮点数据类型。
执行单元指令集包括SIMD指令。各种数据元素能够作为打包数据类型存储在寄存器中,并且执行单元将基于元素的数据大小来处理各种元素。例如,在对256位宽向量进行操作时,向量的256位被存储在寄存器中,并且执行单元对作为四个单独的54位打包数据元素(四字(QW)大小数据元素)、八个单独的32位打包数据元素(双字(DW)大小数据元素)、十六个单独的16位打包数据元素(字(W)大小数据元素)或三十二个单独的8位数据元素(字节(B)大小数据元素)的向量进行操作。然而,不同向量宽度和寄存器大小是可能的。
在一个实施例中,一个或多个执行单元能够被组合成具有线程控制逻辑(507A-507N)的融合执行单元509A-509N,该线程控制逻辑(507A-507N)对于融合EU是公共的。多个EU能够融合成EU群组。融合EU群组中的每个EU能够配置成执行单独的SIMD硬件线程。融合EU群组中EU的数量能够根据实施例而变化。另外,能够每EU执行各种SIMD宽度,包括但不限于SIMD8、SIMD16和SIMD32。每个融合图形执行单元509A-509N包括至少两个执行单元。例如,融合执行单元509A包括第一EU 508A、第二EU 508B及线程控制逻辑507A,该线程控制逻辑507A对于第一EU 508A和第二EU 508B是公共的。线程控制逻辑507A控制在融合图形执行单元509A上执行的线程,允许融合执行单元509A-509N内的每个EU使用公共指令指针寄存器来执行。
线程执行逻辑500中包括一个或多个内部指令高速缓存(例如,506)以对用于执行单元的线程指令进行高速缓存。在一些实施例中,包括一个或多个数据高速缓存(例如,512)以在线程执行期间对线程数据进行高速缓存。在执行逻辑500上执行的线程还能够在共享本地存储器511中存储显式管理的数据。在一些实施例中,包括采样器510以提供用于3D操作的纹理采样和用于媒体操作的媒体采样。在一些实施例中,采样器510包括专用纹理或媒体采样功能性,以在向执行单元提供采样数据前在采样进程期间处理纹理或媒体数据。
在执行期间,图形和媒体流水线经由线程派生和分派逻辑向线程执行逻辑500发送线程发起请求。一旦几何对象的群组已被处理并且光栅化成像素数据,着色器处理器502内的像素处理器逻辑(例如,像素着色器逻辑、片段着色器逻辑等)便被调取来进一步计算输出信息,并且使结果被写入到输出表面(例如颜色缓冲器、深度缓冲器、模板缓冲器等)。在一些实施例中,像素着色器或片段着色器计算要跨光栅化对象内插的各种顶点属性的值。在一些实施例中,着色器处理器502内的像素处理器逻辑然后执行应用编程接口(API)供应的像素或片段着色器程序。为执行着色器程序,着色器处理器502经由线程分派器504向执行单元(例如,508A)分派线程。在一些实施例中,着色器处理器502使用采样器510中的纹理采样逻辑来访问存储在存储器中的纹理映射中的纹理数据。对纹理数据和输入几何数据的算术运算计算每个几何片段的像素颜色数据,或者从进一步处理中丢弃一个或多个像素。
在一些实施例中,数据端口514提供存储器访问机制,以便线程执行逻辑500将经处理的数据输出至存储器以用于在图形处理器输出流水线上进一步处理。在一些实施例中,数据端口514包括或者耦合到一个或多个高速缓冲存储器(例如,数据高速缓存512)来对数据进行高速缓存以用于经由数据端口的存储器访问。
在一个实施例中,执行逻辑500还能够包括光线追踪器505,所述光线追踪器505能够提供光线追踪加速功能性。光线追踪器505能够支持包括用于光线生成的指令/功能的光线追踪指令集。该光线追踪指令集能够与图2C中的光线追踪核245所支持的光线追踪指令集类似或不同。
图5B图示了根据实施例的执行单元508的示例性内部细节。图形执行单元508能够包括指令获取单元537、通用寄存器堆阵列(GRF)524、架构寄存器堆阵列(ARF)526、线程仲裁器522、发送单元530、分支单元532、一组SIMD浮点单元(FPU)534以及在一个实施例中包括一组专用整数SIMD ALU 535。GRF 524和ARF 526包括与可以在图形执行单元508中活动的每个同时硬件线程关联的一组通用寄存器堆和架构寄存器堆。在一个实施例中,在ARF526中维持每线程架构状态,而在线程执行期间使用的数据被存储在GRF 524中。每个线程的执行状态(包括用于每个线程的指令指针)能够被保持在ARF 526中的线程特定寄存器中。
在一个实施例中,图形执行单元508具有是同时多线程(SMT)和细粒度交错多线程(IMT)的组合的架构。该架构具有模块化配置,其能够在设计时基于每执行单元的寄存器数量和同时线程的目标数量来被微调,其中执行单元资源跨用来执行多个同时线程的逻辑而被划分。可以由图形执行单元508执行的逻辑线程的数量不限于硬件线程的数量,并且多个逻辑线程能够被指派到每个硬件线程。
在一个实施例中,图形执行单元508能够共同发布多个指令,所述多个指令各自可以是不同的指令。图形执行单元线程508的线程仲裁器522能够将指令分派给发送单元530、分支单元532或(一个或多个)SIMD FPU 534中的一个以用于执行。每个执行线程能够访问GRF 524内的128个通用寄存器,其中每个寄存器能够存储32个字节,其作为32位数据元素的SIMD 8元素向量可访问。在一个实施例中,每个执行单元线程可以访问GRF 524内的4千字节,虽然实施例不限于此,并且在其它实施例中可以提供更多或更少的寄存器资源。在一个实施例中,图形执行单元508被分区成能够独立执行计算操作的七个硬件线程,尽管每执行单元的线程的数量也可根据实施例而变化。例如,在一个实施例中支持多达16个硬件线程。在其中七个线程可以访问4千字节的实施例中,GRF 524能够存储总共28千字节。在16个线程可以访问4千字节的情况下,GRF 524能够存储总共64千字节。灵活的寻址模式能够允许对寄存器一起被寻址以有效地构建更宽的寄存器或者表示跨步矩形块数据结构(strided rectangular block data structure)。
在一个实施例中,经由通过消息传递发送单元530执行的“发送”指令来分派存储器操作、采样器操作和其它较长时延系统通信。在一个实施例中,将分支指令分派给专用分支单元532以促进SIMD发散和最终收敛。
在一个实施例中,图形执行单元508包括一个或多个SIMD浮点单元((一个或多个)FPU)534以执行浮点运算。在一个实施例中,(一个或多个)FPU 534还支持整数计算。在一个实施例中,(一个或多个)FPU 534能够SIMD执行多达数量为M的32位浮点(或整数)运算,或者SIMD执行多达2M个16位整数或16位浮点运算。在一个实施例中,(一个或多个)FPU中的至少一个FPU提供扩展的数学能力以支持高吞吐量超越数学函数和双精度54位浮点。在一些实施例中,还存在一组8位整数SIMD ALU 535,并且该组8位整数SIMD ALU 535可以被特别地优化以执行与机器学习计算关联的运算。
在一个实施例中,图形执行单元508的多个实例的阵列能够在图形子核分组(例如,子切片)中被实例化。为了可缩放性,产品架构师能够选择每子核分组的执行单元的确切数量。在一个实施例中,执行单元508能够跨多个执行通道执行指令。在另外的实施例中,在图形执行单元508上执行的每个线程是在不同的通道上执行的。
图6图示了根据实施例的另外的执行单元600。执行单元600可以是供例如在如图3C中的计算引擎贴片340A-340D中使用的计算优化的执行单元,但未被限制为这样。执行单元600的变体还可以用于如图3B中的图形引擎贴片310A-310D中。在一个实施例中,执行单元600包括线程控制单元601、线程状态单元602、指令获取/预获取单元603和指令解码单元604。执行单元600另外包括寄存器堆606,所述寄存器堆606存储能够被指派到执行单元内的硬件线程的寄存器。执行单元600另外包括发送单元607和分支单元608。在一个实施例中,发送单元607和分支单元608能够与图5B的图形执行单元508的发送单元530和分支单元532类似地操作。
执行单元600还包括计算单元610,所述计算单元610包括多个不同类型的功能单元。在一个实施例中,计算单元610包括ALU单元611,所述ALU单元611包括算术逻辑单元的阵列。ALU单元611能够被配置成执行64位、32位和16位整数和浮点运算。整数和浮点运算可同时被执行。计算单元610还能够包括脉动阵列612和数学单元613。脉动阵列612包括能够用来以脉动方式执行向量或其它数据并行操作的数据处理单元的宽度W和深度D的网络。在一个实施例中,脉动阵列612能够被配置成执行矩阵运算,诸如矩阵点积运算。在一个实施例中,脉动阵列612支持16位浮点运算及8位和4位整数运算。在一个实施例中,脉动阵列612能够被配置成加速机器学习操作。在此类实施例中,脉动阵列612能够被配置有对bfloat16位浮点格式的支持。在一个实施例中,能够包括数学单元613来以高效和比ALU单元611更低功率的方式执行数学运算的特定子集。数学单元613能够包括可以在由其它实施例提供的图形处理引擎的共享功能逻辑中找到的数学逻辑的变体(例如,图4的共享功能逻辑420的数学逻辑422)。在一个实施例中,数学单元613能够被配置成执行32位和64位浮点运算。
线程控制单元601包括用来控制在执行单元内线程的执行的逻辑。线程控制单元601能够包括用来开始、停止和抢占执行单元600内线程的执行的线程仲裁逻辑。线程状态单元602能够用来为被指派在执行单元600上执行的线程存储线程状态。在执行单元600内存储线程状态使得能够在那些线程变为阻塞或空闲时快速抢占线程。指令获取/预获取单元603能够从更高级别执行逻辑的指令高速缓存(例如,如图5A中的指令高速缓存506)中获取指令。指令获取/预获取单元603还能够基于当前执行的线程的分析来发布对要被加载到指令高速缓存中的指令的预获取请求。指令解码单元604能够被用来解码要由计算单元执行的指令。在一个实施例中,指令解码单元604能够被用作次级解码器以将复杂指令解码成组成微操作(constituent micro-operation)。
执行单元600另外包括能够由在执行单元600上执行的硬件线程使用的寄存器堆606。能够跨用来执行在执行单元600的计算单元610内的多个同时线程的逻辑来划分寄存器堆606中的寄存器。可以由图形执行单元600执行的逻辑线程的数量不限于硬件线程的数量,并且多个逻辑线程能够被指派到每个硬件线程。寄存器堆606的大小能够基于支持的硬件线程的数量跨实施例而变化。在一个实施例中,寄存器重命名可用来动态分配寄存器到硬件线程。
图7是图示根据一些实施例的图形处理器指令格式700的框图。在一个或多个实施例中,图形处理器执行单元支持具有采用多种格式的指令的指令集。实线框图示了一般被包括在执行单元指令中的组成部分,而虚线包括可选的或者仅被包括在指令的子集中的组成部分。在一些实施例中,描述和图示的指令格式700是宏指令,因为它们是供应给执行单元的指令,而与一旦指令被处理则由指令解码产生的微操作相反。
在一些实施例中,图形处理器执行单元本机地支持采用128位指令格式710的指令。基于所选择的指令、指令选项和操作数的数量,64位压缩指令格式730可用于一些指令。本机128位指令格式710提供对所有指令选项的访问,而在64位格式730中一些选项和操作被限制。采用64位格式730的可用的本机指令随实施例而变化。在一些实施例中,使用索引字段713中的一组索引值来部分地压缩指令。执行单元硬件基于索引值来引用一组压缩表,并且使用压缩表输出来重构采用128位指令格式710的本机指令。能够使用指令的其它大小和格式。
对于每种格式,指令操作码712定义执行单元要执行的操作。执行单元跨每个操作数的多个数据元素并行执行每个指令。例如,响应于相加指令,执行单元跨表示纹理元素或图片元素的每个颜色通道来执行同时相加运算。默认情况下,执行单元跨操作数的所有数据通道来执行每个指令。在一些实施例中,指令控制字段714实现对诸如通道选择(例如,断定(predication))和数据通道次序(例如,搅混(swizzle))之类的某些执行选项的控制。对于采用128位指令格式710的指令,执行大小字段716限制将被并行执行的数据通道的数量。在一些实施例中,执行大小字段716不可用于在64位紧凑指令格式730中使用。
一些执行单元指令具有多达三个操作数,这三个操作数包括两个源操作数、src0720、src1 722和一个目的地718。在一些实施例中,执行单元支持双目的地指令,其中目的地之一是隐含的。数据操纵指令能够具有第三源操作数(例如SRC2 724),其中指令操作码712确定源操作数的数量。指令的最后源操作数能够是利用指令传递的立即(例如,硬编码的)值。
在一些实施例中,128位指令格式710包括访问/地址模式字段726,该访问/地址模式字段726指定例如使用直接寄存器寻址模式还是间接寄存器寻址模式。在使用直接寄存器寻址模式时,由指令中的位来直接提供一个或多个操作数的寄存器地址。
在一些实施例中,128位指令格式710包括访问/地址模式字段726,该访问/地址模式字段726指定指令的地址模式和/或访问模式。在一个实施例中,访问模式被用来定义指令的数据访问对齐。一些实施例支持包括16字节对齐的访问模式和1字节对齐的访问模式的访问模式,其中访问模式的字节对齐确定指令操作数的访问对齐。例如,当处于第一模式中时,指令可将字节对齐的寻址用于源操作数和目的地操作数,并且当处于第二模式中时,指令可将16字节对齐的寻址用于所有源操作数和目的地操作数。
在一个实施例中,访问/地址模式字段726的地址模式部分确定指令将使用直接寻址还是间接寻址。在使用直接寄存器寻址模式时,指令中的位直接提供一个或多个操作数的寄存器地址。在使用间接寄存器寻址模式时,可以基于指令中的地址寄存器值和地址立即字段来计算一个或多个操作数的寄存器地址。
在一些实施例中,基于操作码712位字段对指令进行分组,以简化操作码解码740。对于8位操作码,4、5和6位允许执行单元确定操作码的类型。所示出的精确操作码分组仅是示例。在一些实施例中,移动和逻辑操作码群组742包括数据移动和逻辑指令(例如,移动(mov)、比较(cmp))。在一些实施例中,移动和逻辑群组742共享五个最高有效位(MSB),其中移动(mov)指令采用0000xxxxb的形式,并且逻辑指令采用0001xxxxb的形式。流控制指令群组744(例如调取、跳(jmp))包括采用0010xxxxb(例如,0x20)形式的指令。杂项指令群组746包括指令的混合,包括采用0011xxxxb(例如0x30)形式的同步指令(例如等待、发送)。并行数学指令群组748包括采用0100xxxxb(例如0x40)形式的逐组成部分的算术指令(例如,加、乘(mul))。并行数学群组748跨数据通道并行执行算术运算。向量数学群组750包括采用0101xxxxb(例如,0x50)形式的算术指令(例如,dp4)。向量数学群组对向量操作数执行诸如点积计算的算术。图示的操作码解码740在一个实施例中能够用来确定执行单元的哪个部分将被用来执行解码的指令。例如,一些指令可被指定为将由脉动阵列执行的脉动指令。诸如光线追踪指令(未示出)的其它指令能够被路由到执行逻辑的切片或分区内的光线追踪核或光线追踪逻辑。
图形流水线
图8是图形处理器800的另一实施例的框图。与本文中任何其它附图的元件具有相同参考标号(或名称)的图8的元件能够以与本文中其它地方所描述的方式类似的任何方式操作或起作用,但不限于这样。
在一些实施例中,图形处理器800包括几何流水线820、媒体流水线830、显示引擎840、线程执行逻辑850和渲染输出流水线870。在一些实施例中,图形处理器800是包括一个或多个通用处理核的多核处理系统内的图形处理器。通过对一个或多个控制寄存器(未示出)的寄存器写入或者经由经过环形互连802发布至图形处理器800的命令来控制图形处理器。在一些实施例中,环形互连802将图形处理器800耦合到其它处理组件,诸如其它图形处理器或通用处理器。来自环形互连802的命令由命令流转化器803解译,该命令流转化器803将指令供应至几何流水线820或媒体流水线830的各个组件。
在一些实施例中,命令流转化器803指导顶点获取器805的操作,该顶点获取器805从存储器读取顶点数据并执行由命令流转化器803提供的顶点处理命令。在一些实施例中,顶点获取器805将顶点数据提供给顶点着色器807,该顶点着色器807对每个顶点执行坐标空间变换和照明操作。在一些实施例中,顶点获取器805和顶点着色器807通过经由线程分派器831向执行单元852A-852B分派执行线程来执行顶点处理指令。
在一些实施例中,执行单元852A-852B是具有用于执行图形和媒体操作的指令集的向量处理器的阵列。在一些实施例中,执行单元852A-852B具有附连的L1高速缓存851,所述L1高速缓存851特定于每个阵列,或者在阵列之间共享。高速缓存能够被配置为数据高速缓存、指令高速缓存或被分区以在不同分区中含有数据和指令的单个高速缓存。
在一些实施例中,几何流水线820包括曲面细分组件以执行3D对象的硬件加速的曲面细分。在一些实施例中,可编程外壳着色器(programmable hull shader)811配置曲面细分操作。可编程域着色器817提供曲面细分输出的后端评估。曲面细分器813在外壳着色器811的指导下进行操作,并且含有专用逻辑以基于作为到几何流水线820的输入而提供的粗略几何模型来生成一组详细的几何对象。在一些实施例中,如果未使用曲面细分,则能够绕过曲面细分组件(例如,外壳着色器811、曲面细分器813和域着色器817)。
在一些实施例中,完整几何对象能够由几何着色器819经由分派给执行单元852A-852B的一个或多个线程来处理,或者能够直接行进至裁剪器(clipper)829。在一些实施例中,几何着色器对整个几何对象进行操作,而不是如在图形流水线的先前阶段中那样对顶点或顶点的补片(patch)进行操作。如果曲面细分被禁用,则几何着色器819接收来自顶点着色器807的输入。在一些实施例中,几何着色器819由几何着色器程序可编程以在曲面细分单元被禁用时执行几何曲面细分。
在光栅化前,裁剪器829处理顶点数据。裁剪器829可以是具有裁剪和几何着色器功能的可编程裁剪器或固定功能裁剪器。在一些实施例中,渲染输出流水线870中的光栅化器和深度测试组件873分派像素着色器以将几何对象转换成每像素表示。在一些实施例中,像素着色器逻辑被包括在线程执行逻辑850中。在一些实施例中,应用能够绕过光栅化器和深度测试组件873,并且经由流输出单元823访问未光栅化的顶点数据。
图形处理器800具有允许数据和消息在处理器的主要组件之间传递的互连总线、互连组构或某种其它互连机构。在一些实施例中,执行单元852A-852B和关联的逻辑单元(例如,L1高速缓存851、采样器854、纹理高速缓存858等)经由数据端口856互连,以执行存储器访问并且与处理器的渲染输出流水线组件进行通信。在一些实施例中,采样器854、高速缓存851、858和执行单元852A-852B各自具有单独的存储器访问路径。在一个实施例中,纹理高速缓存858还能够被配置为采样器高速缓存。
在一些实施例中,渲染输出流水线870含有光栅化器和深度测试组件873,其将基于顶点的对象转换成关联的基于像素的表示。在一些实施例中,光栅化器逻辑包括用来执行固定功能三角形和线光栅化的窗口化器(windower)/掩蔽器单元。关联的渲染高速缓存878和深度高速缓存879在一些实施例中也是可用的。像素操作组件877对数据执行基于像素的操作,尽管在一些实例中,与2D操作关联的像素操作(例如,带有混合(blending)的位块图像传输)由2D引擎841执行,或者在显示时由显示控制器843使用覆盖显示平面代替。在一些实施例中,共享L3高速缓存875对于全部图形组件是可用的,从而允许在不使用主系统存储器的情况下共享数据。
在一些实施例中,图形处理器媒体流水线830包括媒体引擎837和视频前端834。在一些实施例中,视频前端834接收来自命令流转化器803的流水线命令。在一些实施例中,媒体流水线830包括单独的命令流转化器。在一些实施例中,视频前端834在将命令发送至媒体引擎837之前处理媒体命令。在一些实施例中,媒体引擎837包括线程派生功能性来派生线程,以便经由线程分派器831分派到线程执行逻辑850。
在一些实施例中,图形处理器800包括显示引擎840。在一些实施例中,显示引擎840在处理器800的外部,并且经由环形互连802或某一其它互连总线或组构与图形处理器耦合。在一些实施例中,显示引擎840包括2D引擎841和显示控制器843。在一些实施例中,显示引擎840含有能独立于3D流水线操作的专用逻辑。在一些实施例中,显示控制器843与显示装置(未示出)耦合,该显示装置可以是系统集成的显示装置(如在膝上型计算机中),或者可以是经由显示装置连接器附连的外部显示装置。
在一些实施例中,几何流水线820和媒体流水线830可配置成基于多个图形和媒体编程接口来执行操作,并且不特定于任何一个应用编程接口(API)。在一些实施例中,用于图形处理器的驱动器软件将特定于特定图形或媒体库的API调取转换成能够由图形处理器处理的命令。在一些实施例中,为全部来自Khronos Group的开放图形库(OpenGL)、开放计算语言(OpenCL)和/或Vulkan图形和计算API提供支持。在一些实施例中,还可以为来自微软公司的Direct3D库提供支持。在一些实施例中,可支持这些库的组合。还可以为开源计算机视觉库(OpenCV)提供支持。如果能够进行从未来API的流水线到图形处理器的流水线的映射,则具有可兼容3D流水线的未来API也将被支持。
图形流水线编程
图9A是图示根据一些实施例的图形处理器命令格式900的框图。图9B是图示根据实施例的图形处理器命令序列910的框图。图9A中的实线框图示了一般被包括在图形命令中的组成部分,而虚线包括可选的或者仅被包括在图形命令的子集中的组成部分。图9A的示例性图形处理器命令格式900包括用来标识命令的客户端902、命令操作代码(操作码)904和数据906的数据字段。一些命令中还包括子操作码905和命令大小908。
在一些实施例中,客户端902指定处理命令数据的图形装置的客户端单元。在一些实施例中,图形处理器命令解析器检查每个命令的客户端字段以调节命令的进一步处理,并且将命令数据路由到适当的客户端单元。在一些实施例中,图形处理器客户端单元包括存储器接口单元、渲染单元、2D单元、3D单元和媒体单元。每个客户端单元具有处理命令的对应处理流水线。一旦客户端单元接收到命令,客户端单元便读取操作码904和子操作码905(如果子操作码905存在的话),以确定要执行的操作。客户端单元使用数据字段906中的信息来执行命令。对于一些命令,预期显式命令大小908来指定命令的大小。在一些实施例中,命令解析器基于命令操作码来自动确定命令中的至少一些命令的大小。在一些实施例中,经由双字的倍数来对齐命令。能够使用其它命令格式。
图9B中的流程图图示了示例性图形处理器命令序列910。在一些实施例中,以图形处理器的实施例为特征的数据处理系统的软件或固件使用所示出的命令序列的版本来设置、执行和终止一组图形操作。仅出于示例的目的示出并描述了样本命令序列,因为实施例不限于这些特定命令或此命令序列。另外,命令可作为命令序列中的批量的命令被发布,使得图形处理器将至少部分并发地处理命令的序列。
在一些实施例中,图形处理器命令序列910可以以流水线转储清除命令(pipelineflush command)912开始,以使任何活动的图形流水线完成该流水线的当前未决命令。在一些实施例中,3D流水线922和媒体流水线924没有并发地操作。执行流水线转储清除以使活动的图形流水线完成任何未决命令。响应于流水线转储清除,用于图形处理器的命令解析器将暂停命令处理,直至活动的绘图引擎完成未决操作并且相关的读取高速缓存失效。可选地,能够将渲染高速缓存中标记为“脏”的任何数据转储清除到存储器。在一些实施例中,流水线转储清除命令912能够被用于流水线同步,或者在将图形处理器置于低功率状态前被使用。
在一些实施例中,在命令序列要求图形处理器在流水线之间显式地切换时,使用流水线选择命令913。在一些实施例中,除非上下文将为两个流水线发布命令,否则在发布流水线命令前,在执行上下文内仅要求一次流水线选择命令913。在一些实施例中,紧接在经由流水线选择命令913的流水线切换之前,要求流水线转储清除命令912。
在一些实施例中,流水线控制命令914配置图形流水线以用于操作,并且被用来对3D流水线922和媒体流水线924进行编程。在一些实施例中,流水线控制命令914为活动的流水线配置流水线状态。在一个实施例中,流水线控制命令914被用于流水线同步,并且在处理一批命令前从活动的流水线内的一个或多个高速缓冲存储器中清除数据。
在一些实施例中,返回缓冲器状态命令916被用来为相应流水线配置一组返回缓冲器以写入数据。一些流水线操作要求分配、选择或配置一个或多个返回缓冲器,在处理期间这些操作将中间数据写入到所述一个或多个返回缓冲器中。在一些实施例中,图形处理器还使用一个或多个返回缓冲器来存储输出数据并且执行跨线程通信。在一些实施例中,返回缓冲器状态916包括选择要用于一组流水线操作的返回缓冲器的大小和数量。
命令序列中的剩余命令基于用于操作的活动流水线而不同。基于流水线确定920,将命令序列定制到以3D流水线状态930开始的3D流水线922或者在媒体流水线状态940开始的媒体流水线924。
用来配置3D流水线状态930的命令包括3D状态设置命令,其用于在处理3D图元命令之前要配置的顶点缓冲器状态、顶点元素状态、恒定颜色状态、深度缓冲器状态以及其它状态变量。至少部分基于使用中的特定3D API来确定这些命令的值。在一些实施例中,如果将不使用某些流水线元件,则3D流水线状态930命令还能够选择性地禁用或绕过那些元件。
在一些实施例中,3D图元932命令被用来提交要由3D流水线处理的3D图元。经由3D图元932命令传递到图形处理器的命令和关联参数被转发到图形流水线中的顶点获取功能。顶点获取功能使用3D图元932命令数据来生成顶点数据结构。顶点数据结构被存储在一个或多个返回缓冲器中。在一些实施例中,3D图元932命令被用来经由顶点着色器对3D图元执行顶点操作。为处理顶点着色器,3D流水线922将着色器执行线程分派到图形处理器执行单元。
在一些实施例中,经由执行934命令或事件来触发3D流水线922。在一些实施例中,寄存器写入触发命令执行。在一些实施例中,经由命令序列中的“go”或“kick”命令来触发执行。在一个实施例中,使用用来转储清除通过图形流水线的命令序列的流水线同步命令来触发命令执行。3D流水线将执行用于3D图元的几何处理。一旦操作完成,所得到的几何对象便被光栅化,并且像素引擎对所得到的像素进行上色。对于那些操作,还可以包括用来控制像素着色和像素后端操作的另外的命令。
在一些实施例中,在执行媒体操作时,图形处理器命令序列910沿着媒体流水线924路径。一般而言,用于媒体流水线924的编程的特定使用和方式取决于要执行的媒体或计算操作。可以在媒体解码期间将特定媒体解码操作卸载到媒体流水线。在一些实施例中,还能够绕过媒体流水线,并且能够使用由一个或多个通用处理核提供的资源来全部或部分地执行媒体解码。在一个实施例中,媒体流水线还包括用于通用图形处理器单元(GPGPU)操作的元件,其中图形处理器被用于使用计算着色器程序来执行SIMD向量运算,所述计算着色器程序与图形图元的渲染不是明确相关的。
在一些实施例中,以与3D流水线922类似的方式对媒体流水线924进行配置。将用来配置媒体流水线状态940的一组命令分派或放置到在媒体对象命令942之前的命令队列中。在一些实施例中,用于媒体流水线状态940的命令包括用来配置媒体流水线元件的数据,所述媒体流水线元件将被用来处理媒体对象。这包括用来配置媒体流水线内的视频解码和视频编码逻辑的数据,诸如编码和解码格式。在一些实施例中,用于媒体流水线状态940的命令还支持使用到含有一批状态设置的“间接”状态元素的一个或多个指针。
在一些实施例中,媒体对象命令942将指针供应到媒体对象以便由媒体流水线处理。媒体对象包括存储器缓冲器,所述存储器缓冲器含有要处理的视频数据。在一些实施例中,在发布媒体对象命令942之前,所有媒体流水线状态必须是有效的。一旦配置了流水线状态,并且将媒体对象命令942排队,便经由执行命令944或等效执行事件(例如,寄存器写入)来触发媒体流水线924。然后可以通过由3D流水线922或媒体流水线924提供的操作对来自媒体流水线924的输出进行后处理。在一些实施例中,以与媒体操作类似的方式配置和执行GPGPU操作。
图形软件架构
图10图示了根据一些实施例的用于数据处理系统1000的示例性图形软件架构。在一些实施例中,软件架构包括3D图形应用1010、操作系统1020和至少一个处理器1030。在一些实施例中,处理器1030包括图形处理器1032和一个或多个通用处理器核1034。图形应用1010和操作系统1020各自在数据处理系统的系统存储器1050中执行。
在一些实施例中,3D图形应用1010含有一个或多个着色器程序,该一个或多个着色器程序包括着色器指令1012。着色器语言指令可以采用高级着色器语言,诸如Direct3D的高级着色器语言(HLSL)、OpenGL着色器语言(GLSL)等等。应用还包括采用适用于由通用处理器核1034执行的机器语言的可执行指令1014。应用还包括由顶点数据定义的图形对象1016。
在一些实施例中,操作系统1020是来自微软公司的Microsoft® Windows®操作系统、专有的类UNIX操作系统或使用Linux内核的变体的开源类UNIX操作系统。操作系统1020能够支持图形API 1022,诸如Direct3D API、OpenGL API或Vulkan API。当Direct3DAPI在使用中时,操作系统1020使用前端着色器编译器1024来将采用HLSL的任何着色器指令1012编译成更低级着色器语言。编译可以是即时(JIT)编译或者应用能够执行着色器预编译。在一些实施例中,在3D图形应用1010的编译期间将高级着色器编译成低级着色器。在一些实施例中,以中间形式(诸如由Vulkan API使用的标准可移植中间表示(SPIR)的版本)提供着色器指令1012。
在一些实施例中,用户模式图形驱动器1026含有用来将着色器指令1012转换成硬件特定表示的后端着色器编译器1027。当OpenGL API在使用中时,将采用GLSL高级语言的着色器指令1012传递到用户模式图形驱动器1026以用于编译。在一些实施例中,用户模式图形驱动器1026使用操作系统内核模式功能1028来与内核模式图形驱动器1029进行通信。在一些实施例中,内核模式图形驱动器1029与图形处理器1032进行通信以分派命令和指令。
IP核实现
至少一个实施例的一个或多个方面可以由存储在机器可读介质上的代表性代码来实现,该代表性代码表示和/或定义诸如处理器的集成电路内的逻辑。例如,机器可读介质可以包括表示处理器内的各种逻辑的指令。在由机器读取时,指令可以使机器制作逻辑以执行本文中描述的技术。称为“IP核”的此类表示是用于集成电路的逻辑的可重复使用单元,其可以作为对集成电路的结构进行描述的硬件模型而被存储在有形机器可读介质上。可以将硬件模型供应至各种客户或制造设施,所述客户或制造设施将硬件模型加载在制造集成电路的制作机器上。可制作集成电路,使得电路执行与本文中描述的实施例中的任何实施例关联的所描述的操作。
图11A是图示根据实施例的可被用来制造集成电路以执行操作的IP核开发系统1100的框图。IP核开发系统1100可以被用来生成能够被并入到更大的设计中或被用来构造整个集成电路(例如,SOC集成电路)的模块化、可重复使用设计。设计设施1130能够生成采用高级编程语言(例如,C/C++)的IP核设计的软件仿真1110。软件仿真1110能够被用于使用仿真模型1112来设计、测试和验证IP核的行为。仿真模型1112可以包括功能、行为和/或时序仿真。然后能够从仿真模型1112创建或合成寄存器传输级(RTL)设计1115。RTL设计1115是对硬件寄存器之间的数字信号流进行建模的集成电路的行为的抽象,包括使用建模的数字信号执行的相关联逻辑。除RTL设计1115外,还可以创建、设计或合成处于逻辑级或晶体管级的较低级设计。因此,初始设计和仿真的特定细节可以不同。
可以由设计设施将RTL设计1115或等效物进一步合成为硬件模型1120,该硬件模型1120可以采用硬件描述语言(HDL)或物理设计数据的某种其它表示。可以进一步对HDL进行仿真或测试以验证IP核设计。能够使用非易失性存储器1140(例如,硬盘、闪速存储器或任何非易失性存储介质)来存储IP核设计以用于递送到第三方制作设施1165。备选地,可以通过有线连接1150或无线连接1160(例如经由因特网)来传送IP核设计。制作设施1165然后可以制作至少部分基于IP核设计的集成电路。制作的集成电路能够被配置成执行根据本文中描述的至少一个实施例的操作。
图11B图示了根据本文中描述的一些实施例的集成电路封装组装件1170的截面侧视图。集成电路封装组装件1170图示了如本文中描述的一个或多个处理器或加速器装置的实现。封装组装件1170包括连接到衬底1180的多个硬件逻辑单元1172、1174。逻辑1172、1174可以至少部分地在可配置逻辑或固定功能性逻辑硬件中实现,并且能够包括本文中描述的(一个或多个)处理器核、(一个或多个)图形处理器或其它加速器装置中的任何装置的一个或多个部分。逻辑1172、1174的每个单元能够在半导体管芯内实现,并且经由互连结构1173与衬底1180耦合。互连结构1173可以被配置成在逻辑1172、1174与衬底1180之间路由电信号,并且能够包括互连,诸如但不限于凸块或柱。在一些实施例中,互连结构1173可以被配置成路由电信号,诸如,例如与逻辑1172、1174的操作关联的输入/输出(I/O)信号和/或功率或接地信号。在一些实施例中,衬底1180是环氧基层压衬底。在其它实施例中,衬底1180可以包括其它适合类型的衬底。封装组装件1170能够经由封装互连1183被连接到其它电装置。封装互连1183可以被耦合到衬底1180的表面,以将电信号路由到其它电装置,诸如母板、其它芯片组或多芯片模块。
在一些实施例中,逻辑单元1172、1174与桥1182电耦合,该桥1182被配置成在逻辑1172、1174之间路由电信号。桥1182可以是为电信号提供路由的密集互连结构。桥1182可以包括由玻璃或合适的半导体材料构成的桥衬底。能够在桥衬底上形成电路由特征,以在逻辑1172、1174之间提供芯片到芯片连接。
虽然图示了两个逻辑单元1172、1174和桥1182,但是本文中描述的实施例可以包括在一个或多个管芯上的更多或更少逻辑单元。由于当逻辑被包括在单个管芯上时可以排除桥1182,因此可以通过零个或多个桥来连接一个或多个管芯。备选的是,能够通过一个或多个桥来连接多个管芯或逻辑单元。另外,在其它可能配置(包括三维配置)中能够将多个逻辑单元、管芯和桥连接在一起。
图11C图示了包括连接到衬底1180(例如,基础管芯)的多个硬件逻辑小芯片单元的封装组装件1190。如本文中所述的图形处理单元、并行处理器和/或计算加速器能够由单独制造的多样化的硅小芯片构成。在此上下文中,小芯片是至少部分封装的集成电路,其包括能够与其它小芯片一起组装到更大封装中的不同的逻辑单元。带有不同IP核逻辑的小芯片的多样化集合能够被组装到单个装置中。另外,能够使用有源中介层技术将小芯片集成到基础管芯或基础小芯片中。本文中描述的概念实现在GPU内的不同形式的IP之间的互连和通信。能够使用不同工艺技术来制造并且在制造期间构成IP核,这避免了将多个IP(特别是在带有若干特点(flavors)IP的大的SoC上)汇聚到相同制造工艺的复杂性。使得能够使用多个工艺技术改进了推向市场的时间,并且提供了创建多个产品SKU的有成本效益的方式。另外,解聚的IP更易于被独立地功率门控,在给定工作负载上不在使用中的组件能够被断电,从而降低总体功率消耗。
硬件逻辑小芯片能够包括专用硬件逻辑小芯片1172、逻辑或I/O小芯片1174和/或存储器小芯片1175。硬件逻辑小芯片1172和逻辑或I/O小芯片1174可以至少部分地在可配置逻辑或固定功能性逻辑硬件中实现,并且能够包括(一个或多个)处理器核、(一个或多个)图形处理器、并行处理器或本文中描述的其它加速器装置中的任何一项的一个或多个部分。存储器小芯片1175能够是DRAM(例如,GDDR、HBM)存储器或高速缓冲(SRAM)存储器。
每个小芯片能够被制作为单独的半导体管芯,并且经由互连结构1173与衬底1180耦合。互连结构1173可被配置成在各种小芯片与衬底1180内的逻辑之间路由电信号。互连结构1173能够包括互连,诸如但不限于凸块或柱。在一些实施例中,互连结构1173可以被配置成路由电信号,诸如,例如与逻辑、I/O和存储器小芯片的操作关联的输入/输出(I/O)信号和/或功率或接地信号。
在一些实施例中,衬底1180是环氧基层压衬底。在其它实施例中,衬底1180可以包括其它适合类型的衬底。封装组装件1190能够经由封装互连1183连接到其它电装置。封装互连1183可以被耦合到衬底1180的表面,以将电信号路由到其它电装置,诸如母板、其它芯片组或多芯片模块。
在一些实施例中,逻辑或I/O小芯片1174和存储器小芯片1175能够经由桥1187电耦合,该桥1187被配置成在逻辑或I/O小芯片1174与存储器小芯片1175之间路由电信号。桥1187可以是为电信号提供路由的密集互连结构。桥1187可以包括由玻璃或合适的半导体材料构成的桥衬底。能够在桥衬底上形成电路由特征,以在逻辑或I/O小芯片1174与存储器小芯片1175之间提供芯片到芯片连接。桥1187还可以被称为硅桥或互连桥。例如,在一些实施例中,桥1187是嵌入式多管芯互连桥(EMIB)。在一些实施例中,桥1187可以只是从一个小芯片到另一小芯片的直接连接。
衬底1180能够包括用于I/O 1191、高速缓冲存储器1192和其它硬件逻辑1193的硬件组件。组构1185能够被嵌入在衬底1180中以实现在各种逻辑小芯片与衬底1180内的逻辑1191、1193之间的通信。在一个实施例中,I/O 1191、组构1185、高速缓存、桥和其它硬件逻辑1193能够被集成到基础管芯中,该基础管芯层叠在衬底1180的顶部上。
在各种实施例中,封装组装件1190能够包括由组构1185或一个或多个桥1187互连的更少或更多数量的组件和小芯片。封装组装件1190内的小芯片可被布置在3D或2.5D布置中。一般而言,桥结构1187可以被用来促进在例如逻辑或I/O小芯片与存储器小芯片之间的点到点互连。组构1185能够被用来将各种逻辑和/或I/O小芯片(例如,小芯片1172、1174、1191、1193)与其它逻辑和/或I/O小芯片互连。在一个实施例中,衬底内的高速缓冲存储器1192能够充当用于封装组装件1190的全局高速缓存、分布式全局高速缓存的一部分或者充当用于组构1185的专用高速缓存。
图11D图示了根据实施例的包括可互换小芯片1195的封装组装件1194。可互换小芯片1195能够被组装到一个或多个基础小芯片1196、1198上的标准化槽中。基础小芯片1196、1198能够经由桥互连1197耦合,该桥互连1197互连能够类似于本文中描述的其它桥互连,并且可以例如是EMIB。存储器小芯片还能够经由桥互连而连接到逻辑或I/O小芯片。I/O和逻辑小芯片能够经由互连组构进行通信。基础小芯片能够各自支持采用标准化格式的一个或多个槽以用于逻辑或I/O或存储器/高速缓存之一。
在一个实施例中,能够将SRAM和功率递送电路制作到基础小芯片1196、1198中的一个或多个基础小芯片中,能够相对于堆叠在基础小芯片的顶部上的可互换小芯片1195使用不同的工艺技术来制作所述基础小芯片1196、1198。例如,能够使用更大的工艺技术来制作基础小芯片1196、1198,而能够使用更小的工艺技术来制造可互换小芯片。可互换小芯片1195中的一个或多个可以是存储器(例如,DRAM)小芯片。能够基于作为使用封装组装件1194的产品的目标的功率和/或性能,为封装组装件1194选择不同存储器密度。另外,能够基于作为产品的目标的功率和/或性能,在组装时选择带有不同数量的类型的功能单元的逻辑小芯片。另外,能够将含有不同类型的IP逻辑核的小芯片插入到可互换小芯片槽中,从而实现能够混合并匹配不同技术IP块的混合处理器设计。
示例性片上系统集成电路
图12-13图示了根据本文中描述的各种实施例的可以使用一个或多个IP核来制作的示例性集成电路和相关联的图形处理器。除了所图示的内容外,还可以包括其它逻辑和电路,包括另外的图形处理器/核、外设接口控制器或通用处理器核。
图12是图示了根据实施例的可以使用一个或多个IP核来制作的示例性片上系统集成电路1200的框图。示例性集成电路1200包括一个或多个应用处理器1205(例如,CPU)、至少一个图形处理器1210,并且可以另外包括图像处理器1215和/或视频处理器1220,以上处理器中的任何处理器可以是来自相同或多个不同设计设施的模块化IP核。集成电路1200包括外设或总线逻辑,所述外设或总线逻辑包括USB控制器1225、UART控制器1230、SPI/SDIO控制器1235和I2S/I2C控制器1240。另外,集成电路能够包括耦合到高清晰度多媒体接口(HDMI)控制器1250和移动工业处理器接口(MIPI)显示接口1255中的一个或多个的显示装置1245。可以通过包括闪速存储器和闪速存储器控制器的闪速存储器子系统1260来提供存储。可以经由存储器控制器1265提供存储器接口以便访问SDRAM或SRAM存储器装置。一些集成电路另外包括嵌入式安全引擎1270。
图13A-13B是图示了根据本文中描述的实施例的供SoC内使用的示例性图形处理器的框图。图13A图示了根据实施例的可以使用一个或多个IP核来制作的片上系统集成电路的示例性图形处理器1310。图13B图示了根据实施例的可以使用一个或多个IP核来制作的片上系统集成电路的另外的示例性图形处理器1340。图13A的图形处理器1310是低功率图形处理器核的示例。图13B的图形处理器1340是更高性能图形处理器核的示例。图形处理器1310、1340中的每个图形处理器能够是图12的图形处理器1210的变体。
如图13A中所示出的,图形处理器1310包括顶点处理器1305和一个或多个片段处理器1315A-1315N(例如,1315A、1315B、1315C、1315D直到1315N-1和1315N)。图形处理器1310能够经由单独的逻辑执行不同着色器程序,使得顶点处理器1305被优化以执行用于顶点着色器程序的操作,而一个或多个片段处理器1315A-1315N执行用于片段或像素着色器程序的片段(例如,像素)着色操作。顶点处理器1305执行3D图形流水线的顶点处理阶段,并且生成图元和顶点数据。(一个或多个)片段处理器1315A-1315N使用由顶点处理器1305生成的图元和顶点数据来产生在显示装置上显示的帧缓冲器。在一个实施例中,(一个或多个)片段处理器1315A-1315N被优化以执行如针对在OpenGL API中提供的片段着色器程序,该片段着色器程序可以被用来执行与如针对在Direct 3D API中提供的像素着色器程序相似的操作。
图形处理器1310另外包括一个或多个存储器管理单元(MMU)1320A-1320B、(一个或多个)高速缓存1325A-1325B和(一个或多个)电路互连1330A-1330B。一个或多个MMU1320A-1320B为图形处理器1310(包括为顶点处理器1305和/或(一个或多个)片段处理器1315A-1315N)提供虚拟地址到物理地址映射,这些处理器除了在一个或多个高速缓存1325A-1325B中存储的顶点或图像/纹理数据之外还可以引用在存储器中存储的顶点或图像/纹理数据。在一个实施例中,一个或多个MMU 1320A-1320B可以与系统内的其它MMU同步,所述其它MMU包括与图12的一个或多个应用处理器1205、图像处理器1215和/或视频处理器1220关联的一个或多个MMU,使得每个处理器1205-1220能够参与到共享或统一虚拟存储器系统中。根据实施例,一个或多个电路互连1330A-1330B使得图形处理器1310能够或者经由SoC的内部总线或者经由直接连接来与SoC内的其它IP核通过接口连接。
如图13B所示出的,图形处理器1340包括图13A的图形处理器1310的一个或多个MMU 1320A-1320B、(一个或多个)高速缓存1325A-1325B和(一个或多个)电路互连1330A-1330B。图形处理器1340包括提供统一着色器核架构的一个或多个着色器核1355A-1355N(例如,1355A、1355B、1355C、1355D、1355E、1355F直到1355N-1和1355N),在该统一着色器核架构中单个核或单个类型的核能够执行全部类型的可编程着色器代码,包括用来实现顶点着色器、片段着色器和/或计算着色器的着色器程序代码。存在的着色器核的确切数量能够在实施例和实现之间变化。另外,图形处理器1340包括:核间任务管理器1345,该核间任务管理器1345充当用来将执行线程分派给一个或多个着色器核1355A-1355N的线程分派器;以及用来为基于贴片的渲染加速拼贴操作(tiling operation)的拼贴单元1358,在该基于贴片的渲染中,用于场景的渲染操作在图像空间中被细分,例如以利用场景内的局部空间相干性或优化内部高速缓存的使用。
图形处理单元(GPU)为计算机程序的大规模并行执行提供了优良的环境。这种执行经常采用图形处理的形式。然而,越来越经常,相同的硬件正被用于处理非基于图形的程序,通常被称为GPGPU(通用GPU)或更简单地被称为计算。
3D工作负载中的背对背或顺序操作(例如,绘制调用、诸如计算分派或GPGPU分派之类的分派)能够具有生产者/消费者关系,并且这能够导致高速缓冲存储器或本地存储器的低效使用。当3D工作负载中的顺序操作(例如绘制调用、分派)具有生产者/消费者关系时,数据工作集经常大于高速缓存的容量。这使所产生的数据的一部分以及所读取的任何数据在操作(例如绘制调用、分派)结束时驻留在高速缓存中。如果消费者以与生产者相同的顺序生成线程,那么高速缓存中的数据将很可能在消费者能够使用高速缓存中的数据之前被逐出(evict)。
例如,到消费者准备好访问在生产者绘制/分派结束时在高速缓存中的数据的时候,如果高速缓存是满的,则由于从高速缓存中逐出最旧数据的最近最少使用(LRU)替换策略,数据将已被逐出是很可能的。
图14为消费者示出了访问显示装置的不同区域的数据的顺序。显示装置1406包括象限1410、1420、1430和1440。当消费者访问象限1410和1420的数据时,由生产者针对象限1410和1420生成的像素数据很可能不在高速缓存中。当消费者访问象限1410和1420的数据时,象限1430和1440的像素数据最初很可能在高速缓存中,但是如果消费者具有如图14示出的线程顺序,则象限1430和1440的此像素数据将很可能被逐出。
拼贴通过在移动到屏幕的下一区域之前执行屏幕的给定区域(子集)的所有绘制调用来解决这个问题。这防止了所产生的数据被写入存储器,直到完成屏幕的区域为止。
然而,拼贴要求在显示屏幕的x/y域中的生产者与消费者之间的1:1关系。如果消费者与生产者的分辨率不同,或者消费者想要使用由另一像素x、y产生的数据,则绘制不能被拼贴。而且,拼贴通常仅被用于绘制而不是分派。
本设计通过以不同的顺序(例如,反转顺序)分派线程来修改预定义的硬件调度以用于背对背或顺序操作,以便改进高速缓存或共享本地存储器效率。改变线程分派顺序能够利用仍驻留在高速缓存或共享本地存储器中的数据。通过利用已经在高速缓存或共享本地存储器中的数据,本设计能够减少存储器带宽并减少时延。这节省了功率并增加了性能。
通过如图15中示出的以反转顺序分派线程并反向走,本设计能够利用来自生产者的数据,所述数据在消费者操作期间仍驻留在高速缓存中。本设计能够通过为每个绘制/分派翻转(flip)线程分派顺序来这样做。
图15为消费者示出了访问显示装置的数据的顺序。显示装置1500包括象限1510、1520、1530和1540。当消费者访问象限1510和1520的数据时,象限1510和1520的像素数据很可能不在高速缓存中。当消费者访问数据时,象限1530和1540的像素数据最初很可能在高速缓存中,因此在此示例中,消费者在象限1540开始利用来自先前生产者操作的像素数据。
像素着色器可以通过基于绘制调用将几何对象转换成每像素表示来生成像素数据。计算着色器可以基于分派来生成计算数据。
图16示出了根据一个实施例的具有用于调度线程顺序以改进高速缓存效率或共享本地存储器效率的示例性操作序列的方法1600。图形处理单元、图形多处理器或具有用于存储数据的高速缓存单元的图形处理器根据一个实施例来执行操作1600。
在操作1602,全局调度器(例如调度和分派逻辑、TD/IC 223A-223F、调度器/分派器241、线程分派器258、504、831、1345、调度器/分派器1968等)接收要被调度和分派用于在各种处理资源(例如处理单元、处理引擎、执行资源、执行单元(EU)222A-222F、224A-224F、508A-N、509A-N、600、852A-B、流处理器、流式多处理器(streaming multiprocessor,SM)、图形多处理器1925、1950、多核群组1965A-1965N、计算单元、各种核中的图形核下一个计算单元)上执行的线程。在一个示例中,线程能够执行绘制调用和分派。在操作1604,全局调度器基于正向线程分派来调度和分派线程。在正向线程分派中的至少一部分完成(例如绘制调用或分派的完成或结束、每一个绘制调用或每一个分派的完成或结束)时,全局调度器确定在操作1606是否要禁用线程顺序的反转(例如,线程顺序的反转的软件禁用)。如果禁用线程顺序的反转,那么该方法返回到操作1604。如果启用线程顺序的反转,那么该方法在操作1608继续进行到反向线程分派。与正向线程分派相比,反向线程分派具有线程分派的反转顺序(例如,改变其中在光栅化器和/或拼贴器内产生三角形的片段的顺序)。
在反向线程分派中的至少一部分完成(例如,绘制调用或分派的完成或结束、每一个绘制调用或每一个分派的完成或结束)时,全局调度器在操作1610确定是否要禁用线程顺序的反转(例如,线程顺序的反转的软件禁用)。如果禁用线程顺序的反转,那么该方法返回到操作1608。如果启用线程顺序的反转,那么该方法在操作1604继续进行到正向线程分派。
在一个示例中,针对三角形的像素最初从由三角形覆盖的最左上方像素开始到由三角形覆盖的最右下方像素而生成。针对此三角形的反向线程分派将从由该三角形覆盖的最右下方像素开始到由该三角形覆盖的最左上方像素。
在命令序列的另一示例中,绘制调用A产生数据A,绘制调用B消耗数据A并产生数据B,并且然后绘制调用C消耗数据B并产生数据C。
在另一示例中,当启用拼贴时,拼贴器从最左顶部贴片开始,移动到最右下方贴片。用于批量贴片的反向线程分派将从最右下方贴片开始到最左顶部贴片。
此方法1600比传统拼贴有优势,因为此方法不限于具有1:1像素映射的生产者/消费者关系。此方法也不限于绘制;此方法适用于绘制、分派或两者的混合。虽然不与传统拼贴一样高效,但是此方法能够在其中不能利用传统拼贴的许多情况下使用。对此特征的建模已经示出了在具有此特征的3D工作负载中存储器业务方面大约2%的几何平均值(geomean)减少。
图17A-17C示出了根据实施例的另外图形多处理器。图17A-17B示出了图形多处理器1925、1950。图17C示出了图形处理单元(GPU)1980,其包括布置到多核群组1965A-1965N中的图形处理资源的专用集合。所示出的图形多处理器1925、1950和多核群组1965A-1965N能够是能够同时执行大量执行线程的流式多处理器(SM)。
图17A示出了根据另外实施例的图形多处理器1925。图形多处理器1925包括执行资源单元的多个另外实例。例如,图形多处理器1925能够包括指令单元1932A-1932B、寄存器堆1934A-1934B以及(一个或多个)纹理单元1944A-1944B中的多个实例。图形多处理器1925还包括图形或计算执行单元(例如,GPGPU核1936A-1936B、张量核1937A-1937B、光线追踪核1938A-1938B)的多个集合以及加载/存储单元1940A-1940B的多个集合。在一个实施例中,执行资源单元具有公共指令高速缓存1930、纹理和/或数据高速缓冲存储器1942以及共享存储器1946。
各种组件能够经由互连组构1927通信。在一个实施例中,互连组构1927包括一个或多个纵横开关以实现图形多处理器325的各种组件之间的通信。在一个实施例中,互连组构1927是单独的高速网络组构层,在其上堆叠了图形多处理器1925的每个组件。图形多处理器1925的组件经由互连组构1927与远程组件通信。例如,GPGPU核1936A-1936B、1937A-1937B以及1938A-1938B能够各自经由互连组构1927与共享存储器1946通信。互连组构1927能够仲裁图形多处理器1925内的通信以确保组件之间的公平带宽分配。
图17B示出了根据另外实施例的图形多处理器1950。图形处理器包括执行资源1956A-1956D的多个集合,其中执行资源的每个集合包括多个指令单元、寄存器堆、GPGPU核以及加载存储单元。执行资源1956A-1956D能够与(一个或多个)纹理单元1960A-1960D协同工作以用于纹理操作,同时共享指令高速缓存1954和共享存储器1953。在一个实施例中,执行资源1956A-1956D能够共享指令高速缓存1954和共享存储器1953,以及纹理和/或数据高速缓冲存储器1958A-1958B的多个实例。各种组件能够经由与图17A的互连组构1927类似的互连组构1952进行通信。
本领域技术人员将理解的是,图3A-3B中描述的架构是描述性的,并且关于本实施例的范围不是限制性的。因此,在不脱离本文中描述的实施例的范围的情况下,本文中描述的技术可以在任何适当配置的处理单元上实现,所述处理单元包括但不限于一个或多个移动应用处理器、包括多核CPU的一个或多个台式电脑或服务器中央处理单元(CPU)、一个或多个并行处理单元以及一个或多个图形处理器或专用处理单元。
在一些实施例中,如本文中描述的并行处理器或GPGPU通信地耦合到主机/处理器核以加速图形操作、机器学习操作、模式分析操作和各种通用GPU(GPGPU)功能。GPU可以通过总线或其它互连(例如,高速互连,诸如PCIe或NVLink)通信地耦合到主机处理器/核。在其它实施例中,GPU可以被集成在与核相同的封装或芯片上,并且通过内部处理器总线/互连(即,在封装或芯片内部)通信地耦合到核。不管在其中GPU被连接的方式如何,处理器核都可以以工作描述符中包含的命令/指令序列的形式将工作分配给GPU。GPU然后使用专用电路/逻辑以便高效地处理这些命令/指令。
图17C图示了包括布置成多核群组1965A-N的图形处理资源的专用集合的图形处理单元(GPU)1980。尽管提供了仅单个多核群组1965A的细节,但将领会的是,其它多核群组1965B-1965N可以被配备有图形处理资源的相同或类似集合。
如所图示的,多核群组1965A可以包括图形核1970的集合、张量核1971的集合和光线追踪核1972的集合。每个核可以包括具有处理资源的分组的执行电路1400。调度器/分派器1968调度和分派图形线程以便在各种核1970、1971、1972上执行。调度器/分派器1968可以包括执行电路1500。寄存器堆1969的集合存储由核1970、1971、1972在执行图形线程时使用的操作数值。这些寄存器可以包括例如用于存储整数值的整数寄存器、用于存储浮点值的浮点寄存器、用于存储打包数据元素(整数和/或浮点数据元素)的向量寄存器及用于存储张量/矩阵值的贴片寄存器(tile register)。在一个实施例中,贴片寄存器被实现为向量寄存器的组合集合。
一个或多个组合的1级(L1)高速缓存和共享存储器单元1973在每个多核群组1965A内本地存储图形数据,诸如纹理数据、顶点数据、像素数据、光线数据、包围体数据等。一个或多个纹理单元1974还能够被用来执行纹理操作,诸如纹理映射和采样。由多核群组1965A-1965N的全部或其子集共享的2级(L2)高速缓存1975存储用于多个并发图形线程的图形数据和/或指令。如所图示的,L2高速缓存1975可以跨多个多核群组1965A-1965N被共享。一个或多个存储器控制器1967将GPU 1980耦合到存储器1966,所述存储器249可以是系统存储器(例如,DRAM)和/或专用图形存储器(例如,GDDR6存储器)。
输入/输出(I/O)电路1963将GPU 1980耦合到一个或多个I/O装置1962,诸如数字信号处理器(DSP)、网络控制器或用户输入装置。片上互连可以用来将I/O装置1962耦合到GPU 1980和存储器1966。I/O电路3195的一个或多个I/O存储器管理单元(IOMMU)1964将I/O装置1962直接耦合到系统存储器1966。在一个实施例中,IOMMU 1964管理页表的多个集合以将虚拟地址映射到系统存储器1966中的物理地址。在此实施例中,I/O装置1962、(一个或多个)CPU 1961和(一个或多个)GPU 1980可以共享相同虚拟地址空间。
在一个实现中,IOMMU 1964支持虚拟化。在此情况下,它可以管理页表的第一集合以将客户/图形虚拟地址映射到客户/图形物理地址,并且管理页表的第二集合以将客户/图形物理地址映射到系统/主机物理地址(例如,在系统存储器1966内)。页表的第一和第二集合中的每个集合的基址可以被存储在控制寄存器中并且在上下文切换时被换出(例如,使得为新上下文提供对页表的相关集合的访问)。尽管在图17C中未被图示,但核1970、1971、1972和/或多核群组1965A-1965N中的每个可以包括转换后备缓冲器(TLB)以对客户虚拟到客户物理转换、客户物理到主机物理转换以及客户虚拟到主机物理转换进行高速缓存。
在一个实施例中,CPU 1961、GPU 1980和I/O装置1962被集成在单个半导体芯片和/或芯片封装上。图示的存储器1966可以被集成在相同芯片上,或者可以经由芯片外(off-chip)接口被耦合到存储器控制器1967。在一个实现中,存储器1966包括GDDR6存储器,所述GDDR6存储器共享与其它物理系统级存储器相同的虚拟地址空间,虽然本发明的根本原理不限于此特定实现。
在一个实施例中,张量核1971包括特别设计成执行矩阵运算的多个执行单元,所述矩阵运算是用来执行深度学习操作的基本计算操作。例如,同时矩阵乘法运算可以被用于神经网络训练和推理。张量核1971可以使用各种操作数精度来执行矩阵处理,所述各种操作数精度包括单精度浮点(例如,32位)、半精度浮点(例如,16位)、整数字(16位)、字节(8位)和半字节(4位)。在一个实施例中,神经网络实现提取每个经渲染的场景的特征,潜在地组合来自多个帧的细节以构造高质量的最终图像。
在深度学习实现中,可以调度并行矩阵乘法工作以用于在张量核1971上执行。神经网络的训练特别要求大量的矩阵点积运算。为处理N x N x N矩阵相乘的内积公式,张量核1971可以包括至少N个点积处理元件。在矩阵相乘开始前,一个完整矩阵被加载到贴片寄存器,并且在N个循环的每个循环,第二矩阵的至少一列被加载。在每个循环,存在被处理的N个点积。
取决于特定实现,可以以不同精度存储矩阵元素,所述不同精度包括16位字、8位字节(例如,INT8)和4位半字节(例如,INT4)。可以为张量核1971指定不同精度模式以确保最高效的精度被用于不同工作负载(例如,诸如能够容许量化到字节和半字节的推理工作负载)。
在一个实施例中,光线追踪核1972对于实时光线追踪和非实时光线追踪实现二者加速光线追踪操作。特别地,光线追踪核1972包括光线遍历/交叉电路,以用于使用包围体层级(BVH)来执行光线遍历并且标识封围在BVH体之内的图元与光线之间的交叉。光线追踪核1972还可以包括用于执行深度测试和剔除(例如,使用Z缓冲器或类似布置)的电路。在一个实现中,光线追踪核1972与本文中描述的图像去噪技术协同来执行遍历和交叉操作,其至少一部分可以在张量核1971上执行。例如,在一个实施例中,张量核1971实现深度学习神经网络以执行由光线追踪核1972生成的帧的去噪。然而,(一个或多个)CPU 1961、图形核1970和/或光线追踪核1972还可以实现去噪和/或深度学习算法的全部或一部分。
另外,如上所述,可以采用用来去噪的分布式方法,其中GPU 1980在通过网络或高速互连耦合到其它计算装置的计算装置中。在该实施例中,互连的计算装置共享神经网络学习/训练数据来改进整个系统学习对不同类型的图像帧和/或不同的图形应用执行去噪所用的速度。
在一个实施例中,光线追踪核1972处理所有BVH遍历和光线-图元交叉,从而使图形核1970免于以每光线的数千个指令而过载。在一个实施例中,每个光线追踪核1972包括用于执行包围盒测试(例如,以用于遍历操作)的专用电路的第一集合和用于执行光线-三角形交叉测试(例如,对已遍历的光线进行交叉)的专用电路的第二集合。因此,在一个实施例中,多核群组1965A能够仅仅启动光线探头,并且光线追踪核1972独立执行光线遍历和交叉并且将命中数据(例如,命中、无命中、多个命中等)返回到线程上下文。在光线追踪核1972执行遍历和交叉操作的同时,其它核1970、1971被释放以执行其它图形或计算工作。
在一个实施例中,每个光线追踪核1972包括用来执行BVH测试操作的遍历单元和执行光线-图元交叉测试的交叉单元。交叉单元生成“命中”、“无命中”或“多个命中”响应,并且交叉单元将该响应提供到适当的线程。在遍历和交叉操作期间,其它核(例如,图形核1970和张量核1971)的执行资源被释放以执行其它形式的图形工作。
在下面描述的一个特定实施例中,使用了混合光栅化/光线追踪方法,其中在图形核1970与光线追踪核1972之间分布工作。
在一个实施例中,光线追踪核1972(和/或其它核1970、1971)包括对诸如Microsoft的DirectX光线追踪(DXR)之类的光线追踪指令集的硬件支持,所述DXR包括DispatchRays命令以及光线生成、最接近命中、任意命中和未命中着色器,这些使得能够对每个对象指派纹理和着色器的独特集合。可以由光线追踪核1972、图形核1970和张量核1971支持的另一光线追踪平台是Vulkan 1.1.85。然而,注意本发明的根本原理不限于任何特定光线追踪ISA。
一般而言,各种核1972、1971、1970可以支持光线追踪指令集,所述光线追踪指令集包括用于光线生成、最接近命中、任意命中、光线-图元交叉、每图元和层级包围盒构造、未命中、访问及异常(exception)的指令/功能。更具体地说,一个实施例包括用来执行以下功能的光线追踪指令:
光线生成 – 可以对每个像素、样本或其它用户定义的工作指派执行光线生成指令。
最接近命中 – 可以执行最接近命中指令来用场景内的图元来定位光线的最接近交叉点。
任意命中 – 任意命中指令标识场景内的图元与光线之间的多个交叉,潜在地标识新的最接近交叉点。
交叉 – 交叉指令执行光线-图元交叉测试并且输出结果。
每图元包围盒构造 – 此指令围绕给定图元或图元的群组构建包围盒(例如,在构建新的BVH或其它加速数据结构时)。
未命中 – 指示光线未命中场景或场景的指定区域内的所有几何形状。
访问 – 指示光线将遍历的子体(children volume)。
异常 – 包括各种类型的异常处理程序(exception handler)(例如,针对各种错误条件而被调取)。
一些实施例涉及示例1,所述示例1包括一种图形处理器,其包括处理资源以及调度和分派逻辑,所述调度和分派逻辑用于将线程调度和分派到所述处理资源。所述调度和分派逻辑被配置成接收线程,以基于具有正向线程顺序的正向线程分派来调度和分派所述线程,以及确定是否要在包括绘制调用或分派的完成或结束的所述正向线程分派中的至少一部分完成时禁用线程顺序的反转。
示例2包括示例1的主题,进一步包括与所述处理资源关联的高速缓存单元,所述高速缓存单元用于基于所述绘制调用来接收和存储像素数据。
示例3包括示例1-2中任何一个示例的主题,其中所述高速缓存单元用于基于所述分派来接收和存储计算数据。
示例4包括示例1-3中任何一个示例的主题,其中所述调度和分派逻辑被配置成通过以不同的顺序分派线程来修改预定义的调度以用于背对背或顺序操作,以便改进由于线程的反转顺序而仍驻留在所述高速缓存单元中的数据的使用以及所述高速缓存单元的高速缓存效率。
示例5包括示例1-4中任何一个示例的主题,其中所述调度和分派逻辑被配置成确定是否要在每一个绘制调用或分派完成时禁用线程顺序的反转。
示例6包括示例1-5中任何一个示例的主题,其中所述调度和分派逻辑被配置成当禁用所述线程顺序的反转时,继续进行具有所述正向线程顺序的所述正向线程分派。
示例7包括示例1-6中任何一个示例的主题,其中所述调度和分派逻辑被配置成当启用线程顺序的反转时执行反向线程分派。
示例8包括示例1-7中任何一个示例的主题,其中与所述正向线程分派相比,所述反向线程分派具有线程分派的反转顺序。
一些实施例涉及示例9,所述示例9包括一种图形处理单元,其包括:调度逻辑,所述调度逻辑用于接收和调度线程;以及分派逻辑,所述分派逻辑用于将线程分派到处理资源。所述调度逻辑被配置成基于线程顺序来调度所述线程,以及确定是否要在包括绘制调用或分派的完成或结束的所述线程顺序中的至少一部分完成时禁用所述线程顺序的反转。
示例10包括示例9的主题,进一步包括与所述处理资源关联的高速缓存或共享存储器,所述高速缓存或共享存储器用于基于所述绘制调用来接收和存储像素数据。
示例11包括示例9-10中任何一个示例的主题,其中所述高速缓存或共享存储器用于基于所述分派来接收和存储计算数据。
示例12包括示例9-11中任何一个示例的主题,其中所述调度逻辑被配置成通过以不同的顺序分派线程来修改预定义的调度以用于背对背或顺序操作,以便改进由于线程的反转顺序而仍驻留在所述高速缓存或共享存储器中的数据的使用以及所述高速缓存或共享存储器的效率。
示例13包括示例9-12中任何一个示例的主题,其中所述调度逻辑被配置成确定是否要在每一个绘制调用或分派完成时禁用线程顺序的反转。
示例14包括示例9-13中任何一个示例的主题,其中所述调度逻辑被配置成当禁用所述线程顺序的反转时继续进行所述线程顺序。
示例15包括示例9-14中任何一个示例的主题,其中所述调度逻辑被配置成当启用线程顺序的反转时反转所述线程顺序。
示例16包括示例9-15中任何一个示例的主题,其中所述线程顺序最初具有第一绘制调用、第一分派、第二绘制调用和第二分派。
一些实施例涉及示例17,所述示例17包括一种用于调度图形处理单元(GPU)的线程的计算机实现的方法。所述计算机实现的方法包括:利用调度器接收线程;基于具有正向线程顺序的正向线程分派来利用所述调度器调度所述线程;以及确定是否要在包括绘制调用或分派的完成或结束的所述正向线程分派中的至少一部分完成时禁用线程顺序的反转。
示例18包括示例17的主题,进一步包括:基于所述绘制调用来利用高速缓存单元接收和存储像素数据;基于所述分派来接收和存储计算数据;以及通过以不同的顺序分派线程来修改预定义的调度以用于背对背或顺序操作,以便改进由于线程的反转顺序而仍驻留在所述高速缓存单元中的数据的使用以及所述高速缓存单元的高速缓存效率。
示例19包括示例17-18中任何一个示例的主题,进一步包括:确定是否要在每一个绘制调用或分派完成时禁用线程顺序的反转。
示例20包括示例17-19中任何一个示例的主题,进一步包括:当启用线程顺序的反转时,执行反向线程分派。
前述描述和附图要在说明性而不是限制性的意义上被考虑。本领域技术人员将理解的是,在不脱离如所附权利要求书中阐明的本发明的更广泛的精神和范围的情况下,可以对本文中描述的实施例进行各种修改和改变。

Claims (20)

1.一种图形处理器,包括:
处理资源;以及
调度和分派逻辑,所述调度和分派逻辑用于将线程调度和分派到所述处理资源,所述调度和分派逻辑被配置成接收线程,以基于具有正向线程顺序的正向线程分派来调度和分派所述线程,以及确定是否要在包括绘制调用或分派的完成或结束的所述正向线程分派中的至少一部分完成时禁用线程顺序的反转。
2.根据权利要求1所述的图形处理器,进一步包括:
与所述处理资源关联的高速缓存单元,所述高速缓存单元用于基于所述绘制调用来接收和存储像素数据。
3.根据权利要求2所述的图形处理器,其中所述高速缓存单元用于基于所述分派来接收和存储计算数据。
4.根据权利要求3所述的图形处理器,其中所述调度和分派逻辑配置成通过以不同的顺序分派线程来修改预定义的调度以用于背对背或顺序操作,以便改进由于线程的反转顺序而仍驻留在所述高速缓存单元中的数据的使用以及所述高速缓存单元的高速缓存效率。
5.根据权利要求4所述的图形处理器,其中所述调度和分派逻辑被配置成确定是否要在每一个绘制调用或分派完成时禁用线程顺序的反转。
6.根据权利要求1所述的图形处理器,其中所述调度和分派逻辑被配置成当禁用所述线程顺序的反转时,继续进行具有所述正向线程顺序的所述正向线程分派。
7.根据权利要求1所述的图形处理器,其中所述调度和分派逻辑被配置成当启用线程顺序的反转时执行反向线程分派。
8.根据权利要求1所述的图形处理器,其中与所述正向线程分派相比,所述反向线程分派具有线程分派的反转顺序。
9.一种图形处理单元,包括:
调度逻辑,所述调度逻辑用于接收和调度线程;以及
分派逻辑,所述分派逻辑用于将线程分派到处理资源,所述调度逻辑被配置成基于线程顺序来调度所述线程,以及确定是否要在包括绘制调用或分派的完成或结束的所述线程顺序中的至少一部分完成时禁用所述线程顺序的反转。
10.根据权利要求9所述的图形处理单元,进一步包括:
与所述处理资源关联的高速缓存或共享存储器,所述高速缓存或共享存储器用于基于所述绘制调用来接收和存储像素数据。
11.根据权利要求10所述的图形处理单元,其中所述高速缓存或共享存储器用于基于所述分派来接收和存储计算数据。
12.根据权利要求11所述的图形处理单元,其中所述调度逻辑被配置成通过以不同的顺序分派线程来修改预定义的调度以用于背对背或顺序操作,以便改进由于线程的反转顺序而仍驻留在所述高速缓存或共享存储器中的数据的使用以及所述高速缓存或共享存储器的效率。
13.根据权利要求9所述的图形处理单元,其中所述调度逻辑被配置成确定是否要在每一个绘制调用或分派完成时禁用线程顺序的反转。
14.根据权利要求9所述的图形处理单元,其中所述调度逻辑被配置成当禁用所述线程顺序的反转时继续进行所述线程顺序。
15.根据权利要求9所述的图形处理单元,其中所述调度逻辑被配置成当启用线程顺序的反转时反转所述线程顺序。
16.根据权利要求15所述的图形处理单元,其中所述线程顺序最初具有第一绘制调用、第一分派、第二绘制调用和第二分派。
17.一种用于调度图形处理单元GPU的线程的计算机实现的方法,包括:
利用调度器接收线程;
基于具有正向线程顺序的正向线程分派来利用所述调度器调度所述线程;以及
确定是否要在包括绘制调用或分派的完成或结束的所述正向线程分派中的至少一部分完成时禁用线程顺序的反转。
18.根据权利要求17所述的计算机实现的方法,进一步包括:
基于所述绘制调用来利用高速缓存单元接收和存储像素数据;
基于所述分派来接收和存储计算数据;以及
通过以不同的顺序分派线程来修改预定义的调度以用于背对背或顺序操作,以便改进由于线程的反转顺序而仍驻留在所述高速缓存单元中的数据的使用以及所述高速缓存单元的高速缓存效率。
19.根据权利要求18所述的计算机实现的方法,进一步包括:
确定是否要在每一个绘制调用或分派完成时禁用线程顺序的反转。
20.根据权利要求19所述的计算机实现的方法,进一步包括:
当启用线程顺序的反转时,执行反向线程分派。
CN202011026462.2A 2019-11-14 2020-09-25 用于调度线程顺序以改进高速缓存效率的方法和设备 Pending CN112801849A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/684,077 US11204801B2 (en) 2019-11-14 2019-11-14 Method and apparatus for scheduling thread order to improve cache efficiency
US16/684077 2019-11-14

Publications (1)

Publication Number Publication Date
CN112801849A true CN112801849A (zh) 2021-05-14

Family

ID=75683492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011026462.2A Pending CN112801849A (zh) 2019-11-14 2020-09-25 用于调度线程顺序以改进高速缓存效率的方法和设备

Country Status (3)

Country Link
US (1) US11204801B2 (zh)
CN (1) CN112801849A (zh)
DE (1) DE102020126177A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113377538A (zh) * 2021-06-10 2021-09-10 中国人民解放军国防科技大学 一种面向gpu数据重用的存储计算协同调度方法及系统
US11204801B2 (en) 2019-11-14 2021-12-21 Intel Corporation Method and apparatus for scheduling thread order to improve cache efficiency
CN116703690A (zh) * 2022-11-02 2023-09-05 荣耀终端有限公司 图像处理方法和设备
CN116703690B (zh) * 2022-11-02 2024-05-14 荣耀终端有限公司 图像处理方法和设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11393156B2 (en) * 2020-03-13 2022-07-19 Advanced Micro Devices, Inc. Partially resident bounding volume hierarchy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7631308B2 (en) * 2005-02-11 2009-12-08 International Business Machines Corporation Thread priority method for ensuring processing fairness in simultaneous multi-threading microprocessors
US7778800B2 (en) * 2006-08-01 2010-08-17 Nvidia Corporation Method and system for calculating performance parameters for a processor
US9928564B2 (en) * 2014-06-26 2018-03-27 Intel Corporation Efficient hardware mechanism to ensure shared resource data coherency across draw calls
US10796397B2 (en) * 2015-06-12 2020-10-06 Intel Corporation Facilitating dynamic runtime transformation of graphics processing commands for improved graphics performance at computing devices
US10296713B2 (en) * 2015-12-29 2019-05-21 Tomtec Imaging Systems Gmbh Method and system for reviewing medical study data
US11204801B2 (en) 2019-11-14 2021-12-21 Intel Corporation Method and apparatus for scheduling thread order to improve cache efficiency

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11204801B2 (en) 2019-11-14 2021-12-21 Intel Corporation Method and apparatus for scheduling thread order to improve cache efficiency
CN113377538A (zh) * 2021-06-10 2021-09-10 中国人民解放军国防科技大学 一种面向gpu数据重用的存储计算协同调度方法及系统
CN113377538B (zh) * 2021-06-10 2023-06-20 中国人民解放军国防科技大学 一种面向gpu数据重用的存储计算协同调度方法及系统
CN116703690A (zh) * 2022-11-02 2023-09-05 荣耀终端有限公司 图像处理方法和设备
CN116703690B (zh) * 2022-11-02 2024-05-14 荣耀终端有限公司 图像处理方法和设备

Also Published As

Publication number Publication date
US20210149716A1 (en) 2021-05-20
US11204801B2 (en) 2021-12-21
DE102020126177A1 (de) 2021-05-20

Similar Documents

Publication Publication Date Title
US11341709B2 (en) Apparatus and method using triangle pairs and shared transformation circuitry to improve ray tracing performance
US11960405B2 (en) Multi-tile memory management mechanism
US11151683B2 (en) Use of inner coverage information by a conservative rasterization pipeline to enable EarlyZ for conservative rasterization
US11556480B2 (en) Systems and methods in a graphics environment for providing shared virtual memory addressing support for a host system
US20230367740A1 (en) Computing efficient cross channel operations in parallel computing machines using systolic arrays
CN113282338A (zh) 具有多级依赖性的并发工作负载调度
CN112801849A (zh) 用于调度线程顺序以改进高速缓存效率的方法和设备
CN113094300A (zh) 页表映射机制
CN113052746A (zh) 用于多适配器编码的装置和方法
CN113989098A (zh) 用于增强图形渲染真实感的设备和方法
CN113032159A (zh) 编译器辅助的寄存器堆写入减少
CN112132939A (zh) 用于在过程纹理的生成期间避免重复处理的系统和方法
CN115131193A (zh) 用于减少处理器中的等待时间的曲面细分重新分配
CN114518943A (zh) 多片图形处理单元
CN114155134A (zh) 一种互连系统栅栏机构
CN113870087A (zh) 用于场景重建的近似三线性内插的设备和方法
CN112581348A (zh) 最小侵入性指令指针-察觉处理资源活动概要分析的方法和设备
US11182337B1 (en) Computing efficient cross channel operations in parallel computing machines using systolic arrays
US11250627B2 (en) Tile sequencing mechanism
US20230205704A1 (en) Distributed compression/decompression system
EP4181073A2 (en) Native sampler feedback technology
WO2022125105A1 (en) Constant-based calculations in shader prologue shared function
CN116341674A (zh) 用于ai和机器学习加速的二进制扩展
CN114661453A (zh) 基于范围的转储清除机制
CN115409683A (zh) 小多边形栅格化

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination